KHMELNYTSKYI NATIONAL UNIVERSITY
DEPARTMENT OF THE COMPUTER ENGINEERING AND SYSTEM
PROGRAMING

CriCTecS
KHARKIV, UKRAINE
21 March

Co-funded by the
Tempus Programme
of the European Union

RO BE O GO

00 0 X
10l \

From data of company Kaspersky the metamorphic
virus Sality leads among local threats in 2015 year

1 Trojan.WinLNK.StartPage.gena 7,19
2 @mﬂ.AutoRun.gen 6,29
3 Virus.Win32.Sality.gen 5,53
4 Worm.\VBS.Dinihou.r 5,40
KASPER{KY3

https://securelist.ru/analysis/ksb/27543/kaspersky-security-bulletin-2015-osnovnaya-statistika-za-2015-god/

https://securelist.ru/analysis/ksb/27543/kaspersky-security-bulletin-2015-osnovnaya-statistika-za-2015-god/

Spreading virus

Ukraine is among in the top twenty countries in the world
in the number of infected computers.
60,78% unigue users

i

—
-
_"

I 20-35% [35- 44% 44-51% B 51-59% [59 - 71%

Obfuscation techniques of

a metamorphic virus body

To avoid detection, metamorphic viruses use several

different techniques to evolve their code into new generations
that look completely different, but have exactly the same
functionality:

Paste of “garbage commands"

Permutation of commands

Equivalent instructions

Mov ebx,04h
Mov ecx,01h
Inc ecx

Add ebx ,01
Xor eax,eax
Add ecx, 09h
Sub ecx, 06h
Add eax, ebx
Add eax, ecx

ebx = 04h
ecx = 01h
ecx = 02h
ebx = 05h
eax = Oh

ecx = Bh

ecx = 0bh
eax = 05h
eax = 10h

V4

Paste of “garbage commands

Nop

Nop

Push ecx

Pop ecx

Mov eax, 10h €——
Xchg eax, ebx

Xchg ebx, eax

lllustration of module re-ordering

Generation n Generation n+1

Program Code

THEHE SHHEEE | e BIEHE o
IRERET JHREHE \\4
Virus Code FHEHES SIHEHE b o gl

mico
TR
/V

m gt

......

e —————

The suspicion

unknown program

e bl
Suspicion program analyzer i

determination of the <

Set of scenarios for
the evaluation

of suspicion

Modified emulator

The evaluation of the

program suspicion

)

=

Execution of the
suspicious program
and the obtaining
of its modified version

Y

Disassembly
of the suspicious

-

Executable
file
for an analysis
R
Server
G B, chnk, e e Mo . :
i : Base of knowledge | | Blocking /
| Programs Behaviours' 5 suspicio%ls
| white list arey list A set of rules Fuzzy classifier for ; ooram's
for 'fUZZ}.’ <«—»| making conclusion about :-Jl> Ex e%uti .-
i Behaviours' classification metamorphic virus infecting|} Conhniation
; black Hist i
; PDBB |

Sending the suspicious program
> on other hosts of the network
for possible demonstration of
malicious activity

Construction of the feature
vectors of the metamorphic
viruses' samples' similarity

Ir

Constructed the feature
vectors of the metamorphic
viruses' samples' similarity

obtained from other hosts

Partitioning

—,

programs before and
after emulation

Ir> of the disassembled code
before and after emulation

Determination of the
equivalent functional blocks

into a functional blocks

The basis of program suspiciousness analyzer is the set of the heuristic

scenarios, grouped by the suspiciousness levels — Deep, Average deep and
Low deep. Each level determines the conditions for the further analysis of
the program.

O O O 0O o0 O O

For example, for a given level High the scenarios would be:
Deep: Socket—>Connect—> GetSystemDirectory,

and in the case of the Low level:

Low deep: Socket—>Connect.

Some features of suspiciousness of the program:

attempt to get the rights of the system administrator;
attempt to open or close the system port;

trying to remove a file;

creation a file or process;

interception of data being entered from the keyboard;
sending messages to the network;

creation or entry in the registry

operating system (OS) type;
32-bit or 64bit OS versions;
MAC address of the guest OS;
the hiding of the modified emulator process of execution on the
host OS;

disabling of the possibility of the data exchange between the virtual
machine and the host OS (Virtual Machine Communication
Interface);

O change of a registry key on the host OS HKEY LOCAL MACHINE

O \SYSTEM\ControlSet001\Services\Disk\Enum

O OO0O0

O

Modified emulator functioning

Setting the rules in the virtual machine’s configuration file:

isolation.tools.getPtrLocation.disable = « TRUE»
isolation.tools.setPtrLocation.disable = « TRUE»
isolation.tools.setVersion.disable = « TRUE»
isolation.tools.getVersion.disable = « TRUE»
monitor_control.disable_directexec = « TRUE»
monitor_control.disable_chksimd = «TRUE»
monitor_control.disable_ntreloc = «TRUE»
monitor_control.disable_selfmod = «TRUE»
monitor_control.disable_reloc = « TRUE»
monitor_control.disable_btinout = « TRUE»
monitor_control.disable_btmemspace = «TRUE»
monitor_control.disable_btpriv = « TRUE»
monitor_control.disable_btseg = «TRUE» 10

1

[

Determination of the equivalen

between the code samples before and after emulatlon

Function blocks characterize hy:

* the control flow necessarily enters

the block through the first
instruction;

inside the block may not be
instructions of unconditional or
conditional branch (instructions of
subroutine call are allowed), all
instructions in the block are
executed sequentially;

at the end of the block there is at
least one instruction conditional or
unconditional branch

Control flow

¥

- JUMP instruction

- JUMP instruction

11

I ENE

Determination of the equivalent'
between the code samples before and after emulation

Modified emulator

Executable Executable

l ¥

Executable’
Disassembling

Disassembling

—)

Code sample before emulation
Code sample after emulation
N

12

blocks

The procedure of the determination of the equivalent
functional blocks consists of two stages

1. Determination of the occurrence of instructions in the
block based on the statistical assessment

2. Involvment of the refinement of the EFB choice and
the choice of the most relevant block that will be used for
the construction of the feature vectors of the
metamorphic viruses’ samples similarity

Determination of the equivalent

between the code samples before and after emu atlon

eI

1 Determination of the equivalent functional blocks

For each functional block for sample before and after emulation
TF-iDF metric is used:

N+1.0

*log()

SFB_Z.
kl

where n, — the number of occurrences of the i-th opcode in FB;

k =1,k, — number opcodes in FB, where &, is the total number of the assembler instructions;
N — the total number of FBs, N ry = Nig 3

n, — the number of FBs, which contain i-th opcode.

14

1 Determination of the equivalent functional blocks

As result will be obtain such matrixes:

M(FB'?)=

Lo h I
-

FBIP Sl S | S
Fpls, |s y
R 21 | S 2%k
Fols . 1s s
FB ml m2 | Y mk

M(FB"s) =

A S R A

FBFS Si Sz || S1g
Fs |5, |8 s

FB,)S || ®2 2g
Fs s (| s

FBH nl | “n2 ng

15

Determination of the equwalen

between the code samples before and after emulatuon

1 Determination of the equivalent functional blocks

Compare this matrixes:

k
E(FB P,FBfS)= Y (s-5))%
i=0, j=0

where s,— assessment of the opcodes appearance in the i-th block of the program 7, ,
s ,— assessment of the opcodes appearance in the j-th FB of the program F;,

FB'? — i-th FB of the program,
FB* — the j-th FB of the program F; .

If the value of the similarities evaluation for two FBs are less then specified threshold value 5,
then the repeated calculations of the similarity evaluation for the FB of the program FB,” and for
the next FB that follows the block FB'*. Mentioned above steps are repeated until the value of

the similarity evaluation will be less than or equal to the threshold value.
16

Determination of the equivalent

2 The process of refine choice of the equivalent functional blocks

In order to choose the equivalent functional blocks define the probability of the
following of opcodes in function block

For each equivalent functional blocks construct a probability matrix opcodes following

Pseudocode of filling cells of probability matrix opcodes following is given below:

for each cells in row begin
if o, > 0,,, then
occur (0,0, ,) =occur (0;,0,,,) +1,
occur (o, o,+1)

row

izzllo

end. 17

probabiliﬁes
M i

Determination of thefequiv

between the code samples before and after e

2 The process of refine choice of equivalent functional blocks

For example,
If functional block specified the following sequence of opcodes:
mov, push, lea, pop, mov, push, push, push, call,mov,

probability matrix opcodes following

mov [push|lea |pop |Call mov |push|lea |pop |call
mov |0 (0 [0 |1 1 mov |0 (0 [0 (12 |12
push(2 |2 [0 |0 [0 :> push (24 |2/4 (0 |0 |0
lea (0 |1 [0 |0 [0 lea (0 |1 [0 [0 |0
pop (O |0 (1 |0 |0 pop (0 |0 (1 |0 |0
call (O (1 |0 |0 |0 call (O (1 |0 |0 |0

18

2 The process of refine choice of equivalent functional blocks

Comparing probability matrix opcodes following for the program
before and after emulation and choice of the minimum similarity, using:

1 N-1 5
R:_2(Z|aij bljl)
N® =1

where, a; ; the matrix cell for the functional block FB'P

b; ; —the matrix cell for the functional block eFB fs

N — common amount of opcodes for the pairs of blocks.

19

The construction of the feature\

metamorphic viruses’ samples’ similarity™

L6 X (), D).) RED M) |
Le,). X (6,).D(e,). 1 (20). R)M (e,))

where ¢€,,...,€, pairs of the equivalent functional blocks between the program before and after

V=

the emulation,
n— a number of the equivalent blocks;
L — the Damerau-Levenshtein distance between the equivalent blocks ¢, of the program

before and after emulation;

X — the number of the required opcode exchange operations;

D — the number of the required opcode removal operations;

I — the number of the required opcode insertion operations;

R — the number of the required opcode replacement operations;

M — the number of matches between opcodes in the equivalent functional blocks of the
program before and after emulation;

B, — the danger degree behavior of the program’s behavior.

20

Matrix of Damerau-Levenshtein for two functional blocks opcodes and
transformation chain of FB1 into FB2

0

.1

2

3

4

1 xar

2 | mov

3| add

4 lea

J

mov

add

push

pop

xor add pop lea

mov add pop push

21

Feature . the danger degree be

program’s behavior

The danger degree behavior of the program’s behavior is estimated on the basis of the analysis
of API calls that describe the potentially dangerous behavior of the metamorphic virus

Description Behavior’s scenario to determine the High degree of danger

DLL Injection LoadLibraryA, CreateToolhelp32Snapshot, OpenProcess,
VirtualAllocEx, WriteProcessMemory, CreateRemoteThread

Anti-debugging IsDebuggerPresent, CheckRemoteDebuggerPresent,
OutputDebugerStringA, OutputDebugerStringW
File search and FindFirstFileA, FindNextFileA

injection
Finding and GetWindowsDirectoryA, GetSystemDirectoryA,
changing the GetCurrentDirectoryA, SetCurrentDirectoryA

system directory

Opening and GetFileAttributesA, SetFileAttributesA, CreateFileA, GetFileSizeA,

mapping file CreateFileMappingA, MapViewOfFile, UnmapViewOfFile 99

T e
I111For example, one of the rules can be presented as:

If (Lis Medium) and (X is High) and (D is Medium) and (I is High)

and (Ris Low) and (M is Medium) and (B is High) then DSMV is High

input parameters

LN,

distance Levenshtein

transposition

insertion

delete

replacment

match

behavior

Rule1
if (distance Levenstein is Low) and ...
...and (match is High)
then DSMYV is High

Rule2
if (insertion is Medium) and ...

...and (match is Medium)
then DSMYV is Medium

Mamdani
aggregation

Fuzzy Logic

Inference

Rule87

\| if (distance Levenstein is High) and ...

...and (match is Low)
then DSMYV is Low

Result: the degree of similarity to the metamorphic virus

Processing results

metamorph? on the host

‘ Low or Medium

the suspicious programs is sent to other
hosts of the network for the purpose of
its execution in the modified emulators

Similarity § High the suspicious
Degree to - programs is blocked

24

Experiments

Correctly chosen functional blocks for the program before and
after emulation

Metamorphic Number of correctly Number of correctly
viruse’s class chosen FB, % chosen FB, % (new
(previuos approach) approach)

388 100
91 100

ROC curves for metamorphic versions without and with
obfuscation and with different values of the obfuscation degrees

100 - NGVCK ROC Analise 100 . G2ROC Analise 1o VCL32ROC Analise
£ 80 £ 80 2 80
& -‘J [&
260 S 60 ¢ 60
x £ =
8 S 40 4
S 10 S S 40
g g S
= 20 = 20 = 20
0 0 0
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100
False Positive Rate False Positive Rate False Positive Rate
—— NGVCK without morphing — G2 without morphing — VCL32 without morphing
********* NGVCK 10% morphing G2 10%morphing ~7 77 VEL32 10%morphing
——NGVCK 20% morphing " G2 20% morphing VCL32 20% morphing
orp e — — G2 30% morphing ——— VCL32 30% morphing

----- NGVCK 30% morphing

Dependency of the accuracy of the detection on the values of

Experiments

the similarity threshold for two functional blocks

Number of|Threshold value |Detection [False
metamorphic| § for Rate positives
viruses determination of rate
equivalent function
blocks
0,5 0.9242 0.1947
NGVCK 50 0,6 0.8671 0.0641
0,7 0.8102 0.0812
0,5 0.9214 0.0789
VCL32 50 0,6 0.8905 0.0587
0,7 0.8454 0.0546
0,5 0.9987 0.0112
G2 50 0,6 0.9752 0.0094
0,7 0.9341 0.0088

27

demonstrations on the hosts’ number, involved in the
experiment

\O \D \D \D \O \O "'ED \D
N W Uy N L R

PiseHb npoasy, %

o
=

o

10 20 30 40 50 60 70 80
KinbKicTtb XocTiB, 3agiaHMX Yy BMABNEHI, WwT

<+«4 -+ PiBeHb NpoaBy (NGVCK)
—{fll— PiBeHb NpoABy (G2)
— A= PiseHb npoasy (VCL32) 28

9 4

041 0 20

1
ooy 04
”’AH
Y 0

Thank You !
Questions?

sirogyk@ukr.net, sprlysenko@gmail.com

29

