

Ministry of education and science of Ukraine
Khmelnytskyi national university

Oksana Pomorova, Sergii Lysenko, Dmytro Medzatyi

Formal and Intellectual Methods for System Security and
Resilience

Practicum

V. Kharchenko eds.

Project
543968-TEMPUS-1-2013-1-EE-TEMPUS-JPCR

"Modernization of Postgraduate Studies on Security and Resilience
for Human and Industry Related Domains"

2017

UDC 004: 504(045)
П22

Authors:

Oksana Pomorova,

Sergii Lysenko,

Dmytro Medzatyi

Oksana Pomorova, Sergii Lysenko, Dmytro MedzatyiПашинцев . Formal and Intellectual
Methods for System Security and Resilience. Practicum / V. Kharchenko (edit.). –
Khmelnytskyi: Khmelnytskyi national university, - 2015. – 213 p.

Practical part materials of training course «Formal and Intellectual Methods for System
Security and Resilience» which was prepared for TEMPUS «Modernization of Postgraduate
Studies on Security and Resilience for Human and Industry Related Domains» (543968-TEMPUS-
1-2013-1-EE-TEMPUS-JPCR) masters are posted.

This training course deals with such important questions as development and usage formal
methods for designing secure software systems, involvement formal methods for assuring security
of computer networks. It also presents some issues on the usage of intelligent systems for security
and deals with the questions of the system resilience development. Implementation of the
developed training course will improve the quality education and will make graduates successful
graduates in the labor market.

This training course is intended for masters and post-graduate students of «Computer
engineerings». Also it can used in the study of formal methods for system security and resilience,
and may be useful for lecturers with training on relevant courses.

Ref. – 90 items, figures – 51

© Oksana Pomorova, Sergii Lysenko, Dmytro Medzatyi
© Khmelnytskyi national university, 2015
This work is subject to copyright. All rights are reserved by the authors, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms, or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

Introduction

3

GLOSSARY

API – Application Programming Interface
AS – Autonomous system
DDS - distributed data store
DES - Data Encryption Standard
DSA - Digital Signature Algorithm
DY - Dolev-Yao
EAL - Evaluation Assurance Levels
ED - Embedded Device
EKE - Encrypted Key Exchange
FADSE - Formal Analysis and Design for Security Engineering
ID – Identifier
IEEE – Institute of Electrical and Electronics Engineers
IP – Internet Protocol
JFK - Just Fast Keying
GA - General Attacker
KAOS – Knowledge Acquisition for automated Specifications
LAN – Local Area Network
MAS - multi-agent systems
MILS - Multiple Independent Levels of Security
MMS - Military Message System
MMU - Memory management unit
NSPK - Needham-Schroeder Public-Key
SCR - Software Cost Reduction
SSH - Secure Shell
SSL - Secure Sockets Layer
TAME - Timed Automata Modeling Environment
TLS - Top-Level Specification
XML - Extensible Markup Language
WAL - write-ahead logging

Introduction

4

INTRODUCTION

This book contains the practical part of the materials (laboratory
works ana seminars) of the discipline «Formal and Intellectual Methods
for System Security and Resilience», prepared for the masters of the
TEMPUS project "Modernization of Postgraduate Studies on Security
and Resilience for Human and Industry Related Domains" (543968-
TEMPUS-1-2013-1-EE-TEMPUS-JPCR). Laboratory works are
devoted to the development of formal and intellectual methods for
system security and resilient systems.

The manual contains descriptions of laboratory works, seminars,
course curriculum.

The first section is devoted to the module of the course "Formal
analysis and design for security engineering" and contains theoretical
material and a description of the implementation of the two labs. These
laboratory works are focused on studying a formal analysis for security
engineering in order to capture, organize, and elaborate on security
requirements, and on gaining the knowledge and acquire skills in the
verifying security down to the source code level.

The second section is devoted to the module of the course "Formal
methods for the analysis of security protocols" and contains theoretical
material and a description of the a method for verifying security
protocols based on an abstract representation of protocols by Horn
clauses, as well as a description of the analysis the security protocols
under the General Attacker threat model.

The third section is devoted to the module of the course "Formal
and intellectual methods for system security and resilience" and
contains theoretical material and a description of the a formal goal-
oriented approach to development of resilient multi agent system and
formalization of the industrial approach to implementing resilient cloud
data storage.

For convenience еhe figures, tables and formulas are numbered
within each section.

This practicum can be useful for post-graduate students studying in
the areas of computer engineering, computer science, and can also be
useful to lecturers, leading classes in the relevant disciplines.

Practicum is prepared by Dr. Oksana Pomorova, the head of the
system programming department of the Khmelnytskyi national

Introduction

5

university, Sergii Lysenko, PhD, associate professor of the system
programming department of the Khmelnytskyi national university, and
Dmytro Medzatyi, PhD, associate professor of the system programming
department of the Khmelnytskyi national university.

The authors are greatly appreciate all partners of the TEMPUS
SEREIN1 project consortium for the fruitful collaboration, exchange of
experience.

1 Этот проект финансируется при поддержке Европейской комиссии.

Эта публикация (сообщение) отражает мнения только авторов, и Комиссия

не может нести ответственность за любое использование содержащейся в

нем информации.

This project has been funded with support from the European Commission.

This publication (communication) reflects the views only of the author, and the

Commission cannot be held responsible for any use which may be made of the

information contained therein.

Formal analysis and design for security engineering

6

1 FORMAL ANALYSIS AND DESIGN FOR SECURITY
ENGINEERING

1.1 Laboratory work №1. Formal Analysis and Design for
Security Engineering. The Spy Network Case Study

The aim and the task of the laboratory work
The aim of this laboratory work is to consider a formal analysis and

design for security engineering, a semi-formal requirements approach, to
capture, organize, and elaborate on security requirements. Also it shoud
demonstrate, that such formal analysis provides an advantage over a fully
formal approach as its goal-directed nature allows enough flexibility
while managing to characterize and preserve key security properties that
can then be transformed into a proven B representations for further
elaboration and refinement at the design and implementation levels.

Task of the work:
- to outline the security requirements of eploying case study, which

should demonstrates how these requirements are modeled with
Knowledge Acquisition for automated Specifications (KAOS) and
transformed to B for further refinement to derive implementation
specifications in B.

- to consider thef the application of formal analysis and design for
security engineering to the spy network system.

Preparation for laboratory work
- to clarify the aims and objectives;
- to study theoretical material given in the description.

Theoretical material

Introduction

While there are a number of technical approaches on security patterns
[1-3], there are few canonical examples from which to formulate a
reasonable comparator. According to Fontaine, the security literature
does not provide security requirements benchmarks [4]. Rather it has
some small examples, which are associated to security models. Unlike
many case studies in the security literature, the spy network case study is
of a reasonable size; small enough to be manageable and large enough to

Formal analysis and design for security engineering

7

be convincing. The spy network case study has been derived from two
real case studies:

- The British National Health Service (NHS). The main goal of the
system is to protect medical records from illegitimate access to a
centralized database.

- The eBay on-line auction web site. It is an example of a typical e-
business application with a range of constrains about distributed user
behaviors.

The spy network system represents a sample of the category of
communication systems that share a common set of security
requirements. This assists in verifying the applicability of Formal
Analysis and Design for Security Engineering to communication systems
that exhibit high security demands.

Case Study Preliminary Problem Statement

The spy network application is aimed at broadcasting secret
revelations into a network of spies around the world. Spies are
collaborating in teams that achieve a mission each. Each team has a boss.
The big boss supervises all missions, allocates spies to missions, and
appoints bosses to teams. Spies collect revelations about the enemy and
target them to other members of the team working on the mission. The
spy who collects a revelation is its author. A spy can be reallocated on
another mission, meaning that he goes to another team. Team members
should be provided with an uncorrupted copy of the revelation within a
certain timeframe. Only spies who are currently allocated to a mission
are allowed to know revelations about that mission. Some spies may be
malicious spies. Therefore, we need to be sure of the author of a
revelation. Workload balancing should be achieved between different
spies in the system.

Each spy subscribes to his local service provider for a mailbox in
which all his incoming email arrives. Therefore, each spy has a different
mail server. Mailboxes are identified by their address. Spy mailbox
addresses are very confidential and should not be written down in an
insecure location. For security reasons, spies change their mailbox every
month. Some spies are old friends and often write to each other outside
of the missions duties. Therefore, they memorize others spies’ mailbox
addresses without having to write them down. Only the owner of a
mailbox should be able to access it.

Formal analysis and design for security engineering

8

Each spy has at least a few spy friends. Friendship is assumed to last
forever. Friends can be in different teams. The author of a revelation is
not necessarily the team boss. Revelations are contained in messages that
are sent through the email transfer system (asynchronous messages). The
email transfer system cannot attack actively, although it could fail to
deliver messages or be subject to passive eavesdropping. A revelation is
written by an author and read by one or several recipients. A message is
sent by a sender and received by a receiver. A message containing a
revelation is not necessarily sent directly to the recipients. It could be
sent to an intermediate receiver who will send another message
containing the same revelation to the recipient, or to another intermediate
spy. Revelations are persistent objects, whereas messages are temporary
objects that cease to exist upon reception, after their content has been
processed. We could think of messages as envelops and of revelations as
their content. When a spy collects a new revelation, he sends a message
to the team relay. The relay then sends messages to all other members of
the team. This assumes that the team relay does know every team
member’s identity. The team boss appoints the team relay. There is one
single relay in each team at a time and every spy knows that fact.

Elaborating Security Requirements with KAOS

Let us outline the elaboration of security requirements for the spy
network system with KAOS. The security goals resulting from the
elaboration of security requirements are global in the sense that a
particular agent cannot enforce them; instead, they apply to the whole
system. We will elaborate generic security requirements that are typical
in the security domain. This means that they are applicable by analogy to
other security domain case studies.

This high level security goal is refined using the traditional

classification [5, 6].

Formal analysis and design for security engineering

9

Figure 1.1. Refinement of security goals

This refinement is not complete in that all offspring goals do not
necessarily imply the father goal because security properties of a system
are of multiple natures. These five subgoals have been chosen because
they are known to be the most frequent aspects of a secure system. In
order to formally express these security goals, we need to specify a
security model for the system, which can be either generic or specific.
The literature on security defines generic security models that have to be
instantiated to particular systems such as the Bell-LaPadula or Biba
models [4]. In order to apply a generic security model to a system, the
security requirements of this system need to fit into the model. The Bell-
LaPadula or Biba models are appropriate for hierarchical systems like
military systems. In these systems, uses at the same level of the hierarchy

Formal analysis and design for security engineering

10

have the same rights, which means that privileges are granted to a user
class rather than specific users. Many distributed systems do not
necessarily fit into this model.

In the context of the spy network case study, a generic security model
won’t be used, but instead instantiate security goals with domain specific
patterns related to the domain will be. All security goals are expressed in
terms of the stakeholder’s language. For instance, the concept of a
Message, which is specific to a particular design is not used. This reflects
the fact that these are high level goals and are applicable to any
alternative design chosen for the system. In other words, by expressing
these security goals, the system is not constrained to fit into a particular
security model.

Integrity Goals

The generic pattern for integrity goals can be formalized:

The following heuristic is proposed to instantiate this goal:
For every object copy in the system, the ObjectCopyAccuracy goal

should be instantiated. This requires finding out which agent owns the
master copy of the object. All other instances of the object will be
considered as copies from this master object. In the context of the spy
network case study, integrity means that every copy of a revelation
should be identical to the original revelation written by the author.

The goal RevelationIntegrity is too ideal and cannot be assigned to
any agent because the author does not know which revelation content is
actually received by the recipient, and conversely the recipient does not
know which revelation content the author has sent. Fortunately, this goal
is a non-functional one, which means that it is not supposed to be

Formal analysis and design for security engineering

11

assigned to a particular agent, and it is global in the system. Maintaining
this goal is achieved through the introduction of new functional goals
that enforce such non-functional goal.

If every agent assigned to a goal successfully achieves his goal, the
integrity of revelations is guaranteed since integrity is implicitly stated in
the functional goals. However, stating an explicit goal like
InformationIntegrity allows for covering a wider range of agent
behaviors in case an agent fails to achieve his goal. We are then able to
elaborate strategies that will be refined into strengthened design. This
leads to the achievement of system goals even in case of agent failures,
which means more robust design. For instance, we could use digital
signatures, in which case the recipient is able to verify whether the
revelation is intact and is from the purported author. In this
operationalization scheme, additional goals are needed to notify the
author in case a recipient has received a corrupted copy of a revelation.

Confidentiality Goals

The generic pattern for confidentiality goal can be formalized as
follows:

The following heuristic is proposed to instantiate this goal:
For every attribute of an object, express what necessary condition for

an agent to know such attribute is. For attributes that do not have such
condition, no confidentiality goal is necessary. These conditions depend
on domain knowledge. In the context of the spy network case study,
confidentiality is refined into two subgoals:

Confidentiality of revelations means that a revelation may be known
only by spies working in the mission. Therefore, the generic goal can be
instantiated as follows:

Formal analysis and design for security engineering

12

This goal is non-functional goal that can neither be assigned to the

recipient nor the sender. The recipient might want to know the revelation
although he should refrain himself from doing so and the sender is not
able to control that a wrong target intercepts the message. Therefore, this
goal needs to be enforces by further functional goals. Secret keys allows
for expressing who is authorized to know a revelation.

Confidentiality of mailboxes means that a spy mailbox address
should known only by a friend who can memorize it.

This goal is too ideal because friendship cannot be controlled by any

single agent. It can only controlled by both parties involved. So, we are
likely to weaken this goal in different designs.

Authentication Goals

The generic pattern for authentication goals can be formalized as
follows:

The following heuristic is proposed to instantiate this goal: for every

object, agents should be able to verify its author.
In the context of the spy network case study, authentication means

that every revelation is attributable to an author and that the purported
author of the revelation is correct. The generic goal can be instantiated as
follows:

Formal analysis and design for security engineering

13

The relationship AuthorOf is equivalent to the relationship
Collecting. The spy who collects the revelation is the author. The author
mentioned on a revelation can be a forged name, so we will need to
verify that the purported author is the real author.

Availability Goals

The generic pattern for availability goals can be formalized as
follows:

The following heuristic is proposed to instantiate this goal:
For every Achieve goal, determine which resource(s) needs to be

available for the goal achievement. In the context of the spy network case
study, availability means that revelations are known within a certain
timeframe by all other team members. The generic goal can be
instantiated as follows:

This goal is a quantitative one in which the critical aspect is the
timeframe. In this formulation, it is assumed that revelations can be
owned within 2 hours. The constant 2 is used as a parameter representing
the expected mean time for a revelation transmission

Access Control Goals

The generic pattern for access control goals can be formalized as
follows:

Formal analysis and design for security engineering

14

The following heuristic is proposed to instantiate this goal:
For every object, express what the necessary condition for an agent to

access it is. For objects that do not have such condition, no access control
goal is necessary. These conditions depend on domain knowledge. In the
context of the spy network case study, access control means that a
mailbox should be accessed only by its subscribed spy

Analysis and Resolution of Obstacles and Conflicts for Security
Goals

In this subsection, the security goals elaborated in the previous
section are refined and analyzed by finding conflicts and obstacles to
security, that is, potential attacks. This subsection focuses on finding
obstacles to security goals only taking obstacles to the Resolution
strategies to potential security attacks are proposed.

Generating Obstacle to the Goal RevelationIntegrity

The goal RevelationForwardedFromRelay is assigned to the relay. In
case the relay agent fails to achieve

this goal and modifies the revelation content (maliciously or not), the
goal RevelationIntegrity becomes violated as well.

Negating the goal RevelationIntegrity gives the following:

Formal analysis and design for security engineering

15

The following object model increment is required:

Regressing through the domain properties, we get:

Because of the third domain property, we know that the revelation

has been corrupted by sp2 (the relay) rather than by sp1 (the author). If
the relay changes the content of the revelation, the RevelationIntegrity
goal is violated. A strong mitigation would be achieved through the
following goal:

This goal refined as follows:

Formal analysis and design for security engineering

16

The goal AuthorResendWhenKnowsCorrupted needs to be refined
the same way as the goal WholeTeamInformed. In this case, the
revelation author could send the revelation again hoping that it was only
a temporary error and that the revelation will not get corrupted this time.
The goal CorruptedRevelationKnownByAuthor needs to be refined as
follows:

Formal analysis and design for security engineering

17

The goal AuthorKnowsCorruptedWhenReceiverKnows will be

refined using notifications in a similar way as the goal
WholeTeamInformed as shown below.

Resolving Obstacles to the Goal RevelationIntegrity

Van Lamsweerde defined some patterns to resolve obstacles early in
requirements and accommodate these solutions in the requirements
model [7]. In the security context, obstacles represent security threats to
the system that need to be resolved using security patterns [8]. For
example, data integrity is normally preserved using digital signatures, so
a way to resolve the obstacles to the RevelationIntegrity goal is to
employ digital signatures in the goal operationalization of the
RevelationIntegrity goal. The early accommodation of this solution
during requirements analysis allows for reflecting the impact of this
solution on the rest of the requirements that have dependency on this
RevelationIntegrity goal.

The RevelationIntegrity goal is operationalized such that each
revelation has a signature that depends on the revelation text and the
author’s identity. With a public key scheme, there are different keys for
signing (private key) and verifying (public key). Verification allows the
receiver to check whether the message is intact. Each spy can have a list
of public keys of every other spy including those not in his team.

When he receives a revelation from a spy, he can verify that the
revelation is from the purported author if the key is accurately associated

Formal analysis and design for security engineering

18

with the author. If a spy has several public/private keys, they need to be
identified. For simplicity, let’s assume in the coming illustration that
each spy has only one key pair. The signature of the message could be
used to deduce that the revelation is not corrupted with respect to the
public key used to verify it as defined in the goal
RevelationVerifiedWhenReceived. In case the verification indicates that
the revelation is corrupted, it could also be the case that it is actually the
signature that is corrupted and the revelation is correct. The goal
CorruptedRevelationKnownByReceiver can be refined into the goals
RevelationSignedWhenSent and RevelationVerifiedWhenReceived that
mandate the signing of the revelation at the sender side and the
verification of that signature at the receiver end as follows:

The goals RevelationSignedWhenSent and

RevelationVerifiedWhenReceived are assigned to the sender and the
receiver agents respectively. The operations SignRevelation and
VerifyRevelation operationalize the two goals as indicated below. The
goal graph showing the refinement of the resolution of the
RevelationIntegrity obstacles is illustrated in Figure 1.2.

Formal analysis and design for security engineering

19

Figure 1.2. Refinement of the Integrity obstacle resolution

The above two goals introduced to resolve the obstacles of the
RevelationIntegrity goal yield some increments in the object model in
order to accommodate the digital signature solution. Assuming that
public key infrastructure is employed to carry out digital signatures, the
entities of a PrivateKey, PublicKey and KeyPair are needed as well as
entities modeling the signature itself and the relationships Signed and
Verified. The object model increments are defined as follows:

Formal analysis and design for security engineering

20

Formal analysis and design for security engineering

21

In the goal CorruptedRevelationKnownByReceiver, it is stated that
the author’s public key is owned by the receivers of the revelation. It
means that keys have to be distributed like revelations with the difference
that public keys last for the entire life of a spy. The key distribution will
also yield a goal for their broadcasting similar to the goal
WholeTeamInformed:

A new type of message is introduced, PublicKeyNotif to be sent by a
spy to inform other people of his public key.

Because a private key identifies a spy, it needs to be owned only by
its creator:

The above object model increment has propagated the impact of
introducing digital signature as a solution to the obstacles of the
RevelationIntegrity goal. The rest of the security goals that relate to
RevelationIntegrity feel the impact of the digital signature solution
through the update of the object model that mediates the interaction
among goals. A graphical summary of all security goals after applying
obstacle analysis is illustrated in Figure 1.3.

Formal analysis and design for security engineering

22

Fi
gu

re
 1

.3
. S

ec
ur

ity
 g

oa
l g

ra
ph

 fo
r t

he
 sp

y
ne

tw
or

k
sy

st
em

Formal analysis and design for security engineering

23

Figure 1.4 shows the part of the object model involved in security
goals.

Figure 1.4. Partial object model involved in security goals

Requirements at the very bottom of the goal graph need to be
operationalized in order to complete the KAOS model. KAOS operations
are means for agents in the software-to-be to achieve their assigned
requirements. The goal graph of the security requirements for the spy
network system in Figure 1.3 is big and complicated, so we have
summarized the security operations along with the fundamental security
goals in Figure 1.5.

Formal analysis and design for security engineering

24

Fi
gu

re
 1

.5
. S

um
m

ar
y

of
 th

e
K

A
O

S
O

pe
ra

tio
ns

 fo
r t

he
 S

py
 N

et
w

or
k

Se
cu

rit
y

G
oa

l G
ra

ph

Formal analysis and design for security engineering

25

Figure 1.5 shows six security operations. The SignRevelation and
VerifyRevelation operations realize the revelation integrity goals. The
EncryptRevelation and DecryptRevelation goals realize the revelation
confidentiality goals. The CertifySpy operation realizes the revelation
authentication goals and the AccessMailbox realizes the mailbox access
control goals. The following formal definition of each operation shows
the operation name (highlighted), the input parameters (Input), the output
parameters (Output), the precondition (DomPre) that must be true prior
to the operation execution, the post condition (DomPost) that must be
true after the operation finishes execution, and the goals that this
operation are prerequisite to their achievement (ReqPreFor). The
SignRevelation operation is responsible for achieving the goal
RevelationIntegrity and its subgoals. This operation is called when a spy
sends a revelation to another spy in order to protect the integrity of the
revelation against malicious acts. The operation takes the spy signing the
revelation, the revelation to be signed and the private key with which the
revelation is signed as input parameters and returns the digital signature
as an output.

Operation SignRevelation
Input Spy{arg sp}, Revelation{arg rev}, Privatekey {arg pk}
Output Signature {res sig}
DomPre (rev1:Revelation) Signed(rev1, sig, pk)
DomPost (rev2:Revelation) Signed(rev2, sig, pk)
ReqPreFor RevelationSignedWhenSent
CreatorOf(sp, pk)

The VerifyRevelation operation is responsible for achieving the goal

RevelationIntegrity and its subgoals. This operation is called when a spy
receives a revelation from another spy in order to verify that the received
revelation is not tampered with while in transit. The operation takes the
spy verifying the revelation, the revelation to be verified and the public
key with which the revelation is verified as input parameters and returns
a boolean as an output to indicate whether the revelation is verified
correct or not.

Operation VerifyRevelation

Formal analysis and design for security engineering

26

Input Spy{arg sp}, Revelation{arg rev}, Publickey {arg pk},
Signature {arg sig}

Output Boolean {res verified}
DomPre (rev1:Revelation) Verified(rev1, sig,Pk)
DomPost (rev2:Revelation) Verified(rev2, sig, pk)
ReqPreFor RevelationVerifiedWhenReceived
Knows(sp, pk)
ReqPreFor RevelationDecryptedWhenReceived
(msg:Message, prk: PrivateKey)
Decrypted(msg, prk) ^ CreatorOf(sp, prk)

The EncryptRevelation operation is responsible for achieving the

goal RevelationConfidentiality and its subgoals. This operation is called
when a spy sends a revelation to another spy in order to protect the
confidentiality of the revelation against malicious acts. The operation
takes the spy encrypting the revelation, the revelation to be encrypted and
the public key with which the revelation is encrypted as input parameters
and returns the encrypted revelation as an output.

Operation EncryptRevelation
Input Spy{arg sp}, Revelation{arg rev}, Publickey {arg pk}
Output Message {res msg}
DomPre (rev1:Revelation) Encrypted(rev1, pk)
DomPost (rev2:Revelation) Encrypted(rev2, pk)
ReqPreFor RevelationEncryptedWhenSent
Knows(sp, pk)
ReqPreFor RevelationSignedWhenSent
(prk: PrivateKey, sig:Signature)
Signed(rev, sig, prk) ^ CreatorOf(sp, prk)
ReqPostFor RevelationEncyptedWhenSent
About(msg, rev)

The DecryptRevelation operation is responsible for achieving the

goal RevelationConfidentiality and its subgoals. This operation is called
when a spy receives a revelation to another spy in order to get the content
of the encrypted revelation. The operation takes the spy receiving the
revelation, the encrypted revelation to be decrypted and the private key

Formal analysis and design for security engineering

27

with which the revelation is decrypted as input parameters and returns
the revelation content as an output.

Operation DecryptRevelation
Input Spy{arg sp}, Message{arg msg}, Privatekey {arg pk}
Output Revelation {res rev}
DomPre (msg1:Message) Decrypted(msg1, pk)
DomPost (msg2:Message) Decrypted(msg2, pk)
ReqPreFor RevelationDecryptedWhenReceived
CreaterOf(sp, pk)
ReqPostFor RevelationDecryptedWhenReceived
Knows(sp, rev.Content)

The CertifySpy operation is responsible for achieving the goal

RevelationAuthentication and its subgoals. This operation is called when
a spy receives a revelation from another spy in order to authenticate the
sender of the revelation. The operation takes the spy sending the
revelation, and the public key of the sender and returns a boolean as an
output indicating whether the revelation comes from a certified spy or
not.

Operation CertifySpy
Input Spy{arg sp}, Publickey{arg pk}
Output Boolean {res Authenticated}
DomPre Certified(sp, pk)
DomPost Certified(sp, pk)
ReqPreFor RevelationVerifiedWhenReceived
 (rev:Revelation,, sig:Signature)
Verified(rev, sig, pk) ^ CreatorOf(sp, pk)

The AccessMailbox operation is responsible for achieving the goal

MailboxAccessControl and its subgoals. This operation is called when a
spy tries to access the mailbox in which he/she is subscribed. The
operation takes the spy trying to access his/her mailbox, the mailbox
being accessed, and the password of the mailbox and returns a boolean as
an output indicating whether access to the mailbox is allowed or denied
based on the provided password.

Formal analysis and design for security engineering

28

Operation AccessMailbox
Input Spy{arg sp}, Mailbox{arg ma}, Password {arg pa}
Output Boolean {res accessed}
DomPre Accessed(ma, sp)
DomPost Accessed(ma, sp)
ReqPreFor MailboxAccessControl
Subscribed(ma, sp)
ReqPreFor MailboxAccessedWithPassword
pa = ma.Password

The above operations are transformed to B in the coming subsection

to construct the initial B machine that is further refined inside B using the
B refinement mechanism to derive design specifications and generate
implementation. The rational for transforming KAOS operations to B
while not transforming the rest of the goal graph is that operations sums
up all the behaviors that agents need to have to fulfill their requirements,
which are the leaf goals in the goal graph. The mechanism for
constructing the goal graph shows that high level goals are refined using
AND/OR refinement steps until leaf goals are derived meaning that the
fulfillment of leaf goals implies the fulfillment of the higher level goals
in the goal graph. Therefore, it is safe to only transform KAOS
operations used to express behaviors of agents that perform them to
fulfill the leaf goals in the goal graph without compromising the
completeness and consistency properties of the requirements model.

Transforming the Spy Network Security Goal Graph to B

Modeling the security requirements of the spy network system with
KAOS has defined the goals, the agents responsible for achieving these
goals and the means to achieve these goals in the form of the KAOS
operations. In order to go further with the security-specific elements from
the requirements phase to the design phase, the KAOS requirements
model need to be transformed to a design elaboration language, which is
the B language in FADSE [1], The transformation focuses on both the
KAOS security operations and the entities of the partial object model
involved in security goals. The transformation scheme provides a means
to bridge the gap between security requirements and their realization in
formal design. The value of the transformation scheme is in stepping

Formal analysis and design for security engineering

29

further from the relaxed formality of the KAOS requirements model in
which requirements are wellorganized and reasoned about to more rigid
formality in the initial B model that is further refined for design. This
means that without the transformation scheme, the variance of formality
between requirements and design would not have been possible. This is
evidenced in the formal security engineering literature in which rigid
formality applies to all the phases of development starting for specifying
requirements to deriving implementation like employing the Z or the
VDM formal languages for manipulating security concerns. Applying
formal languages to requirements specifications has the disadvantages of
increasing the cost and complexity of development, using formal
languages that are very specific to model requirements that usually have
lots of unknowns that cannot be specified formally, and lacking built-in
constructs for threat analysis and mitigation. The Goal Graph Analyzer
tool that automates the transformation from KAOS to B parses the XML
model produced by the Objectiver tool and representing the KAOS
security requirements model for the spy in order to construct the initial B
abstract model equivalent to the KAOS model. The initial B model is
manipulated using the B-Toolkit, which is one of the two most famous
commercial tools for B development as a tool to develop B model and
refine it to derive design specifications and implementation. The abstract
B machine for the spy network system is illustrated in the below code.
The spy network system is represented as an abstract machine called
SpyNetwork parameterized with the maximum number of spies allowed
in the system. The machine represents the spies as a set in the Variables
section that model the system state as highlighted in the below code. The
Spies’ attributes are also modeled as part of the Variables section with
the Invariant stating the types of each attribute. The machine invariant
states the constraints on the machine state variables. The SpyNetwork
machine represents each of the six KAOS operations illustrated in Figure
1.5 as a B operation as highlighted below. KAOS operations
preconditions are directly mapped to preconditions of their corresponding
B operations since both are defined in first-order predicate logic. The
KAOS definition of operations provides the interface of the operation
with which its clients (callers) will call it and that is the task of the
requirement analysis phase. The abstract definition of each operation
behavior is the responsibility of the early design phase. This means that
the generated B abstract machine from the Goal Graph Analyzer needs to

Formal analysis and design for security engineering

30

be augmented with the abstract specifications for each operation as
shown below. The abstraction specification of each operation is further
refined using the B refinement mechanism to make the definition more
concrete through adding more details and removing the non-determinism
in the abstract definition.

MACHINE SpyNetwork (maxSpies)
CONSTRAINTS maxSpies : 1..10000
SEES StrTokenType, Bool_Type
DEFINITIONS SPY== 1.. maxSpies

VARIABLES
spies, spyId,spyName, spyMailboxPassword, spyPublicKey, spyPrivateKey,
key, signature –-used as a placeholder for use in local variables

INVARIANT
spies <:SPY &
spyId : spies >-> NATURAL1 &
spyName : spies --> STRTOKEN &
spyMailboxPassword : spies >-> STRTOKEN &
spyPublicKey : spies >-> STRTOKEN &
spyPrivateKey : spies >-> (STRTOKEN - spyPublicKey) &
spyId >< spyName>< spyMailboxPassword ><spyPublicKey><spyPrivateKey:
spies >-> (NATURAL1 >< STRTOKEN >< STRTOKEN >< STRTOKEN ><
STRTOKEN) &
key : STRTOKEN & signature : STRTOKEN

OPERATIONS

NewSpy(identity, name, mailboxPassword, publicKey, privateKey) =

PRE

identity: NATURAL1 & name: STRTOKEN & mailboxPassword: STRTOKEN
&

publicKey: STRTOKEN & privateKey: STRTOKEN &
(identity, name, mailboxPassword, publicKey, privateKey)/:
ran(spyId >< spyName >< spyMailboxPassword >< spyPublicKey ><

spyPrivateKey) &

Formal analysis and design for security engineering

31

spies /= SPY

THEN

ANY newSpy WHERE newSpy : SPY – spies THEN

spies := spies \/ {newSpy} || spyId(newSpy) := identity ||
spyName(newSpy) := name ||

spyMailboxPassword(newSpy) := mailboxPassword ||
spyPublicKey(newSpy) := publicKey ||
spyPrivateKey(newSpy) := privateKey

END
END;

found, spyDetails <-- getSpy(identity) =
PRE identity : NATURAL1 THEN
IF (identity) : ran(spyId) THEN

spyDetails := (spyId >< spyName >< spyMailboxPassword ><
spyPublicKey >< spyPrivateKey)~ (identity) ||

found := TRUE
ELSE

spyDetails : SPY ||
found := FALSE

END
END;

full <-- spyNetworkFull =
BEGIN

full := bool(spies = SPY)
END;

encyptedRevelation <-- encryptRevelation(revelation, identity) =

PRE revelation : STRTOKEN & identity : NATURAL1 THEN
IF (identity) : ran(spyId) THEN

key := spyPublicKey(identity) ||
signature := signRevelation(revelation, identity);
encyptedRevelation : (signature; key) >-> STRTOKEN

ELSE
encyptedRevelation :: STRTOKEN

END

Formal analysis and design for security engineering

32

END;

revelation <-- decryptRevelation(ecryptedRevelation, identity) =

PRE ecryptedRevelation : STRTOKEN & identity : NATURAL1 THEN
IF (identity) : ran(spyId) THEN

key := spyPrivateKey(identity) ||
revelation : ecryptedRevelation >-> STRTOKEN

ELSE
revelation :: STRTOKEN

END
END;

signature <-- signRevelation(revelation, identity) =

PRE revelation : STRTOKEN & identity : NATURAL1 THEN
IF (identity : ran(spyId)) THEN

key := spyPrivateKey(identity) ||
signature : revelation >-> STRTOKEN

ELSE
signature :: STRTOKEN

END
END;

verified <-- verifyRevelation(revelation, identity, signature) =

PRE

revelation : STRTOKEN & identity : NATURAL1 & signature : STRTOKEN
THEN
IF (identity) : ran(spyId) THEN

key := spyPublicKey(identity) ||
IF (signature == revelation(key)) THEN -- how to indicate the application of key to

revelation
verified := TRUE

ELSE
verified := FALSE

END
ELSE

verified := FALSE
END

END;

Formal analysis and design for security engineering

33

authenticated <-- certifySpy(identity, publicKey) =
PRE identity : NATURAL1 & publicKey : STRTOKEN THEN
authenticated := bool(spyPublicKey(identity) = publicKey)

END;

accessAllowed <-- accessMailbox(identity, password) =
PRE identity : NATURAL1 & password : STRTOKEN THEN

IF (identity : ran(spyId)) THEN
IF (password == spyMailboxPassword(identity)) THEN

accessAllowed := TRUE
ELSE

accessAllowed := FALSE
END

ELSE
accessAllowed := FALSE

END
END;

To illustrate the idea of the abstract definition of operation behavior

that augments the generated B machine from the Goal Graph Analyzer
Tool, let’s describe the definition of the encryptRevelation operation as
an example. The definition first checks on whether the spy whose
identity is used to encrypt the message belongs to the set of spies in the
network. If the spy identity is verified, the public key of the spy is
retrieved from the set of public keys stored in the variables section using
the spy identity. The revelation is signed before encrypted by calling the
signRevelation operation and finally the encrypted revelation is
abstractly defined as another string value calculated from the original
revelation. The abstract definition of the encrypted revelation allows for
multiple concrete definitions of how to encrypt the original revelation
depending on the design decision made in the coming refinement steps
on which encryption algorithm is used.

Derivation of Design and Implementation

The initial B machine is refined using the B refinement mechanism to
enforce design decisions. The first refinement step is classified as data
refinement concerned with refining the representation of the machine
variables that reflect the system state. The first refinement step represents
the pool of spies as an array of spies and it will be shown how the

Formal analysis and design for security engineering

34

security operations are refined accordingly. From the traceability
perspective, the data refinement step does not directly address the
realization of a specific security requirement in the system. It rather
concentrates on building a concrete data structure representing the
internal system state in a form realizable by programming languages
while implementation is generated. The first refinement is by convention
named with the same name of the machine it refines with an R appended
to the machine name. The invariant of the refining machine should be
linked to the variables of the refined machine by means of linking
invariant that describes the relationship between the state spaces of the
two machines [10]. The linking invariant is used to generate proof
obligations that specify which proofs need to be discharged in order to
prove that the refining machine does not violate any of the constraints of
the refined machine; therefore, proves correctness of development and
preservation of security properties. The linking invariant in the first
refinement step of the spy network system is dom(spiesr) = spies
meaning that the set spies is precisely the domain of the function spiesr
since this gives the index of the set of elements that appear in the array.
The elements in the spiesr array are the Ids of all the spies in the system.
The rest of the spy’s attributes are linked to each spy through his/her Id.
The operations are defined on the variable spiesr. Operations are required
to work only within their preconditions given in the abstract machine, so
those preconditions are assumed to hold for the refined operations.
Therefore, the type information of the input variables and the other
requirements on them do not need to be repeated in the refinement
machine. The highlighted parts of the first refinement machine reflects
the implication of the data refinement on the abstract definition of the
operations.

REFINEMENT SpyNetworkR
REFINES SpyNetwork
SEES StrTokenType, Bool_TYPE

VARIABLES
spiesr, spyNamer, spyMailboxPasswordr, spyPrivatekeyr, spyPublickeyr

INVARIANT
spiesr : 1.. maxSpies >-> spyId & dom(spiesr) = spies &
spyNamer : spiesr >-> STRTOKEN & ran(spyNamer) = spyName &

Formal analysis and design for security engineering

35

spyMailboxPasswordr : spiesr >-> STRTOKEN &
ran(spyMailboxPasswordr) = spyMailboxPassword &
spyPrivatekeyr : spiesr >-> (STRTOKEN – spyPublickey) &
ran(spyPrivatekeyr) = spyPrivatekey &
spyPublickeyr : spiesr >-> (STRTOKEN- spyPrivatekey) &
ran(spyPublickeyr) = spyPublickey
INITIALIZATION Spiesr := (1..maxSpies) >< {0} -- all spies ids are initialized to 0

OPERATIONS

encyptedRevelation <-- encryptRevelation(revelation, identity) =

VAR key IN THEN
IF (spiesr~(identity): dom(spiesr)) THEN

key := spyPublickeyr(identity) ||
signature := signRevelation(revelation, identity);
encyptedRevelation : (signature; key) >-> STRTOKEN

ELSE
encyptedRevelation :: STRTOKEN

END
END;

revelation <-- decryptRevelation(ecryptedRevelation, identity) =

VAR key IN
IF (spiesr~(identity): dom(spiesr)) THEN

key := spyPrivatekeyr(identity) ||
revelation : ecryptedRevelation >-> STRTOKEN

ELSE
revelation :: STRTOKEN

END
END;

signature <-- signRevelation(revelation, identity) =

VAR pk IN
IF (spiesr~(identity): dom(spiesr)) THEN

pk := spyPrivatekeyr(identity);
signature : revelation >-> STRTOKEN

ELSE
signature:= EmptyStringToken;

END
END;

Formal analysis and design for security engineering

36

verified <-- verifyRevelation(revelation, identity, signature) =
VAR key IN
IF (spiesr~(identity) : dom(spiesr)) THEN

key := spyPublickeyr(identity) ||
IF (signRevelation(revelation, identity) == signature) THEN

verified := TRUE
ELSE

verified := FALSE
END

ELSE
verified := FALSE

END
END;

authenticated <-- certifySpy(identity, publicKey) =

VAR key IN
authenticated := bool(spyPublickeyr(identity) = publicKey)

END;

accessAllowed <-- accessMailbox(identity, password) =

IF (spiesr~(identity) : dom(spiesr)) THEN
IF (password == spyMailboxPasswordr(identity)) THEN

accessAllowed := TRUE
ELSE

accessAllowed:= FALSE
END

ELSE
accessAllowed:= FALSE

END
END;

The above B code that represents the first refinement step maintains
the abstract definition of the machine operations and reflects the new
data representation of machine variables through using the arrays spiesr,
spyNamer, spyMailboxPasswordr, spyPrivatekeyr, spyPublickeyr instead
of the abstract sets. The second refinement step is a procedural
refinement that makes design decisions about the security algorithms
used for preserving the revelation integrity and confidentiality. The
refining machine does not modify the state representation (machine
variables) of the refined machine to remove the non-determinism of the

Formal analysis and design for security engineering

37

precise procedures to protect the revelation integrity and confidentiality.
The design decision to employ the DSA (Digital Signature Algorithm) as
the signature algorithm has been made to achieve the revelation integrity
requirements since the DSA is a standard algorithm proposed by the
National Institute of Standards and Technology (NIST) in 1991. For the
revelation confidentiality, it was decided to employ DES (Data
Encryption Standard) since the DES algorithm is has been developed and
endorsed by the U.S. government as an official encryption standard in
1977. For the mailbox access control, each spy is assigned a password for
the mailbox in which he/she is subscripted. The refinement mechanism in
B allows for documenting design decisions at each refinement step and
this links these design decisions to the relevant requirements. For
example, the employment of the DSA algorithm for digital signature
links to the requirements of revelation integrity through the operations
signRevelation and verifyRevelation that carry out the algorithm. The
KAOS goal graph provides traceability links between operations carried
out in design and the requirements they achieve.

The design decisions made in the second refinement step are
highlighted in the following B code:

REFINEMENT SpyNetworkRR
REFINES SpyNetworkR
SEES StrTokenType, Bool_TYPE, SpyNetworkUtilities

OPERATIONS

encyptedRevelation <-- encryptRevelation(revelation, identity) =

VAR publicKey IN
IF (spiesr~(identity): dom(spiesr)) THEN

publicKey := spyPublicKeyr(identity);
encyptedRevelation := SpyNetworkUtilities.DESencrypt (revelation, publicKey);

ELSE
encyptedRevelation := EmptyStringToken;

END
END;

revelation <-- decryptRevelation(ecryptedRevelation, identity) =

VAR privateKey IN
IF (spiesr~(identity): dom(spiesr)) THEN

Formal analysis and design for security engineering

38

privateKey := spyPrivateKeyr(identity);
revelation := SpyNetworkUtilities.DESdecrypt (revelation, privateKey);

ELSE
revelation := EmptyStringToken;

END
END;

signature <-- signRevelation(revelation, identity) =
VAR privateKey, publicKey IN
IF (spiesr~(identity) : dom(spiesr)) THEN

privateKey := spyPrivateKeyr(identity);
publicKey := spyPublicKeyr(identity);
signature := SpyNetworkUtilities.DSAsign

(revelation, privateKey, publicKey) ;
ELSE
signature:= EmptyStringToken;

END
END;

verified <-- verifyRevelation(revelation, identity, signature) =

VAR privateKey, publicKey IN
IF (spiesr~(identity) : dom(spiesr)) THEN

privateKey := spyPrivateKeyr(identity);
publicKey := spyPublicKeyr(identity);

verified := SpyNetworkUtilities.DSAverify
(revelation, privateKey, publicKey, signature) ;

ELSE
verified := FALSE;

END
END;

authenticated <-- certifySpy(identity, publicKey) =

VAR key IN
authenticated := bool(spyPublicKey(identity) = publicKey)

END;

accessAllowed <-- accessMailbox(identity, password) =
IF (spiesr~(identity) : dom(spiesr)) THEN
IF (password == spyMailboxPasswordr(identity)) THEN

accessAllowed := TRUE

Formal analysis and design for security engineering

39

ELSE accessAllowed:= FALSE
END
ELSE accessAllowed:= FALSE
END

END;
The security algorithms used in the second refinement step are

encapsulated in another machine SpyNetworkUtilities that encapsulates
generic security utilities. This makes the design more modular by
dividing the tasks among multiple machines, each of which provides
interfaces for its operations to be used by other machines. For example,
the second refinement uses the DESencrypt, DESdecrypt, DSAsign and
DSAverify from the SpyNetworkUtilities machine. Separating these
operations in separate machine allows for changing the security
algorithms used for encryption/decryption and digital signatures
seamlessly as far as the spy network machine itself is concerned since the
change will be localized only in the SpyNetworkUtilities machine. The
spy network machine will not be affected by the change since it remains
using the same operations with the same interface while the
SpyNetworkUtilities machine changes the implementation. The last
refinement step derives implementation specifications for the security
requirements of the spy network system. The implementation step can be
done only once for each development with some constraints such as that
the implementation machine has no state and cannot use abstract
substitutions like non-determinism choice and parallel composition. The
implementation machine imports the SpyNetworkUtilities,
privateKeyArray, publicKeyArray, and spyMailboxArray machines that
are then considered under the control of the implementation machine.
Further, the implementation machine has to instantiate the parameters of
the imported machines. The implementation machine has no variables
section meaning that it has no state itself; rather it maintains the state of
the imported machines. The invariant section of the implementation
machine contains liking invariants between the imported state variables
namely spiesArray, privateKeyArray, publicKeyArray,
spyMailboxPasswordArray, and spyMailboxArray and the variables of
the SpyNetworkR1 that this implementation refines. Operations in the
implementation machine need to convert mathematical specifications to a
format that could be translated to a programming language. For example,
all the operations in the implementation machine use a loop to locate the

Formal analysis and design for security engineering

40

spy whose identity is specified in the operation parameters in the array of
spies. This search in the array using a loop could be directly translated to
equivalent constructs in the generated C code. The B code for the
implementation specifications is as follows:

IMPLEMENTATION SpyNetworkI
REFINES SpyNetworkR1
USES StrTokenType, Bool_TYPE
IMPORTS
SpyNetworkUtilities, privateKeyArray(maxSpies), publicKeyArray(maxSpies),
spyMailboxArray(maxSpies)
INVARIANT
spiesArray = spiesr & privateKeyArray = spyPrivateKeyr &
publicKeyArray = spyPublicKeyr & spyMailboxPasswordArray =

spyMailboxPasswordr &
spyMailboxArray = spyMailboxPasswordr

OPERATIONS

encyptedRevelation <-- encryptRevelation(revelation, identity) =
VAR ii, publicKey IN
ii := 0;
WHILE ii <= maxSpies
DO ii := ii + 1;
IF (spiesArray(ii) == identity) THEN

publicKey := publicKeyArray(ii);
encyptedRevelation := SpyNetworkUtilities.DESencrypt (revelation,

publicKey);
ELSE

encyptedRevelation:= EmptyStringToken;
END
INVARIANT

ii : NATURAL1 & ii <= maxSpies & spiesArray = spiesr & publicKeyArray =
spyPublicKeyr

VARIANT
maxSpies - ii

END
END;

revelation <-- decryptRevelation(ecryptedRevelation, identity) =

Formal analysis and design for security engineering

41

VAR ii, privateKey IN
ii := 0;
WHILE ii <= maxSpies
DO ii := ii + 1;
IF (spiesArray(ii) == identity) THEN

privateKey := privateKeyArray(ii);
revelation := SpyNetworkUtilities.DESdecrypt (revelation, privateKey);

ELSE
revelation := EmptyStringToken;

END
INVARIANT

ii : NATURAL1 & ii <= maxSpies & spiesArray = spiesr &
privateKeyArray = spyPrivateKeyr

VARIANT
maxSpies - ii

END
END;

signature <-- signRevelation(revelation, identity) =
VAR ii, privateKey, publicKey IN
ii := 0;
WHILE ii <= maxSpies
DO ii := ii + 1;
IF (spiesArray(ii) == identity) THEN

privateKey := privateKeyArray(ii);
publicKey := publicKeyArray(ii);
signature := SpyNetworkUtilities.DSAsign

(revelation, privateKey, publicKey);
ELSE

signature:= EmptyStringToken;
END
INVARIANT
ii : NATURAL1 & ii <= maxSpies & spiesArray = spiesr &
privateKeyArray = spyPrivateKeyr & publicKeyArray = spyPublicKeyr

VARIANT
maxSpies - ii

END
END;

Formal analysis and design for security engineering

42

verified <-- verifyRevelation(revelation, identity, signature) =
VAR ii, privateKey, publicKey IN
ii := 0;
WHILE ii <= maxSpies
DO ii := ii + 1;
IF (spiesArray(ii) == identity) THEN

privateKey := privateKeyArray(ii);
publicKey := publicKeyArray(ii);
verified := SpyNetworkUtilities.DSAverify

(revelation, privateKey, publicKey, signature);
ELSE

verified := FALSE;
END
INVARIANT
ii : NATURAL1 & ii <= maxSpies & spiesArray = spiesr &
privateKeyArray = spyPrivateKeyr & publicKeyArray = spyPublicKeyr

VARIANT
maxSpies - ii

END
END;

Formal analysis and design for security engineering

43

Formal analysis and design for security engineering

44

The final stage is to generate C code from the implementation

machine. The programming language choice is based on the
programming languages available in the B tool being used. Almost all the
commercial B tools generate code in C and very few of them generate
ADA. The security properties should be maintained by the design
decisions and the semantics of the B machines rather than by specific
security construct in the programming language to which the
implementation machine is translated.

Acceptance Testing

The Goal Graph Analyzer tool generates a suite of acceptance test
cases derived directly from the KAOS goal graph. The tool parses the
graph using a DFS algorithm with backtracking facility in order to

Formal analysis and design for security engineering

45

generate scenarios with a sequence of operation calls from the goal
graph. The derived B implementation specifications are then verified
against the acceptance test cases to check for compliance between the
requirements model and the derived implementation and to ensure the
preservation of the security properties specified in the requirement
model. Test results can be used to identify areas of inconsistencies and
errors either in the requirements model itself or in the B refinement steps.
The acceptance test cases are considered as substantial contribution of
FADSE since it strengthens the approach with extra verification of
development correctness and compliance between the software and its
requirements from the security standpoint. The implication of this
contribution is that it increases confidence of the software security
developed with FADSE. The generated test cases might be augmented
with some messages and assertions for better usability of the test results.
The Goal Graph Analyzer has generated the following test cases for the
spy network security requirements:

public static boolean testSendRevelation(String revelation, String senderld, String

recepientld) {
 String encryptedRevelation : =
 SpyNetwork.encryptRevelation(revelation, senlderld);
 String signedRevelation : =
SpyNetwork.signRevelation(encryptedRevelation, Senderld);
 SpyNetwork.sendRevelation(signedRevelation, recepientld)
 return true;
public static boolean testReceiveRevelation(String revelation, String senderId,
 (String recepientld) {
 String pk : = SpyNetwork.getPublicKey(Senderld);
 boolean certified : = SpyNework.certifySpy(senderld, pk);
 if (certified) {
 boolean verified : =
SpyNetwork.verifyRevelationfrevelation, senderldji;
 if (verified) {
 String decryptedRevelation : =
 SpyNetwork.decryptRevelation(revelation, recepientld);
 return true; } }
return false;

public static boolean accessMailbox(String spyld, String password)
{ return SpyNetwork.accessMailbox(spyld, password); }

 In the above generated test cases, each test case describes the

sequence of calls to the security operations in order to secure the

Formal analysis and design for security engineering

46

communication of revelations. The first test case outlines the scenario for
the sending operation in which the encryptRevelation and signRevelation
operations are called before sending the revelation. The second test case
handles the scenario for the receiving operation in which the certifySpy
is called to authenticate the sender spy followed by a verification of the
revelation signature through calling verifyRevelation and at the end the
revelation is decrypted by calling the decrptRevelation operation. The
third test case tests the eligibility of access to a mailbox that could be
used when spies login to their mailboxes and it calls the accessMailBox
opreation. It can be observed that all the security operations have been
called in the generated test cases using the main scenarios in which these
operations are called. This raises the probability of error-detection when
the derived implementation is verified against the acceptance test cases
increasing the confidence in the security properties of the final product.
Further, the coverage of the acceptance test cases provides a means to the
customer to verify that the final product meets his security requirements.

Security Specifications Changes

Maintenance activities are classified into four categories according to
[1, 11]: adaptive (changes in the software environment), perfective (new
user requirements), corrective (fixing errors), and preventive (prevent
future problems). An example of a corrective change has been chosen
since corrective changes consume 21% of change requests [11]. A
defective scenario threatening revelation confidentiality is as follows: A
spy leaves his team and gets reallocated to another team after a message
has been sent. This scenario is not handled by the current
encryption/decryption solution used to protect the confidentiality of
revelations since the leaving spy would receive a revelation that he is no
longer eligible to receive. To correct this defect, the KAOS framework
provides a conflict construct that allows the expression of situations that
contradict with system requirements. Let us consider the following
conflict to the RevelationConfidentiality goal.

Formal analysis and design for security engineering

47

This conflict could be resolved using one of the patterns for conflict

resolution [4] by introducing a new goal to anticipate the conflict:

This goal could be assigned to a reliable agent such as the big boss.

Analyzing the impact of introducing the new goal shows that the
RevelationConfidentiality requirement would be affected by this change.
The traceability information provided by the hierarchical structure of the
goal graph and the KAOS refinement mechanism direct the change
impact analysis to revisit the AND refinement of the
RevelationConfidentiality goal. The new goal needs to be added as a
subgoal to the refinement of the RevelationConfidentiality goal. The goal
graph for the RevelationConfidentiality goal would be modified as in
Figure 1.6 to add the new goal:

Figure 1.6. Accommodating the new goal

Since the new goal is a leaf goal, it will be operationalized using the
following operation:

Operation NotifyRelayWithReallocation
Input Spy{arg relay}, Spy{arg leavingSpy}
DomPre (relay, leavingSpy:Spy) Notified(relay, leavingSpy)
DomPost(relay, leavingSpy:Spy) Notified(relay, leavingSpy)

Formal analysis and design for security engineering

48

ReqPreFor (team1, team2:Team) Member(relay, team1) ^
Member(leavingSpy, team1) ^ Member(leavingSpy, team2)

This operation needs to be transformed to B in order to propagate this
corrective change to the derived design and implementation. According
to the change impact analysis performed with respect to the
transformation of the new operation to B, we discovered that the state
representation (Variables) of the SpyNetwork machine needs to be
complemented with the following variables: team, relaySpies,
authorizedReceiversFrom, authorizedSendersTo. These variables
represent the set of assigned relays of all teams as well as the set of spies
authorized to send to or receive from relays. Constraints on these
variables need to be added to the invariant of the machine as follows:

team : spies-->STRTOKEN &
relaySpies <: spyId &
authorizedReceiversFrom : relaySpies >+> spies &
authorizedSendersTo : spies +> relaySpies
The definition of the operation notifyRelayWithReallocation is given

below and it should be refined for design and implementation like the
rest of the operations.

Tasks for laboratory work №1.
1. Each student choose different type of software.

Formal analysis and design for security engineering

49

2. According to chosen software elaborate the security requirements
to specified system (Integrity Goals, Confidentiality Goals,
Authentication Goals, Availability Goals, Access Control Goals);

3. Make the analysis and resolution of obstacles and conflicts for
specified security goals.

4. Construct model of the system with KAOS.
5. Transform built model into B.
6. Make the refinement to derive implementation specifications in

B.
Requirements to the report

The report should consists of:
- title sheet;
- the aim and the task of the laboratory work;
- defined security requirements to the system;
- graphical model of the system;
- presentation oh the built model in B;
- presentation of the refinement to derive implementation

specifications in B;
- results and conclusions.

Advancement questions

1. Why does some refinements are not complete?
2. What we should do to formally express these security goals?
3. What we need to do for applying the generic security model to a

system?
4. In what language do we are able to expressed security goals?
5. What does the confidentiality of revelations means?
6. What does the Confidentiality of mailboxes means?
7. What authentication means in the context of the spy network

case study?
8. Is it possible to elaborate the security requirements to Access

Control Goals, and how?
9. How to make the analysis and resolution of obstacles and

conflicts for specified security goals?
10. How to construct model of the system with KAOS? How to

transform built model into B?

Formal analysis and design for security engineering

50

What we should do to get the refinement to derive
implementation specifications in B?

1.2 Laboratory work 2. Applying formal methods to a
certifiably secure software system

The aim and the task of the laboratory work
The aim of this laboratory work is to gain knowledge and acquire

skills in the verifying security down to the source code level.
Task of the work:
- build a well-defined security property;
- build the minimal state machine model needed to prove that the

model satisfies the property;
- using a mechanical verifier, prove that the security model satisfies

the property;
- annotate the code with preconditions and postconditions and

partition it into Event, Trusted, and Other Code;
- demonstrate conformance of the Event Code and the code

preconditions and postconditions with the internal events and
preconditions and postconditions of the TLS ;

- show that the Trusted Code and the Other Code are benign;
- develop tools for validating and constructing preconditions and

postconditions from the source code, including the C code,
- develop tools for automatically generating test cases that check C

code annotations;
- develop tools for showing conformance of annotated code with a

TLS, and automatically constructing efficient provably correct code from
specifications.

Preparation for laboratory work
- to clarify the aims and objectives;
- to study theoretical material given in the description.

Theoretical material

Formal analysis and design for security engineering

51

Introduction

A challenging problem therefore is how to make the verification of
security-critical code affordable. Let us consider an practical approach to
verifying the security of software that significantly reduces the cost of
verification. This approach is formulated to support a Common Criteria
evaluation of the security of a software- based embedded device called
ED (Embedded Device). Satisfying the Common Criteria required a
formal proof of correspondence between a formal specification of ED's
security functions and its required security properties and a
demonstration that ED's implementation satisfied the formal
specification. ED, which processes data stored in different partitions of
its memory, must enforce a critical security property called data

separation to ensure, for example, that data in one memory partition
neither influences nor is influenced by data in another partition. To
guarantee that data separation is not violated (or, if it is violated, an
exception occurs), ED relies on a separation kernel [12,13], a tamper-
proof nonbypassable program mediating every access to memory.

The main is to provide evidence to the certifying authority that the
ED separation kernel enforces data separation. The kernel code, which
contains on the order of 3,000 lines of C and assembly code, is annotated
with preconditions and postconditions in the style of Hoare and Floyd.
To provide evidence that ED enforces data separation, a Top-Level
Specification (TLS) of the separation-relevant behavior of the kernel, a
formal statement of data separation, and a mechanized formal proof that
the TLS satisfies data separation are produced. Then, the annotated code
is partitioned into three categories, each requiring a different proof
strategy. Finally, the formal correspondence between the annotated code
and the TLS was established. Five artifacts—the TLS, the formal
statement of data separation, proofs that the TLS satisfies data separation,
the organization of the annotated code into the three categories, and the
documents showing correspondence of the code to the TLS— were
presented, along with the annotated code, as evidence supporting the
certification of ED.

Let us consider the process that produces the evidence for the
Common Criteria evaluation, and describes the artifacts developed
during the process, and presents the formal argument justifying the
approach to establishing conformance of the code with the TLS. Also,

Formal analysis and design for security engineering

52

subsection describes a technique for partitioning the code into three
different categories and for reasoning about the security of each category,
which reduces the cost of verification. Also, it describes an method for
demonstrating the security of code. Although the method combines a
number of well-known techniques for specifying and reasoning about
security (for example, a state machine model, an access control matrix
[14], mechanized reasoning using PVS [15], and a demonstration of
correspondence between the TLS and the annotated code). Described
techniques for partitioning the code and the method for proving the
security of the code is able to prove cost-effective efforts to verify the
security of software.
Background Separation Kernel

A separation kernel [13] mimics the separation of a system into a set
of independent virtual machines by dividing the memory into partitions
and restricting the information flow between those partitions. Separation
kernels are being developed by commercial companies such as Wind
River Systems, Green Hills Software, and LynuxWorks for military
applications requiring Multiple Independent Levels of Security (MILS).

In a MILS environment, a separation kernel acts as a reference
monitor [16]: it is nonbypassable, evaluatable, always invoked, and
tamper-proof.
Common Criteria

A number of international organizations established the Common
Criteria to provide a single basis for evaluating the security of
information technology products [16]. Associated with the Common
Criteria are seven Evaluation Assurance Levels. EAL7, the highest
assurance level, requires a formal specification of a product's security
functions and its security model and formal proof of correspondence
between the two.
Embedded Device

The device of interest, ED, processes data in an embedded system
whose memory has been divided into nonoverlapping partitions.
Although, at any given time, the data stored and processed by ED in one
memory partition is classified at a single security level, ED may later
reconfigure that partition to store and process data at a different security

Formal analysis and design for security engineering

53

level. Because it stores and processes data classified at different security
levels, security violations by ED could cause significant damage. To
prevent violations of data separation, for example, the “leaking" of data
from one memory partition to another, the ED design uses a separation
kernel to mediate access to memory. By mediating every access, the
kernel ensures that every memory access is authorized and that every
transfer of data from one ED memory location to another is authorized.
Any attempted memory access by ED that is unauthorized will cause an
exception.
Code Verification Process

Given 1) source code annotated with Floyd-Hoare preconditions and
postconditions and 2) a security property of interest, the problem is how
to establish that the code satisfies the property. Let us consider a five-step
process for establishing the property, each step producing one of the five
artifacts. The five steps of the process are listed as follows:

- Formulate a TLS of the code as a state machine model.
- Formally express the security property as a property of the state

machine model. Confirm that the property is preserved under refinement.
- Translate the TLS and the property into the language of a

mechanical prover and prove formally that the TLS satisfies the property.
- Given source code annotated with preconditions and

postconditions, partition the code into three categories—Event, Other,
and Trusted Code—based on some criterion determined by the property
of interest.

- To demonstrate that the Event Code does not violate the property
of interest, construct a) a mapping from the Event Code to the TLS
events and from the code states to the states in the TLS and b) a mapping
from the preconditions and postconditions of the TLS events to the
preconditions and postconditions that annotate the corresponding Event
Code. Demonstrate separately that Trusted Code and Other Code are
benign. Based on these results, conclude that the code refines the TLS.

Top Level Specification

Major goals of the TLS are to provide a precise yet understandable
description of the allowed security-relevant external behavior of ED's
separation kernel and to make the assumptions on which the TLS is
based explicit. To achieve this, the TLS of the kernel behavior is

Formal analysis and design for security engineering

54

represented in precise natural language as a state machine model by
using the style of the Military Message System (MMS) security model.
The advantage of precise natural language is that it enables stakeholders
with differing backgrounds and objectives, that is, the project manager,
software developers, evaluators, and the formal methods team, to
communicate precisely about the required kernel behavior and helps
ensure, early in the verification process, that misunderstandings are
weeded out and issues are resolved. Another goal of the TLS is to
provide a formal context and precise vocabulary for defining data
separation.

Like the secure MMS model, the state machine representing the
kernel behavior is defined in terms of an input alphabet, a set of states, an
initial state, and a transform relation describing the allowed state
transitions. The input alphabet contains internal and external events,
where an internal event can cause the kernel to invoke some process, and
an external event is performed by an external host. The transform (also
called the next-state relation) is defined on triples consisting of an event
in the input alphabet, the current state, and the new state. Let us consider
the excerpts from the TLS. To provide intuition about the observable
kernel behavior of ED, it also describes the five internal events and the
single external event (the last event), listed in the leftmost column of
Table 2.1.

Table 2.1. Excerps from the Nonull Portion of Access Control Matrix

for Partition i, 1 ≤ i ≤ n
Event e

in H
Memory Areas in M

𝐵𝑖
1 𝐷𝑖

1 𝐷𝑖
2 … G

Begin_Partition_i
Copy_B1In_D1In_i

Clear_D1_i
End_Partition_i

Other_NonPartProc
…

ExtEv_B1In_i

-
R
-
-
-

…
RW

-
W
W
-
-

…
-

-
-
-
-
-

…
-

-
-
-
-
-

…
-

-
-
-
-

RW
…
-

Partitions, state variables, events, and states. We assume the

existence of n > 1 dedicated memory partitions and a single shared
memory area. We also assume the existence of the following sets:

Formal analysis and design for security engineering

55

- V is a union of types, where each type is a nonempty set of values.
- R is a set of state variable names. For all r in R, TY(r) ⊆ V is the

set of possible values of state variable r.
- M is a union of N nonoverlapping memory areas, each

represented by a state variable.
- H = P U E is a set of M events, where each event is either an

internal event in P or an external event in E.
A system state is a function mapping each state variable name r in R

to a value. Formally, for all r ∈ R, s(r) ∈ TY(r). Given state s and state
variable r, we abbreviate s(r) by rs.

Memory areas. The N memory areas contain N — 1 MAIs, where N
— 1 = mn and m is the number of MAIs per partition. Informally, a MAI
is a memory area containing data whose leakage would violate data
separation. The m MAIs for a partition i, 1 ≤ i ≤ n, include partition i's
input and output buffers and k data areas where data in partition i are
stored and processed. The Nth memory area, called G, is the single
shared memory area and contains all programs and data not residing in
any MAI. The set M of all memory areas is defined as the union A
U{G}, where A = {Ai,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m} contains the mn MAIs.
For all i, 1 ≤ i ≤ n, Ai = {Ai,j | 1 ≤ j ≤ m} is the set of memory areas for
partition i. To ensure that they are nonoverlapping, the memory areas of
M are required to be pairwise disjoint.

State variables. The set of state variables contained in R are
- a partition id c,
- the N memory areas in M, and
- a set of n sanitization vectors W[1],..., W[n], each vector

containing k elements.
The partition id c is 0 if no data processing in any partition is in

progress and it is i, 1 ≤ i ≤ n, if data processing is in progress in partition
i. (Data processing can occur in only one partition at a time.) For 1 ≤ j ≤
k, the Boolean value of the jth element Wj [i] of the sanitization vector
for partition i is true initially and if the j-th memory area of the ith
partition has been sanitized since it was last written, and otherwise false.
A sanitized memory area is modeled as having the value 0.

Events. The set of internal events P ⊂ H is the union of n sets, P1,,
Pn, of partition events, one set for each partition i, and a singleton set Q.
Thus, P is defined by P = [U𝑖=1𝑛 P𝑖] ∪ Q. Processing occurs on partition

Formal analysis and design for security engineering

56

i when a sequence of events from Pi is processed. The first four events
listed in Table 1 are partition events in some Pi. The first event,
Begin_Partition_i, initiates data processing in partition i. The next two
events process data stored in i's memory areas: Event Copy_B1In_D1_i
copies data from Bl, which is an input buffer assigned to i, into a memory
area Dl of i and event Clear_D1_i sanitizes memory area Dl. The event
End_Partition_i concludes data processing in partition i. Q's sole member
is Other_NonPartProc, which is the fifth event listed in Table 1, an
abstract event representing all internal events that invoke data processing
in the shared memory area G. An example is the event that copies a
shared algorithm, written by some external host into a shared input
buffer, to some other part of G.

The set of external events E ⊂ H is defined by E = EIn ∪ EOut ∪
{Ext_Ev_Other}, where 𝐸𝐼𝑛 = 𝑈𝑖=1𝑛 𝐸𝑖

𝐼𝑛 𝑎𝑛𝑑 𝐸𝑂𝑢𝑡 = 𝑈𝑖=1
𝑛 𝐸𝑖

𝑂𝑢𝑡. 𝐸𝑖𝐼𝑛 is
the set of external events writing into or clearing the input buffers of
partition i and 𝐸𝑖𝑂𝑢𝑡 is the set of external events reading from or clearing
the output buffers of partition i. The event Ext_Ev_Other represents all
other external events. ExtEv_B1In_i, the last event listed in Table 1, is an
example of an external event in EIn which occurs when an external host
writes data (to be processed in partition i) into the input buffer 𝐵𝑗1.

Partition and nonpartition functions. Operations on data in partition i,
for example, an operation copying data from one MAI in partition i to
another MAI in i, are called partition functions. For all i, 1 ≤ i ≤ n, and,
for each internal event e in Pi, there exists a partition function re
associated with e. For all e ∈ Pi, Гe has the signature Гe : TY(a1) →
TY(a2), where a1 and a2 are MAIs in Ai. Thus, each function Гe, where
e is an internal event in Pi, takes a single argument, that is, the value
stored in some MAI a1 and uses that argument to compute a value to be
stored in MAI a2 as the result of event e. A nonpartition function Гe has
access to data in G only.

Access control matrix. Associated with the M events and N memory
areas is an M by N access control matrix AM, which indicates the access
privileges that each internal event e in P (and its associated process) and
each external event e in H has for each memory area a in M. The access
privileges are either null for no access, R for read access, W for write
access, or RW for both read and write access. Table 1 shows excerpts
from the access control matrix AM. The leftmost column of Table 1 lists

Formal analysis and design for security engineering

57

the events in H and the headings of the remaining columns list memory
areas in M. The rightmost column heading contains G, the only non-
MAI, while the remaining column headings contain all MAIs for
partition i. For all i, 1 ≤ i ≤ n, AM shows the access privileges that each
internal and external event has for each of i's memory areas and for
memory area G. In Table 2.1, “-“ denotes null access. For all i,j, 1 ≤ i,
j ≤ n, i = j, the access privilege that an event associated with i has to a
memory area associated with j (not shown in Table 2.1) is null .
Similarly, the access privilege that an event associated with j (not shown
in Table 2.1) has to a memory area associated with i is also null.

To illustrate how AM limits access to the memory areas in M, we
consider the event in the second row of Table 2.1, that is,
e=Copy_B1In_D1In_i. Table 1 shows that a process invoked by e has
read access to 𝐵𝑖1, one of i's input buffers, and write access to 𝐷𝑖1, one of
i's data areas, and null access to all other memory areas in M. Thus, for
event e, AM[e, 𝐵𝑖1] = R, AM[e, 𝐷𝑖1] = W, and AM[e, a] = null for all a, a
∈ M, a ∉ {𝐵𝑖1, 𝐷𝑖1}. Similarly, the event Clear_D1_i can only write to D1
and the abstract event Other_NonPartProc only has read and write access
to G. The events that begin and end data processing on i,
Begin_Partition_i and End_Partition_i, cannot write to any memory area.
Finally, the external event ExtEv_B1In_i invokes a process that can only
read and write into the input buffer 𝐵𝑖1.

System. A system is a state machine whose transitions from one state
to the next are triggered by events. Formally, a system Σ is a 4-tuple Σ =
(H, S, so, T), where

- H is the set of events,
- S is the set of states,
- so is the initial state,
- T is the system transform, a partial function from H x S into S. T

is partial because not all events are "enabled" to be executed in the
current state.

Initial state. In the initial state so, the partition id c is 0; for all i, 1 ≤ i
≤ n, the MAIs in Aj are 0; and each element of the sanitization vectors
W[1]... W[n] is true. Hence, in the initial state, no processing in any
partition is authorized, only a nonpartition process is authorized to
execute, all MAIs are zero, and all data areas are known to be sanitized.

Formal analysis and design for security engineering

58

System transform. The transform T is defined in terms of a set R of
transform rules R = {Re | e ∈ H}, where each transform rule Re describes
how an event e transforms a current state into a new state. The number of
rules is M, one rule for each of the M events in H. No rule requires
access privileges other than those defined by the access control matrix
AM. The notation s and s' represents the current state and the new state,
respectively. When an internal or external event e does not affect the
value of any state variable r, when the precondition is not satisfied, or
when the event e is not enabled, the value of r does not change from state
s to state s' and the state variable r retains its current value, that is, rs = rs'
.

To denote that no state variable changes, except those explicitly
named, we write 𝑁𝑂𝐶�̂�(NO Change, except to variables in �̂�), where �̂�
⊂ R. This notation also covers the case where the ith element of a
sanitization vector changes, but no other vector elements change. For
example, the postcondition rs' = x ∧ 𝑁𝑂𝐶{𝑟} where x ∈ TY(r), is
equivalent to rs' = x ∧ ∀r̂ ∈ R, r̂= r: r̂s′= r̂s.

Suppose that s is a state in S, e is an event in H, and R is the set of
state variables. Let pree be a state predicate associated with e such that
pree evaluates to true if e has the potential to occur in state s and false
otherwise. In addition, let poste be a predicate associated with e such that
poste(s, s') holds whenever e occurs in state s and s' is a possible poststate
of s when event e occurs in state s. Formally, the transform rule Re in R
is defined by

Re : pree(s) ⇒ poste(s; s').
Whenever the result state of every event e is deterministic (which is

true in the TLS for ED), the assertion poste(s, s')
defines the poststate s' = T(e, s). To make T total on H x S, the

complete definition of T is written as

𝑇(𝑒, 𝑠) = {
𝑠′, 𝑖𝑓 𝑝𝑟𝑒𝑒(𝑠),𝑤ℎ𝑒𝑟𝑒 𝑝𝑜𝑠𝑡𝑒(𝑠, 𝑠

′);
𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

In the above definition, pree (s) is not satisfied implies that e has no
effect, that is, essentially e does not occur. Abstractly, this models raising
an exception and halting.

Examples of transform rules. For all i, 1 ≤ i ≤ n, the transform rule
for e = Begin_Partition_i, which begins data processing on i, is denoted
RBegin_partiti0n_i. A precondition for event e is that the partition id is 0

Formal analysis and design for security engineering

59

(that is, the system is not currently processing data on any partition) and
the postcondition for e is that the partition id is i. For all i, 1 ≤ i ≤ n, and,
for all states s and s', the rule Re for e = Begin_Partition_i is defined by
𝑅𝐵𝑒𝑔𝑜𝑛_𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_1: 𝑐𝑠 = 0 ⇒ 𝑐𝑠′ = 𝑖 ∧ 𝑁𝑃𝐶{𝑐}.
The notation NOC{c} means that no state variable other than the

partition id c can change. Similarly, for all i, 1 ≤ i ≤ n, the rule Re for e
= End_Partition_i, which ends data processing on i, is defined by
𝑅𝐸𝑛𝑑_𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖: 𝑐𝑠 = 𝑖 ∧ ∀ 1 ≤ 𝑗 ≤ 𝑘,𝑊𝑠

𝑗 [𝑖] = 𝑡𝑟𝑢𝑒 ⇒ 𝑐𝑠′ = 0 ∧ 𝑁𝑂𝐶{𝑐}

The expression "∀ 1 ≤ j ≤ k, 𝑊𝑠
𝑗[i] - true" in the above rule means

that each element of the sanitization vector for i must be true for data
processing on i to end. This can be achieved by invoking clear events
such as Clear_Dl_i prior to invoking End_Partition_i. The purpose of this
precondition is to ensure that all data areas of partition i are sanitized
prior to processing on G, on partition j, j - i, or on a new configuration of
i. The transform rules RBegin_Partition_i and REnd_Partition_i are the
only rules that change the value of the partition id c. Together, these rules
constrain the partition id c to change from 0 to nonzero or from nonzero
to 0.

Processing on a partition i can include copying data from an input
buffer of partition i to a data area of partition i. Consider again the
internal event e = Copy_BlIn_DlIn_i, whose transform rule is denoted
RCopy_BlIn_DlIn_i . The preconditions for e are:

- The partition id c is equal to i.
- The invoked process must have read access R for partition i's Input

Buffer 1 and write access W for Data Area 1 in partition i.
- Postconditions for e are:
- The element for Data Area 1 in partition i's sanitization vector

becomes false (because the event stores the value of Buffer 1 in Data
Area 1).

- A function of the value in partition i's Input Buffer 1 is written into
partition i's Data Area 1.

- No other state variable changes.
For all i, the rule Re for event e = Copy_BlIn_DlIn_i is defined by
𝑅𝐶𝑜𝑝𝑦_𝐵1𝐼𝑛_𝐷1𝐼𝑛𝑖: 𝑐𝑠 = 𝑖 ⋀ (1)
𝐴𝑀[𝑒, 𝐵𝑗

𝑖] = 𝑅 ∧ 𝐴𝑀[𝑒, 𝐷𝑗
𝑖] = 𝑊 (2)

⇒ 𝑊𝑠′
1[𝑖] = 𝑓𝑎𝑠𝑙𝑒 ∧ (3)

Formal analysis and design for security engineering

60

𝐷𝑖,𝑠′
𝑖 = Г𝑒(𝐵𝑖,𝑠

1) ∧ (4)
𝑁𝑂𝐶{𝑊1[𝑖],𝐷𝑖

1}. (5)
As the fourth and final example of a transform rule, consider the rule

for the internal event e = Other_NonPartProc, which represents all
nonpartition processing events. The precondition is that the partition id c
is 0 (that is, the system is not currently processing data on any partition).
The effect is that some part of memory area G may change. The rule Re
for e = Other_NonPartProc is defined by

𝑅𝑂𝑡ℎ𝑒𝑟_𝑁𝑜𝑛𝑃𝑎𝑟𝑡𝑃𝑟𝑜𝑐 ∶ 𝑐𝑠 = 0 ∧ 𝐴𝑀[𝑒, 𝐺] = 𝑅𝑊
⇒ 𝐺𝑠′ = Г𝑒(𝐺𝑠) ∧

∀ 𝑟 ∈ 𝑅, 𝑟 ≠ 𝐺: 𝑟𝑠′ = 𝑟𝑠.

Security Property: Data Separation

To operate securely, ED must enforce data separation, that is, it must
prevent insecure data flows. Informally, this means that ED must prevent
data in a partition i from influencing or being influenced by 1) data in a
partition j, where i ≠ j; 2) data in an earlier configuration of partition i; or
3) data stored in G. To demonstrate that the TLS enforces data
separation, it is proved that it satisfies five subproperties, namely, No-
Exfiltration, No-Infiltration, Temporal Separation, Separation of Control,
and Kernel Integrity.

No-ExfUtration Property

The No-Exfiltration Property states that data processing in any
partition j cannot influence data stored outside the partition. This
property is defined in terms of the set Aj (the MAIs of partition j); the
entire memory M; the internal events in Pj, which invoke data processing
in j; and the external events in 𝐸𝑗𝐼𝑛 ∪ 𝐸𝑗𝑂𝑢𝑡, which affect data in j's input
and output buffers.

Property 2.1 (No-Exfiltration). Suppose that states s and s' are in
state set S, event e is in H, memory area a is in M, and j is a partition, 1 ≤

j ≤ n. Suppose further that s' = T(e, s). If e is an event in 𝑃𝑗 ∪ 𝐸𝑗
𝐼𝑛 ∪ 𝐸𝑗

𝑂𝑢𝑡

and as ≠ as', then a is in Aj.
2.2.2 No-Infiltration Property
The No-Infiltration Property states that data processing in any

partition i is not influenced by data outside that partition. It is defined in
terms of the set Ai, which contains the MAIs of partition i.

Formal analysis and design for security engineering

61

Property 2.2 (No-Infiltration). Suppose that states 𝑠1, 𝑠2, 𝑠1′ , and 𝑠2′
are in S, event e is in H, and i is a partition, 1 ≤ i ≤ n. Suppose further
that 𝑠1′ = T (e, s1) and 𝑠2′ = T (e, s2). If, for all a in Ai, as1 = as2, then, for
all a in Ai, 𝑎𝑠1′=𝑎𝑠2′ .

Temporal Separation Property

This property ensures that no data (for example, Top Secret data)
stored in the ith partition during one configuration of the partition can
remain in any memory area of a later configuration (for example,
processing Unclassified data) of that same partition i. The property is
guaranteed if the k data areas in any partition i are clear when the system
is not processing data in that partition, for example, from the end of a
processing thread in one partition to the start of a new processing thread
in the same or a different partition. The set of states in which the system
is not processing data stored in a partition is exactly the set of states in
which the partition id c is 0. This fact is used in stating the property.

Property 2.3 (Temporal Separation). For all states s in S, for all i, 1
≤ i ≤ n, if the partition id cs is 0, then the k data areas of partition i are
clear, that is, 𝐷𝑖,𝑠1 = 0, …, 𝐷𝑖,𝑠𝑘 = 0.

Separation of Control Property

This property states that, when data processing is in progress on
partition i, no data is being processed on partition j, j ≠ i, until processing
on partition i terminates. The property is defined in terms of the partition
id c and the set Di of k data areas in partition i, Di = {D𝑖

𝑗
 | 1 ≤ j ≤

 k}.
Property 2.4 (Separation of Control). Suppose that states s and s'

are in S, event e is in H, data area a is in M, and j, where 1 ≤ j ≤ n, is a
partition id. Suppose further that s' = T(e ,s). If neither cs nor cs’ is j, then
as = as’ for all a ∈ Dj.

Kernel Integrity Property

The Kernel Integrity Property states that, when data processing is in
progress on partition i, the data stored on memory area G does not
change. This property is defined in terms of G and the set Pi of events for
partition i.

Formal analysis and design for security engineering

62

Property 2.5 (Kernel Integrity). Suppose that states s and s' are in
state set S, event e is in H, and i is a partition, 1 ≤ i ≤ n. Suppose further
that s' = T (e, s). If e is a partition event in Pi, then Gs' = Gs.

Formal Verification

To formally verify that the TLS enforces data separation, the natural
language formulation of the TLS was translated into TAME (Timed
Automata Modeling Environment) [18], a front end to the mechanical
prover PVS [19] which helps a user specify and reason formally about
automata models. This translation requires the completion of a template
to define the initial states, state transitions, events, and other attributes of
the state machine E. The TAME specification provides a machine
version of the TLS that can be shown mechanically to satisfy the defined
properties. After constructing the TAME specification of the TLS, we
formulated two sets of TLS properties in TAME —invariant
properties and other properties—which together formalize the five
subproperties. Then, for each set of properties, we interactively
constructed (TAME) proofs showing that the TAME specification
satisfies each property. The scripts of these proofs, which are saved by
PVS, can be rerun easily by the evaluators and serve as the formal proofs
of data separation. One benefit of TAME is that the saved PVS proof
scripts can be largely understood without rerunning them in PVS.

Partitioning the Code

To show formally that the separation kernel enforces data separation,
we must prove that the kernel is a secure partial instantiation of the state
machine ∑ defined by the TLS. The formal verification establishes
formally that a strict instantiation of the TLS enforces data separation. A
partial instantiation of the TLS is an implementation that contains fine-
grained details which do not correspond to the state machine ∑ defined in
the TLS. A secure partial instantiation of the TLS is a partial instantiation
of the TLS in which the fine-grained details that do not correspond to the
TLS are benign. Let us consider how the formal foundation for the proof
that the code is a secure partial instantiation of the TLS.

The proof that the code for the ED kernel is a secure partial
instantiation of the TLS is based on a demonstration that all kernel code
falls into three major categories and one subcategory, with proofs that the

Formal analysis and design for security engineering

63

code in each category satisfies certain properties. The categories are
given as follows:

Event Code is kernel code that implements a TLS internal event e in
P and touches one or more MAIs. For each segment of Event Code, it is
checked that

- the concrete translation of the precondition in the TLS for the
corresponding event e is satisfied at the point in the kernel code where
the execution of the event code is initiated, and

- the concrete translation of the postcondition in the TLS for the
corresponding event e is satisfied at the conclusion of Event Code
execution.

Trusted Code is kernel code that touches MAIs but is not Event
Code. This code does not correspond to behavior defined by the TLS and
may have read and write access both to MAIs and to memory areas
outside the MAIs. It is validated either by a proof that the code does not
permit any nonsecure information flows or, in rare instances, by external
certification. The TLS makes explicit any assumptions used in
connection with the Trusted Code and its behavior. The proofs for a
given segment of the Trusted Code characterize the entire functional
behavior of that Trusted Code by using Floyd-Hoare style assertions at
the code level and show that no nonsecure information flows can result
from that code.

Other Code is the kernel code that is neither Event Code nor Trusted
Code. More specifically, Other Code is kernel code which does not
correspond to any behavior defined by the TLS and has no access to any
MAI.

A subset of the Other Code, called Validated Code, is code with no
access to MAIs which is still security relevant because it performs
functions necessary for the kernel to enforce data separation. These
functions include setting up the MMU, establishing preconditions for the
Event Code, etc. Floyd-Hoare style assertions at the code level are used
to prove that Validated Code correctly implements the required
functions.

The kernel code was manually partitioned into Event, Trusted, and
Other Code. A first pass through the code showed that only a small
number of functions could reset the MMU (that is, change the access
permissions to memory areas). Apple's Xcode development tool [20] was
used to search the kernel code for all calls to these functions. Each such

Formal analysis and design for security engineering

64

call was inspected to determine the memory areas to which access was
granted. By analyzing the access granted to code segments categorized as
Other Code, one can verify that functions called in these code segments
have no access to any MAI.

Partitioning the code in this manner dramatically reduces the cost of
code verification since only the Event Code, a small part of the code,
needs to be checked for conformance to the TLS. In ED, Event Code and
Trusted Code comprised less than 10 percent of the code. The remaining
90 percent was Other Code.

Demonstrating Code Conformance

Demonstrating that the kernel code conforms to the TLS requires the
definition of two mappings. To establish correspondence between
concrete states in the code and abstract states in the TLS, a function a is
defined which relates concrete states to abstract states by relating
concrete entities (such as memory areas, code variables, and logical
variables) to abstract state variables in the TLS (such as MAIs and the
partition id) and mapping the value space of each concrete entity to that
of its corresponding abstract state variable. For example, a maps the
actual physical addresses of the MAIs to their corresponding abstract
state variables in the TLS. In the ED kernel code, a maps a global
variable partitioned, corresponding to the partition id, to the TLS
partition id variable c. The TLS sanitization vectors have no analogs in
the code. Instead, a predicate can be inferred from the code to indicate
whether a memory area is sanitized. To represent sanitization in the
concrete machine, new logical variables (for example,
part_data1_sanitized_i) are introduced, and a maps these variables to
elements of the sanitization vectors in the TLS. The map a also maps the
Event Code to events in the TLS. Another map Φ relates assertions at the
abstract TLS level to equivalent assertions at the code level derived from
the abstract assertions and the map a.

Using Φ to relate preconditions and postconditions for an event in the
TLS to the derived preconditions and postconditions for the
corresponding Event Code, we next determine, for each piece of Event
Code, sets of code-level preconditions and postconditions that match the
derived preconditions and postconditions as closely as possible. Fig. 1
shows the Event Code corresponding to the internal event
Copy_B1In_D1In_i in the TLS and the code-level preconditions and

Formal analysis and design for security engineering

65

postconditions for this Event Code. Although the Event Code for
Copy_B1In_D1In_i consists of only a single function call, generally,
Event Code may consist of any block of code. In Fig. 2.1, the top box
contains the preconditions, then the indented Event Code is listed, and,
finally, the bottom box contains the postconditions. Each precondition
and postcondition has the form {Assertion_Name : Assertion}.
Generally, the match between assertions in the TLS and derived code-
level assertions is not exact because auxiliary assertions are added (see
Fig. 2.1) to express the correspondence between variables in the code and
physical memory areas4 (for example, CopyDIn_local_datain), 2) to save
values in memory areas as the values of logical variables (for example,
CopyDIn_value_data), and 3) to express error conditions (for example,
CopyDIn_copy_size_datain) that the TLS abstracts away via type
correctness.

Fig. 2.1. Event Code and eent-level assertions for the event

Copy_B1ln_D1ln_1

Formal analysis and design for security engineering

66

The derivation of the necessary code-level assertions is also
complicated by the code itself. For example, although there is a global
variable partitioned in the code, in many of the routines implementing
Event Code, the partition id used in the routine is an argument that is
passed into the routine. This results in a code-level precondition asserting
that the local variable for the partition id is equal to the global variable
partitioned (for example, CopyDIn_partitioned in Fig. 2.1).

Table 2.2. Mapping Preconditions in the Code to Preconditions in the
TLS

Precondition
Ф(pree)(sc) Desired

in the Code

Assertion in
Annotated

Code

Precondition
pree(s) in the

TLS

Ref.
No. Description

CopyDIn_partition
_id §8.4,P5 cs = i (1) Partition id is i

CopyDIn_priv §8.4,TLS1* AM(e, 𝐵𝑖1) = R
AM(e, 𝐷𝑖1) = W (2)

R access for
Input Buffer 1,
W access for
Data Area 1

CopyDIn_value_da
ta

CopyDIn_def_valu

e_rest

§8.4, P4*

§8.4,TLS4

𝐵𝑖,𝑠
1

𝐷𝑖,𝑠
1

-

-

Value of data in
Input Buffer 1
Value of Data

Area 1

CopyDIn_local_inb
uffer

CopyDIn_local_dat

ain

§8.4, TLS3*

§8.4,TLS2*

-

-

-

-

Local variable
for Input Buffer

1
Local variable

for Data Area 1

Table 2.3. Mapping Postconditions in the Code to Postconditions in the
TLS

Postcondition
Ф(poste)(sc, s'c)
Desired in the

Code

Assertion
in

Annotated
Code

Postcondition
poste(s,s’) in the

TLS

Ref
No.

Description

CopyDIn_copy_siz
e_datain

CopyDIn_copy_siz
e_inbuffer

§8.4, R2*

§8.4, R3*

-

-

-

-

Wrong size —>
Error return

Wrong size —>
Error return

Formal analysis and design for security engineering

67

CopyDIn_gamma_
copy

CopyDIn_gamma_
rest

§8.4, R7*

§8.4,TLS6

𝐷𝑖,𝑠
1 =Г(𝐵𝑖,𝑠1)

-

(4) Copy to Data
Area 1

Rem Data Area
1 unchged

CopyDIn_sanitize §8.4,TLS5
*

𝑊𝑠′
1[𝑖] = 𝑓𝑎𝑙𝑠𝑒

(3) Data Area 1 not

sanitized

CopyDIn_NOC
By

inspection
𝑁𝑂𝐶{𝑊1[𝑖],𝐷𝑖

1} (5) No other change

After defining the desired sets of code-level preconditions and
postconditions, we check whether these assertions are among the
assertions already proven in the annotated C code. The annotated C code
often refers to memory areas by indexing into arrays that define memory
maps in the code, whereas the mapping a refers to memory areas by their
actual physical addresses. Thus, to be equivalent to the desired
assertions, the assertions in the annotated code frequently need
dereferencing. For example, the annotated C code assertion, TLS2 (see
Table 2.2) is defined by

part_data_start= (unsigned char*)
ker_rtime_mmu_map[partition].part_data_start,
which sets the variable part_data_start to the starting address of the

data area in the partition by indexing into the real-time memory map in
the code and selecting the part_data_start member of the structure
corresponding to that array element. Dereferencing the index into the
array and pointer into the structure yields the memory area
KER_PAR_DATA_STORAGEe_partition_START, the actual physical
address of the partition data area, which stores the value used in the code-
level precondition CopyDIneocal_datain (see the last line of the top box
in Fig. 2.1).

In the initial attempt to match a precondition and postcondition in the
annotated C code with each desired precondition and postcondition,
either

- the desired assertion exactly matched an assertion in the annotated
code,

- the desired assertion exactly matched an assertion in the annotated
code, except dereferencing was required,

- the desired assertion was a close but not exact match of an
assertion in the annotated code, or

Formal analysis and design for security engineering

68

- no code assertion exactly or approximately matched the desired
assertion.

Let us consider the annotated C-code to ensure that assertions
corresponding to all of the desired preconditions and postconditions were
added to and verified on the code. (In general, it is sufficient to include
strongest postconditions implying the derived assertions.) For example,
assertions about a predicate SANITIZED on memory areas were added to
the annotated code to provide correspondence to the necessary code-level
assertions about the sanitization of memory areas. To show
correspondence between the preconditions and postconditions in the code
and the TLS, two tables were created for each TLS event. Tables 2.2 and
2.3 are the correspondence tables for the preconditions and
postconditions of the transform rule for the TLS event Copy_B1In_D1In.
In the tables, s and s' = T(e, s) represent the abstract prestate and
poststate, sc and s'c represent the concrete prestate and poststate, and $
maps abstract predicates to corresponding concrete predicates.

In Tables 2.2 and 2.3, the first column contains the label of a desired
code-level precondition or postcondition from Fig. 2.1, the second
column gives the location (the section number and assertion label) of the
corresponding assertion in the annotated C code, the third column
contains the corresponding precondition or postcondition (if any) in the
TLS, the fourth column gives the reference number of the corresponding
assertion in the transform rule, and the fifth column briefly describes the
assertion. In cases where no corresponding assertion exists in the TLS, "
appears in both the third and fourth columns. An asterisk in the second
column indicates that, for equivalence between the assertion in the
annotated code and the desired code assertion to hold, the assertion in the
annotated code requires dereferencing.

Tables 2.2 and 2.3 show that, for every precondition and
postcondition of CopyB1In_D1In_i, there is an equivalent precondition
or postcondition in the annotated code. Therefore, we have shown that,
for CopyB1In_D1In_i, the full code-level preconditions and
postconditions imply the TLS preconditions and postconditions. Using
the same techniques, we have also demonstrated the analogous result for
the remaining events. The Event Code implementing the separation
kernel is a refinement of the TLS.

Formal analysis and design for security engineering

69

Fig. 2.2. Relations to establish between concrete and abstract transitions

and preconditions and postconditions.

Formal Foundations

Let us consider the classical theory of refinement [21], a technique
for proving that a concrete state machine model conforms to (that is, is a
refinement of) an abstract state machine model, into a form that we can
use to show that the behavior of the kernel code conforms to the behavior
captured in the TLS. Also this subsection covers the formal foundation
for the method of proving refinement and describes how have been
applied it to verify that the kernel code correctly implements the TLS.
The refinement proof technique that we use is closed under iteration.

Adapting the Classical Theory of Refinement

To begin, a function α is defined which maps each concrete state at
the code level to a corresponding abstract state in the TLS state machine
Σ by relating variables at the concrete code level to variables at the
abstract TLS level. Variables at the concrete level include variables in the
code, predicates defined on the code, logical history variables, and
memory areas. Among the most important memory areas treated as
concrete state variables are the data areas and the input and output
buffers assigned to each partition, all of which are central to reasoning
about possible information flows. Provided each possible value of a
concrete state variable can be represented by some possible value of the
corresponding abstract state variable (as is true for ED), the map a from
concrete to abstract state variables induces a map α : Sc → Sa from
concrete to abstract states in the obvious way.6 Once α is defined at the
level of states in terms of state variables and their values, the set Ec of

Formal analysis and design for security engineering

70

Event Code segments is identified, and a is extended to map each code
segment ec in Ec to a corresponding internal event ea = α (ec) in the
TLS.7

The map a from concrete states to abstract states provides a means of
taking any predicate Pa : Sa → Bool on abstract states and deriving a
corresponding predicate Ф(Pa) : Sc → Bool on concrete states as follows:

Ф(𝑃𝑎)(𝑆𝑐) ≜ 𝑃𝑎 (𝛼 (Sc)),
where sc is any state in Sc. Analogously, α can be used to derive a

predicate Ф(Pa) : Sc x Sc → Bool on pairs of concrete states from a
predicate on pairs of abstract states as follows:

Ф(𝑃𝑎)(𝑠𝑐
1 , 𝑠𝑐

2) ≜ 𝑃𝑎 (𝛼 (𝑠𝑐
1), 𝛼 (𝑠𝑐

2)),
where 𝑠𝑐1 and 𝑠𝑐2 are any states in Sc. The map Ф is used to relate

preconditions and postconditions in the code to preconditions and
postconditions in the TLS (see Fig. 2.2). Note that preconditions (at both
levels) apply only to one state. To capture the fact that an event changes
only certain state variables (indicated at the abstract level by the notation
NOC), the postconditions are represented at both levels as predicates on
two states.

In Fig. 2.2, we follow the convention of representing α (sc) by sa.
Note that, although the preconditions and postconditions on the concrete
and abstract transitions in Fig. 2.2 are denoted analogously, their required
relationships to their corresponding transitions differ. In particular, the
precondition Preea (sa) is a guard that, when false, prevents ea from
firing, while the precondition Preec (sc) is simply an assertion known to
hold before ec fires. Moreover, the postcondition Postea (sa,ea(sa)) is
intended to capture the effect of the action ea on the state sa, while the
postcondition Postec (sc,ec (sc)) is simply an assertion known to hold for
the states before and after ec fires. Hence, the requirements for the
abstract preconditions and postconditions fulfill the requirements for
concrete preconditions and postconditions (but not vice versa). Thus, in
the refinement proof method below, an abstract TLS can play a role
analogous to concrete code with respect to a still more abstract TLS.

To establish equivalence between the behavior of the kernel code and
a subset of the behavior modeled in the TLS, it is sufficient to prove, in
the simplest case, that, for every ec in Ec, the following conditions hold:

- Whenever the concrete code segment ec is ready to execute in
state sc, some concrete precondition Preec holds, where Preec implies

Formal analysis and design for security engineering

71

Ф(Preea), the concrete precondition derived from the abstract
precondition

- for ea = a(ec).
- Whenever the concrete precondition Preec holds for the current

program state sc, some concrete postcondition Postec holds for the pair
of program states (sc, ec(sc)) immediately before and immediately after
the execution of ec, where Postec implies Ф(Postea), the concrete
postcondition derived from the abstract postcondition for ea.

- The diagram in Fig. 2.2 commutes whenever Preec (sc) holds.
- Although this method requires the proof of conditions 1, 2, and 3,

it is essentially condition 3 that is needed for a to be a refinement
mapping. To prove condition 3, it is normally sufficient to prove
conditions 1 and 2.

Theorem 2.1. Provided ∀𝑠, 𝑠′ ∈ 𝑆𝑎: 𝑃𝑟𝑒𝑒𝑎(𝑠) ⇒ [𝑃𝑜𝑠𝑡𝑒𝑎(𝑠, 𝑠
′) ≡

(𝑠′ = 𝑒𝑎(𝑠))] conditions 1 and 2 imply condition 3.
Proof. Be hypothesis, we know that

∀𝑠, 𝑠′ ∈ 𝑆𝑎: 𝑃𝑟𝑒𝑒𝑎(𝑠) ⇒ [𝑃𝑜𝑠𝑡𝑒𝑎(𝑠, 𝑠
′) ≡ (𝑠′ = 𝑒𝑎(𝑠))]

And may assume that conditions 1 and 2 hold. Further, by the
hypothesis of condition 3, we may also assume that
𝑃𝑟𝑒𝑒𝑐(𝑠).
By condition 1, it follows from (ii) that Ф(𝑃𝑟𝑒𝑒𝑎)(𝑠с), which means,

by the definition of Ф, that
𝑃𝑟𝑒𝑒𝑎(α(𝑠с)).

Furthermore, by condition 2, we have
𝑃𝑟𝑒𝑒𝑐(𝑠𝑐) ⇒ 𝑃𝑜𝑠𝑡𝑒𝑐(𝑠𝑐, 𝑒𝑐(𝑠𝑐)),
and

𝑃𝑜𝑠𝑡𝑒𝑐(𝑠𝑐 , 𝑒𝑐(𝑠𝑐)) ⇒ Ф𝑃𝑜𝑠𝑡𝑒𝑎(𝑠𝑐, 𝑒𝑐(𝑠𝑐)).
Thus,
𝑃𝑟𝑒𝑒𝑐(𝑠𝑐) (by (ii))
⇒ 𝑃𝑜𝑠𝑡𝑒𝑐(𝑠𝑐, 𝑒𝑐(𝑠𝑐)) (by (iv))
⇒ Ф𝑃𝑜𝑠𝑡𝑒𝑎(𝑠𝑐 , 𝑒𝑐(𝑠𝑐)) (by (v))
⇔ 𝑃𝑜𝑠𝑡𝑒𝑎(α(𝑠𝑐), α(𝑒𝑐(𝑠𝑐)) (by the definition of Ф)
⇔ α(𝑒𝑐(𝑠𝑐) = 𝑒𝑎(α(𝑠с)) (by (i) and (iii)).
But, the last assertion means that the diagram in Fig. 2.2 commutes,

which is the conclusion of condition 3.

Formal analysis and design for security engineering

72

The hypothesis of Theorem 2.1 does not truly limit its use, provided
that the abstract postcondition exactly captures all possible effects of the
abstract transition. In particular, suppose that the definition of the
abstract transition allows nondeterminism, and that one has established,
based on conditions 1 and 2 and the hypothesis of condition 3, that
Postea(a(sc), a(ec(sc))), that is, that Postea(sa, a(ec(sc))). Then, to fulfill the
hypothesis of Theorem 4.1, one can simply replace ea by its deterministic
instance for which the abstract poststate ea(sa) is a(ec(sc)).

Establishing conditions 1-3 guarantees that, whenever the code
segment ec executes in the code, there is an enabled event ea in the TLS
that causes a transition from the abstract image sa under a of the concrete
prestate sc at the code level into an abstract state ea(sa) that is the abstract
image under a of the concrete poststate ec(sc) at the code level. More
concisely, conditions 1, 2, and 3 imply that there exists an abstract
transition that models the concrete transition.

The relation of Event Code segments to abstract events can be
slightly more complex than shown in Fig. 2.2. For example, in some
cases, ec may implement more than one event. However, these more
complex cases can usually be handled similarly. When a concrete event
implements n abstract events, for example, one looks for a partition
𝑃𝑟𝑒𝑐 = 𝑃𝑟𝑒𝑐

1 ⨁ . . . ⨁ 𝑃𝑟𝑒𝑐
𝑛 of the concrete precondition Prec such that,

when the ith part Prei
c holds, the code ec implements the ith abstract

event. Then, one establishes, for each i, a commutative diagram
analogous to the diagram in Fig. 2.2.

The argument that the kernel code of ED ensures data separation is
based on relating executions of the code to executions in the TLS. To
begin, we observe that a maps ED's initial state via a to an allowed initial
state in the TLS. To support the remainder of the argument, the Event
Code set Ec and the code-level map a are extended to cover the Other
Code. Most Event Code segments consist of a single program statement.
In contrast, Other Code contains many lengthy code segments which
simply manipulate local variables inside a function or procedure and do
not map to any abstract event. Such segments typically occur prior to an
Event Code segment. We model these Other Code segments at the
abstract level by a no-op ("do nothing") event implicitly included in the
TLS. It is possible to map the effect of a segment of the Other Code to a
no-op in the TLS because, unlike Event and Trusted Code, the Other
Code has no access to MAIs. Because every code segment in the Event

Formal analysis and design for security engineering

73

or Other Code is modeled either by an abstract TLS event with concrete
and abstract transitions related as in Fig. 2.2 or by a no-op in the TLS, it
follows that every execution of this part of the code corresponds to an
execution in the TLS.

Trusted Code in the ED kernel can be related to the TLS as follows:
First, it is established that no segment of the Trusted Code causes
insecure data flows. Some segments of the Trusted Code have been
verified, and the remaining segments have been certified externally to
cause no insecure information flows. The state change caused by each
Trusted Code segment is then shown to map to the result of either a no-
op in the TLS or some sequence of events in the TLS. In the overall
argument that an execution of concrete code always maps to a possible
execution in the TLS, each Trusted Code segment is treated as an
indivisible unit. In ED, this is possible because each Trusted Code
segment executes within a single partition and executions within a
partition are never interrupted.

Combining this reasoning with the additional assurance that a relates
concrete data and buffer memory areas to abstract ones and thus models
all information flows involving MAIs, it follows that all kernel behavior
relevant to data separation at the concrete level is modeled at the abstract
level. Thus, the Data Separation Property proven at the abstract level also
holds at the concrete level.

Uses and Proof Methods for Refinement

Although some details of how they are applied may vary,
commutative diagrams are widely used to describe the required
relationships between transitions at the concrete and abstract levels in a
refinement relation (sometimes referred to as an abstraction relation).

When model checking is used to verify systems, a typical approach is
to generate an abstract model automatically using data abstraction or data
type reduction in a way that guarantees that the original system is a
refinement of the model. Thus, any properties verified of the abstract
model that are preserved under refinement will also hold for the system.
In this approach, refinement is a given and need not be proved. For us, it
is not feasible to use model checking to produce an abstract model. Due
to the state explosion problem, model checking for verification has
mostly been applied to hardware systems. Although, to some extent,
methods such as abstraction refinement have made it more feasible to

Formal analysis and design for security engineering

74

apply model checking to software systems, model checking is better for
detecting software bugs than for verifying software.

The concept of refinement also arises in the context of proving an
implementation relation from a more concrete system model to a more
abstract one. For example, the decision procedures can be used, or PVS
to verify that concrete models implement specifications by proving that a
set of diagrams commute, where the diagram for each transition captures
the correlation between sequences of instructions at the concrete and
abstract levels can be used. In order to avoid use of commutative
diagrams the compositional model checking for proving implementation,
in particular by model checking individual transitions separately and then
proving that the results compose can be used. In the context of
hierarchical verification, a diagram that relates concrete states to abstract
states and concrete programs (or program fragments) to abstract
transitions in which the poststate is mathematically defined in terms of
the prestate can be used.

Fig. 2.2 shows required relationships, along with the commutative
diagram. We also make explicit that 1) at the state variable level, the
"state variables" mapped by the mapping function can be derived
variables or logical variables that, for example, capture history and 2)
postconditions are actually predicates on two states.

Applying Techniques to Other Security Properties

Two important classes of security properties are safety and liveness.
Any property p can be expressed as the intersection of a safety property
and a liveness property. Informally, a safety property states that nothing
"bad" happens during execution and a liveness property states that
something "good" happens during execution. A set of executions is called
a property if membership in the set is determined by each execution
alone, without reference to other executions in the set.

A security property p must be preserved under refinement. It is well
known that safety properties are preserved under refinement but that
liveness properties are not [12]. Hence, techniques can be used to
guarantee security properties that are safety properties. It is easy to show
that four of the security properties No-Exfiltration, Temporal Separation,
Separation of Control, and Kernel Integrity—are safety properties.
Therefore, all four properties are preserved by refinement. The fifth
property, No-Infiltration, is not a safety property because it is not a

Formal analysis and design for security engineering

75

property of executions but a property of sets of executions. However, it is
easily shown to be preserved under refinement.

Such approach may be applied to many applications that, like ED,
enforce access control. Applications that enforce access control restrict
the operations that subjects (for example, users) can perform on objects
(for example, data). As long as the access control policy can be
represented as a safety property, the approach applies. A second
important class of applications to which the approach applies are those
described by Schneider, which use Execution Monitoring (EM) to
enforce security. Examples of EM mechanisms are reference monitors,
firewalls, and other operating system and hardware-based enforcement
mechanisms described in the literature. Excluded from this class are
applications that use more information than would be available from
observing only the states of a single system execution.

Schneider shows that the security properties enforced by EM
mechanisms are safety properties.

Applying Method to Additional Kernel Properties

In ED's certification, the task is to develop a TLS of ED's kernel
code, to verify that the TLS satisfies data separation, and, finally, to
demonstrate conformance of the kernel code to the TLS. An important
aspect of the approach is that, if required, we can construct a refinement
of the TLS by adding new variables and events to the TLS to capture
some behavior of (that is, events in) the Other Code. If the security
properties that we wish to prove about this additional behavior are
preserved by refinement, then we can formally state and prove the new
security properties for the refinement of the TLS and show
correspondence between the related portion of the Other Code and the
new behavior. Because the proof method can be iterated through a series
of refinements, the proof of data separation remains valid under such a
refinement of the TLS.

Lessons learned. Software Design Decisions

Three software design decisions were critical in making code
verification feasible. One major decision was to use a separation kernel, a
single software module to mediate all memory accesses. A design that
distributed the checking of memory accesses would have made the task
of proving data separation much more difficult. A second critical

Formal analysis and design for security engineering

76

decision was to keep the software simple. For example, once initiated,
data processing in a partition was run to completion unless an exception
occurred. In addition, ED's services were limited to the essential ones:
The temptation to add new services late in the development was resisted.
The third critical decision was enforcing "least privilege." For example,
if a process only requires read access to a memory area, the kernel only
grants read, not read and write, access.

Top-Level Specification

One significant challenge was to understand the externally visible
security-relevant behavior of the separation kernel. Both scenarios and
the SCR (Software Cost Reduction) tools [26] were useful in extending
understanding of the kernel behavior. To begin, we formulated several
scenarios, that is, sequences of events, and specified the kernel response
to those events. After specifying a state machine model of the kernel in
SCR, we ran the scenarios through the SCR simulator. As expected,
formulating the scenarios and running them through the simulator
exposed gaps in the understanding. Both the scenarios and the questions
raised are valuable in eliciting details of the security-relevant kernel
behavior from ED's development team.

Once the kernel's required behavior was understood, approximately
2.5 weeks were needed to formulate the TLS and the data separation
property. The complete statement of the TLS, including the assumptions,
is only 15 pages long. Keeping the size of the TLS small was critical for
many reasons. It simplified communication with the other stakeholders,
changing the specification when the kernel behavior changed, translating
the specification into TAME, and proving that the TLS enforced data
separation.

During the certification process, the natural language representation
of the TLS enabled stakeholders with differing backgrounds and
objectives—for example, the project manager and the evaluators—to
communicate easily with the formal methods team about the kernel's
required behavior. Discussion among the various stakeholders helped
ensure that misunderstandings were avoided and issues were resolved
early in the certification process. This natural language representation of
the TLS for ED contrasts with the representations used in many other
formal specifications of secure systems, which are often expressed in
specialized languages such as ACL2. Moreover, any ambiguity inherent

Formal analysis and design for security engineering

77

in the natural language representation was removed by translating the
TLS into TAME since the state machine semantics underlying TAME is
expressed as a PVS theory. One component of the TLS in particular, the
access control matrix, facilitated communication between the formal
methods team and other stakeholders. Although the matrix was largely
redundant of other parts of the TLS, stakeholders could easily understand
the matrix and thus validate constraints on the access privileges of
processes invoked by each event. The matrix was also useful in
identifying the events and MAIs to be included in the TLS.

Mechanized Verification

TAME's specification and proof support significantly simplified the
verification effort and can require a total of about 3.5 weeks.
Approximately 1.5 weeks can be required to produce the final TAME
model of the TLS and to document the correspondence between the
TAME model and the TLS. Some of this time was required to choose
appropriate data structures for representing the state variables and the
parameters of actions in TAME. The higher order nature of PVS made it
feasible to handle the unspecified number of memory areas in the TLS by
representing the overall memory content in TAME as a function from a
set of memory areas to storable values and, in general, to produce a very
compact TAME specification (368 lines long). Once the data
representations is chosen, translating the TLS and the five subproperties
into TAME can require at about three days. Adjusting the TAME
specification to reflect later changes in the TLS can require only a few
hours. To illustrate the TAME representation.

About two weeks can be needed to formally verify that the TLS
enforces data separation. Most of this time can be spent formulating an
efficient proof approach and then developing a new TAME strategy to
implement the approach. The new PVS strategy, designed to simplify the
proof guidance in the presence of the data structures used in the TAME
specification, is used in the proofs of all subproperties and is
subsequently proven useful in other TAME applications. Once the
strategy is developed, the time required to develop the proof scripts
interactively in TAME can be one day. Adding and proving a new
subproperty suggested by an evaluator can require under one hour. The
proof script of each subproperty can be executed in two minutes or less.

Formal analysis and design for security engineering

78

Iterating the Refinement Method

Fig.2.3 illustrates the mappings, predicates, and relationships

between assertions connected with the proof of successive refinements
from an automaton at level c through an automaton at level b to an
automaton at level a. We wish to prove that if the analogs of conditions
1, 2, and 3 from Section 4.1 hold for the c-to-b and b-to-a relations, then
conditions 1, 2, and 3 hold fort he composed c-to-a relation in which
𝛼 ≜ 𝛼1 ∘ 𝛼2 and Φ ≜ Φ1 ∘ Φ2 . Let us use 𝑠𝑏 to denote 𝛼2 (𝑠𝑐), 𝑠𝑎 to
denote 𝛼1 (𝑠𝑏), and 𝑆𝑎, 𝑆𝑏′, and 𝑆𝑐 to denote the sets of states at levels a,
b, and c. Wefirstneed a lemma.

Fig. 2.3. Relationships in successive refinements

Lemma A.1 Let 𝛼: 𝑆𝑐 → 𝑆𝑎 and let 𝛷 be the map from predicates on
𝑆𝑎 to predicates on 𝑆𝑐 incluced by 𝛼, that is such that, for any predicate
𝑃𝑎 and any element 𝑠𝑐 ∈ 𝑆𝑐, 𝛷(𝑃𝑎)(𝑠𝑐) ≜ 𝑃𝑎(𝛼(𝑠𝑐)). If 𝑃𝑎 and 𝑄𝑎 are
predicates on 𝑆𝑎 such that 𝑃𝑎 ⇒ 𝑄𝑎, then 𝛷(𝑃𝑎) ⇒ 𝛷(𝑄𝑎).

Proof. Suppose that 𝑃𝑎 and 𝑄𝑎 are two predicates on 𝑆𝑎, 𝑓𝑜𝑟 which
𝑃𝑎 ⇒ 𝑄𝑎. This means that, ∀𝑠𝑎 ∈ 𝑆𝑎, 𝑃𝑎(𝑠𝑎) ⇒ 𝑄𝑎(𝑠𝑎). Let 𝑠𝑐 be any
element of 𝑆𝑐. Then,
Φ(𝑃𝑎)(𝑠𝑐) = 𝑃𝑎(𝛼(𝑠𝑐)) (by the definition of Φ)
 ⇒ 𝑄𝑎(𝛼(𝑠𝑐)) (since 𝑃𝑎 ⇒ 𝑄𝑎)

Formal analysis and design for security engineering

79

 = Φ(Qa)(sc) (by the definition of Φ) .
Next, we define the notion of an annotated transition.
Definition A.1. Let S be a set of states and let E ⊂ S × S be a set of

transitions on S. An annotated transition is a transition e ∈ E
accompanied by a one-state predicate Pree on S and a two-state

predicate Poste on S.
Now, we can state the theorem formally:
Theorem A.2. Let A,B and C be automata with state spaces 𝑆𝑏′ 𝑆𝑏′

and 𝑆𝑐 and sets of annotated transitions 𝐸𝑎′ 𝐸𝑏′ and 𝐸𝑐′ respenctively. Let
𝛼2: 𝑆𝑐 → 𝑆𝑏 and 𝐸𝑐 → 𝐸𝑏 and 𝛼1: 𝑆𝑏 → 𝑆𝑎 and 𝐸𝑏 → 𝐸𝑎 be refinement
mappings,that is, mappings that, together with their induced mappings
𝛷2 and 𝛷1 on predicates and the transition annotations, satisfy the
appropriate analogs of conditions 1,2 and 3. For convenience, we refer to
those conditions as conditions 1𝑏,𝑐, 2𝑏,𝑐 and 3𝑏,𝑐 and conditions 1𝑎,𝑏,
2𝑎,𝑏 and 3𝑎,𝑏. Then if 𝛼 ≜ 𝛼1 ∘ 𝛼2 and 𝛷 ≜ 𝛷2 ∘ 𝛷1, the mappings 𝛼
and 𝛷 satisfy conditions 1,2 and 3, and hence, 𝛼: 𝑆𝑐 → 𝑆𝑎, and 𝐸𝑏 → 𝐸𝑎
is a refinement mapping.

Proof. Suppose that the hypotheses of Theorem A.2 hold. Then, we
need to establish that conditions 1,2, and 3 hold. For condition 1, we can
argue as follows:

(i) 𝑃𝑟𝑒𝑒𝑐 =˃ Ф2 (𝑃𝑟𝑒𝑒𝑏) (by condition 1b,c)

(ii) 𝑃𝑟𝑒𝑒𝑏 =˃ Ф1(𝑃𝑟𝑒𝑒𝑎))(by condition 1a,b)

(iii) Ф2(𝑃𝑟𝑒𝑒𝑏) =˃ Ф2(Ф1(𝑃𝑟𝑒𝑒𝑎)) (by (ii) and Lemma A.1) and,

therefore,

(iv) 𝑃𝑟𝑒𝑒𝑐) => Ф2(Ф1 (𝑃𝑟𝑒𝑒𝑎)) (by (i) and (iii))

(v) 𝑃𝑟𝑒𝑒𝑐 => Ф(𝑃𝑟𝑒𝑒𝑎) (by the definition of Ф)

For condition 2, first note that the first part of condition 2, which
relates 𝑃𝑟𝑒𝑒𝑐 to 𝑃𝑜𝑠𝑡𝑒𝑐, follows from the first part of condition 2b,c. The
remainder of the argument, which relates 𝑃𝑜𝑠𝑡𝑒𝑐 to 𝑃𝑜𝑠𝑡𝑒𝑎, is totally
analogous to that for condition 1.

To prove condition 3, we note that if 𝑃𝑟𝑒𝑒𝑐 (sc) holds, then by
condition 3b,c, the lower square in Fig. 3 commutes. Furthermore, we
have

 Preec(sc)
=˃ Ф2 (𝑃𝑟𝑒𝑒𝑏)(sc) (by condition 1b,c)

Formal analysis and design for security engineering

80

≡ 𝑃𝑟𝑒𝑒𝑏 (sb) (by definition of Ф2, since sc = a2(sb))
And hence 𝑃𝑟𝑒𝑒𝑏 (sb) holds. By condition 3a,b, this implies that the

upper square commutes. Therefore, the diagram as a whole commutes
and we have

 eₐ ͦ α1 ͦ α2 = α1 ͦ α2 ͦ ec
By the definition of a, this means that
 eₐ ͦ α = α ͦ ec
And we are done.

TAME Representation of Separation

To provide some details of the TAME representation of ED, we show

how three of the five subproperties of the separation property verified for
ED, Temporal Separation, No-Exfiltration, and No-Infiltration, are
represented in TAME. For each subproperty, we first repeat its natural
language representation and then show and explain its TAME
representation.

B.1 Temporal Separation
Natural language version
(Temporal Separation) For all states s in S, for all i, 1 ≤ 𝑖 ≤ 𝑛, if the

partition id cs is 0, then the k data areas of partition i are clear, that is,
𝐷𝑖,𝑠
1 = 0,… , 𝐷𝑖,𝑠

𝑘 = 0.
TAME version
Inv_ClearPart(s:states):bool =
 (FORALL (i:PartIndex): (NONE? (PartId(s)) =>
 (FORALL (n:DataAreaIndex):
 Clear? (MemContent(DataArea(i,n),s)))));

lemma_ClearPart: LEMMA (FORALL (s:states):
 reachable(s) => Inv_ClearPart(s));

The TAME representation of the Temporal Separation property is the

state-invariant lemma lemma_ClearPart, which states that the invariant
Inv_ClearPart holds for every reachable state s. In the invariant
Inv_ClearPart, PartIndex and DataAreaIndex are the types of
partition indices and data area indices, defined simply to be nonempty,
uninterpreted types. Thus, there can be an arbitrary nonzero number of

Formal analysis and design for security engineering

81

partitions, each with the same but arbitrary nonzero number of data areas.
PartId(s) represents cs, the current partition id in the current state.
NONE?(PartId(s)) is true when cs is 0, that is, exactly when no partition
processing is taking place. MemContent is a function that maps a
memory area and a state to the memory content of that memory area in
that state. Finally, the predicate Clear? is true of the memory content of
a data area when that data area is clear.

B.2 No-Exfiltration
Natural language version
(No-Exfiltration) Suppose that states s and s' are in state set S, event e

is in H, memory area a is in M, and j is a partition, 1 ≤ 𝑗 ≤ 𝑛. Suppose
further that s'=T(e, s). If e is an event in 𝑃𝑗 ∪ 𝐸𝑗𝐼𝑛 ∪ 𝐸𝑗𝑂𝑢𝑡 𝑎𝑛𝑑 𝑎𝑠 ≠
𝑎𝑠′ , 𝑡ℎ𝑒𝑛 𝑎 𝑖𝑠 𝑖𝑛 𝐴𝑗

TAME version
No_Exfiltration: LEMMA
 (FORALL (E:actions, s:states, m:MemAreas, j:PartIndex):
 (enabled (E,s) & Isin(m,PartMemAreas(j)) &
 (NONE? (PartId(s)) OR
 (Part? (PartId(s)) & NOT(Id(PartId(s))=j))))
 => ((InBuff? (E) & InBuff_Index(E) =j) OR
 (OutBuff? (E) & OutBuff_Index(E)=j) OR
 MemContent(m,s)=MemContent (m,trans(E,s))));

The TAME version No_Exfiltration of the No-Exfiltration property

corresponds to the contrapositive of the natural language version. In the
TAME representation, the event e is represented by an action E. The state
s is represented by s and the state s' is represented by trans(E , s), that is,
the result of a transition due to action E in state s. For the current
partition id PartId(s) in state s, either NONE? holds, that is, no partition
processing is occurring, or Part? holds, in which case, partition
processing is occurring in partition id(PartId(s)). The assertion
enabled(E , s) means that the precondition of action E holds in state s.
When E is an internal action, this precondition ensures that E is an
internal action for Partition PartId(s). The condition
InBuff?(E)&InBuff _Index(E) - j is true when E fills the input buffer of
Partition j . The analogous condition with Out in place of In is true when

Formal analysis and design for security engineering

82

E empties the output buffer of Partition j . These parts of the conclusion
of property No_Exfiltration cover the cases when action E is an external
event for Partition j . Thus, property No_Exfiltration says that, if m is a
memory area in Partition j and E either is an external action or is an
internal action in some partition other than Partition j , then either E is an
external action for Partition j or E does not change the content of m.

B.3 No-Infiltration
Natural language version
(No-Infiltration) Suppose that states 𝑠1, 𝑠2, 𝑠1′ , and 𝑠2′ are in S, event

e is in H, and i is a partition, 1 ≤ 𝑖 ≤ 𝑛. Suppose further that 𝑠1′ =
𝑇(𝑒, 𝑠1) and 𝑠2′ = 𝑇(𝑒, 𝑠2). If, for all a in 𝐴𝑖 , 𝑎𝑠1 = 𝑎𝑠2, then, for all a in
𝐴𝑖 , 𝑎𝑠1′ = 𝑎𝑠2′ .

TAME version
 No_Infiltration: LEMMA
 (FORALL (E:actions, s1, s2:states, m:MemAreas, i:PartIndex):
 enabled(E,s1) & enabled(E,s2) &
 Part? (PartId(s1)) & Id(PartId(s1))=i &
 Part? (PartId(s2)) & Id(PartId(s2))=i &
 Isin(m, PartMemAreas (i)) &
 (FORALL (m1:MemAreas):Isin(m1,PartMemAreas(i))
 => MemContent (m1,s1)=MemContent (m1, s2))
 =>MemContent(m,trans(E,s1))=MemContent(m,trans(E,s2)));

The preceding explanation of the notation in lemma_ClearPart and

No_Exfiltration should make it clear that the TAME version
No_Infiltration of the No-Infiltration Property is equivalent to the natural
language version.

Tasks for laboratory work №2.
1. Each student choose different type of software.
2. Make the procedure of the code annotation with preconditions

and postconditions.
3. Partition the code into the concepts of Event, Trusted, and Other

Code. Finally.
4. Demonstrate the conformance of the Event Code and the code

preconditions and postconditions with the internal events,
preconditions, and postconditions of the TLS.

Formal analysis and design for security engineering

83

5. Prove, that the Trusted Code and the Other Code are benign.
6. use model checkers and theorem provers for verifying that a

formal specification satisfies a security property of interest.
7. Automatically generate test cases that check source code

annotations; automatically construct efficient provably correct
code from specifications.

Requirements to the report

The report should consists of:
- title sheet;
- the aim and the task of the laboratory work;
- partitioned code into the concepts of Event, Trusted, and Other

Code. Finally;
- demonstration of the conformance of the Event Code and the code

preconditions and postconditions with the internal events, preconditions,
and postconditions of the TLS;

- Prove, that the Trusted Code and the Other Code are benign;
- results of the verifying that a formal specification satisfies the

security property of interest by the usage of the model checkers;
- generated test cases and constructed efficient provably correct

code from specifications;
- conclusions.

Advancement questions

1. How to build a well-defined security property?
2. What we should do to build the minimal state machine model?
3. How we can prove that the security model satisfies the property

using a mechanical verifier?
4. What should we do to annotate the code with preconditions and

postconditions and partition it into Event, Trusted, and Other
Code?

5. How to demonstrate conformance of the Event Code and the
code preconditions and postconditions with the internal events
and preconditions and postconditions of the TLS?

6. What we should do to show that the Trusted Code and the Other
Code are benign?

Formal analysis and design for security engineering

84

7. How to develop tools for validating and constructing
preconditions and postconditions from the source code, including
the C code?

8. What we should do to develop tools for automatically generating
test cases that check C code annotations?

9. How to develop tools for showing conformance of annotated
code with a TLS, and automatically constructing efficient
provably correct code from specifications?

10. What does number of international organizations establish to
provide a single basis for evaluating the security of information
technology products?

11. What are the five steps of the code verification process?
12. What are the main goals of the Top-Level Specification?

Formal Methods for the Analysis of Security Protocols

85

2 FORMAL METHODS FOR THE ANALYSIS OF SECURITY
PROTOCOLS

2.1 Laboratory work №3. Using Horn Clauses for Analyzing
Security Protocols

Theaim and the task of the laboratory work
The aim of this laboratory work is to get acquainted with a method

for verifying security protocols based on an abstract representation of
protocols by Horn clauses.

Task of the work:
- use the protocol verifier ProVerif.
- define cryptographic primitives defined via rewrite rules or

equations.
- prove security properties, including authentication and process

equivalences.
- prove security properties of protocols for an unboundednumber

of sessions, in a fully automatic way.
Preparation for laboratory work
- to clarify the aims and objectives;
- to study theoretical material given in the description.

Theoretical material

Introduction

Security protocols can be verified by an approach based on Horn
clauses; the main goal of this approach is to prove security properties of
protocols in the Dolev-Yao model in a fully automatic way without
bounding the number of sessions or the message space of the protocol
[27]. In contrast to the case of a bounded number of sessions in which
decidability results could be obtained, the case of an unbounded
number of sessions is undecidable for a reasonable model of protocols
[28]. Possible solutions to this problem are relying on user interaction,
allowing non-termination, and performing sound approximations (in
which case the technique is incomplete: correct security properties
cannot always be proved). Theorem proving [29] and rely on user
interaction or on manual proofs. Typing generally relies on lightweight
user annotations and is incomplete. Strand spaces and rank functions

Formal Methods for the Analysis of Security Protocols

86

also provide techniques that can handle an unbounded number of
sessions at the cost of incompleteness.

Many methods rely on sound abstractions: they overestimate the
possibilities of attacks, most of the time by computing an
overapproximation of the attacker knowledge.

They make it possible to obtain fully automatic, but incomplete,
systems. The Horn clause approach is one such method. It was first
introduced by Weidenbach [30]. Let us consider a variant of this
method and extensions that are at the basis of the automatic protocol
verifier ProVerif.

In this method, messages are represented by terms; the fact
attacker() means that the attacker may have the message; Horn clauses
(i.e. logic programming rules) give implications between these facts.

An efficient resolution algorithm determines whether a fact is
derivable from the clauses, which can be used for proving security
properties. In particular, when attacker() is not derivable from the
clauses, the attacker cannot have , that is, is secret. This method is
incomplete since it ignores the number of repetitions of each action in
the protocol. (Horn clauses can be applied any number of times.) This
abstraction is key to avoid bounding the number of runs of the protocol.
It is sound, in the sense that if the verifier does not find a flaw in the
protocol, then there is no flaw. The verifier therefore provides real
security guarantees. In contrast, it may give a false attack against the
proto-col. However, false attacks are rare in practice, as experiments
demonstrate. Termination is not guaranteed in general, but it is
guaranteed on certain subclasses of protocols and can be obtained in all
cases by an additional approximation.

Without this additional approximation, even if it does not always
terminate and is in-complete, this method provides a good balance in
practice: it terminates in the vast majority of cases and is very efficient
and precise. It can handle a wide variety of cryptographic primitives
defined by rewrite rules or by equations, including shared-key and
public-key cryptography (encryption and signatures), hash functions,
and the Diffie-Hellman key agreement. It can prove various security
properties (secrecy, authentication, and process equivalences).

Other methods rely on abstractions:

Formal Methods for the Analysis of Security Protocols

87

- Bolignano [31] was a precursor of abstraction methods for
security protocols. He merges keys, nonces, so that only a finite set
remains and applies a decision procedure.

- Monniaux [32] introduced a verification method based on an
abstract representation of the attacker knowledge by tree automata. This
method was extended by Goubault-Larrecq [33]. Genet and Klay [34]
combine tree automata with rewriting. This method has lead to the
implementation of the TA4SP verifier (Tree-Automata-based

Automatic Approximations for the Analysis of Security Protocols) [35].
- The main drawback of this approach is that, in contrast to Horn

clauses, tree au-tomata cannot represent relational information on
messages: when a variable ap-pears several times in a message, one
forgets that it has the same value at all its occurrences, which limits the
precision of the analysis. The Horn clause method can be understood as
a generalization of the tree automata technique. (Tree automata can be
encoded into Horn clauses.)

- Control-flow analysis [36,37] computes the possible messages at
each program point. It is also non-relational, and merges nonces created
at the same program point in different sessions. These approximations
make it possible to obtain a complexity at most cubic in the size of the
protocol. It was first defined for secrecy for shared-key protocols, then
extended to message authenticity and public-key protocols [38], with a
polynomial complexity.

- Most protocol verifiers compute the knowledge of the attacker.
In contrast, Her-mès [39] computes the form of messages, for instance
encryption under certain keys, that guarantee the preservation of
secrecy. It handles shared-key and public-key encryption, but the
method also applies to signatures and hash functions.

- Backes et al. [40] prove secrecy and authentication by an
abstract-interpretation-based analysis. This analysis builds a causal
graph that captures the causality between events in the protocol. The
security properties are proved by traversing this graph. This analysis
always terminates but is incomplete. It assumes that messages are
typed, so that names (which represent random numbers) can be
distinguished from other messages.

Formal Methods for the Analysis of Security Protocols

88

M,N ::= Terms
x Variable
a[𝑀1, . . . , 𝑀𝑛] name
f (𝑀1, . . . 𝑀𝑛) function application

F ::= p(𝑀1, . . . , 𝑀𝑛) fact

R ::= 𝐹1∧ . . . ∧𝐹𝑛 ⇒𝐹 Horn clause
Figure 3.1. Syntax of protocol representation

One of the first verification methods for security protocols, the
Interrogator [41] is also related to the Horn clause approach: in this
system, written in Prolog, the reachability of the state after a sequence
of messages is represented by a predicate, and the program uses a
backward search in order to determine whether a state is reachable or
not. The main problem of this approach is non-termination, and it is
partly solved by relying on user interaction to guide the search. In
contrast, we provide a fully automatic approach by using a different
resolution strategy that provides termination in most cases.

The NRL protocol analyzer [42, 43] improves the technique of the
Interrogator by using narrowing on rewriting systems. It does not make
abstractions, so it is correct and complete but may not terminate.

Abstract Representation of Protocols by Horn Clauses

A protocol is represented by a set of Horn clauses; the syntax of
these clauses is given in Figure 1. In this figure, ranges over variables,
over names, over function symbols, and over predicate symbols. The
terms represent messages that are exchanged between participants of
the protocol. A variable can represent any term. Names represent
atomic values, such as keys and nonces (random numbers). Each
principal has the ability of creating new names: fresh names are created
at each run of the protocol. Here, the created names are considered as
functions of the messages previously received by the principal that
creates the name. Thus, names are distinguished only when the pre-
ceding messages are different. As noticed by Martín Abadi (personal
communication), this approximation is in fact similar to the
approximation done in some type systems (such as [44]): the type of the
new name depends on the types in the environment. It is enough to

Formal Methods for the Analysis of Security Protocols

89

handle many protocols, and can be enriched by adding other parameters
to the name. In particular, by adding as parameter a session identifier
that takes a different value in each run of the protocol, one can
distinguish all names. This is necessary for proving authentication but
not for secrecy, so we omit session identifiers here for simplicity. We
refer the reader to [45, 46] for additional information. The function
applications 𝑓(𝑀1, … ,𝑀𝑛) build terms: examples of functions are
encryption and hash functions. A fact 𝐹 = 𝑝(𝑀1, … ,𝑀𝑛) expresses a
property of the messages 𝑀1, … ,𝑀𝑛 . Several predicates can be used
but, for a first example, we are going to use a single predicate attacker,
such that the fact attacker() means “the attacker may have the message
M”. A clause R = 𝐹1 ∧ . . . ∧𝐹𝑛 ⇒𝐹 means that, if all facts 𝐹1, … , 𝐹𝑛, are
true, then 𝐹 is also true. A clause with no hypothesis ⇒𝐹 is written
simply 𝐹.

We use as a running example the naive handshake protocol:
Message 1 𝐴 → 𝐵 ∶ {|[𝑘]𝑠𝑘𝐴|}𝑝𝑘𝐵

𝑎
Message 1 𝐵 → 𝐴 ∶ {|𝑠|}𝑘𝑠
We denote by 𝑠𝑘𝐴 the secret key of A, 𝑝𝑘𝐴 his public key, 𝑠𝑘𝐴 the

secret key of B, 𝑝𝑘𝐵 his public key.

Representation of Primitives

Cryptographic primitives are represented by functions. For instance,
we represent the public-key encryption by a function pencrypt(m , pk),
which takes two arguments: the message to encrypt and the public key
pk. There is a function pk that builds the public key from the secret key.
(We could also have two functions pk and sk to build respectively the
public and secret keys from a secret.) The secret key is represented by a
name that has no arguments (that is, there exists only one copy of this
name) 𝑠𝑘𝐴 [] for A and 𝑠𝑘𝐵 [] for B. Then 𝑝𝑘𝐴 = pk(𝑠𝑘𝐴 []) and 𝑝𝑘𝐵
= pk(𝑠𝑘𝐵 []).

More generally, we consider two kinds of functions: constructors
and destructors. The constructors are the functions that explicitly
appear in the terms that represent messages. For instance, pencrypt and
pk are constructors. Destructors manipulate terms. A destructor g is
defined by a set def(g) of rewrite rules of the form g(𝑀1, . . . , 𝑀𝑛) →
where 𝑀1, . . . , 𝑀𝑛, are terms that contain only variables and
constructors and the variables of M all occur in 𝑀1, . . . , 𝑀𝑛. For

Formal Methods for the Analysis of Security Protocols

90

instance, the decryption pdecrypt is a destructor, defined by
pdecrypt(pencrypt(m , pk(sk)), sk) → m. This rewrite rule mod-els that,
by decrypting a ciphertext with the corresponding secret key, one
obtains the cleartext. Other functions are defined similarly:

- For signatures, we use a constructor sign and write sign(m, sk)
for the message m signed under the secret key sk. A destructor getmess
defined by getmess(sign(m, sk)) → m returns the message without its
signature, and checksign(sign(m, sk), pk(sk)) → m returns the
message only if the signature is valid.

- The shared-key encryption is a constructor sencrypt and the
decryption is a destructor sdecrypt, defined by sdecrypt(sencrypt(m, k
), k) → m.

- A one-way hash function is represented by a constructor h (and
no destructor).

- Tuples of arity n are represented by a constructor (_, . . . , _) and
n destructors 𝑖th𝑛 defined by 𝑖th𝑛 ((𝑥1, . . . , 𝑥𝑛)) →𝑥𝑖, i ∈ {1, . . . , n
}. Tuples can be used to represent various data structures in protocols.

Rewrite rules offer a flexible method for defining many
cryptographic primitives. It can be further extended by using equations.

Representation of the Abilities of the Attacker

We assume that the protocol is executed in the presence of an
attacker that can intercept all messages, compute new messages from
the messages it has received, and send any message it can build,
following the so-called Dolev-Yao model [47]. We first present the
encoding of the computation abilities of the attacker.

During its computations, the attacker can apply all constructors and
destructors. If f is a constructor of arity n, this leads to the clause:

attacker(𝑥1) ∧ . . . ∧ attacker(𝑥𝑛) ⇒ attacker(f (𝑥1, . . . , 𝑥𝑛)).
If g is a destructor, for each rewrite rule g(𝑀1, . . . , 𝑀𝑛) → M in

def(g), we have the clause:
attacker(𝑀1) ∧ . . . ∧ attacker(𝑀𝑛) ⇒ attacker(M).
The destructors never appear in the clauses, they are coded by

pattern-matching on their parameters (here 𝑀1, . . . , 𝑀𝑛) in the
hypothesis of the clause and generating their result in the conclusion. In
the particular case of public-key encryption, this yields:

attacker(m) ∧ attacker(pk) ⇒ attacker(pencrypt(m, pk)),
attacker(sk) ⇒ attacker(pk(sk)),

Formal Methods for the Analysis of Security Protocols

91

attacker(pencrypt(m,pk(sk)))∧attacker(sk)⇒attacker(m), (1)
where the first two clauses correspond to the constructors pencrypt

and pk, and the last clause corresponds to the destructor pdecrypt.
When the attacker has an encrypted message pencrypt(m, pk) and the
decryption key sk, then it also has the cleartext m. (We assume that the
cryptography is perfect, hence the attacker can obtain the cleartext from
the encrypted message only if it has the key.)

Clauses for signatures (sign, getmess, checksign) and for shared-
key encryption (sencrypt, sdecrypt) are given in Figure 3.2.

The clauses above describe the computation abilities of the attacker.
Moreover, the attacker initially has the public keys of the protocol
participants. Therefore, we add the clauses attacker(pk(𝑠𝑘𝐴 [])) and
attacker(pk(𝑠𝑘𝐵 [])). We also give a name to the attacker, that will
represent all names it can generate: attacker(a[]). In particular, a[] can
represent the secret key of any dishonest participant, his public key
being pk(a[]), which the attacker can compute by the clause for
constructor pk.

Representation of the Protocol Itself

Now, we describe how the protocol itself is represented. We
consider that and are willing to talk to any principal, A, B but also
malicious principals that are represented by the attacker. Therefore, the
first message sent by A can be pencrypt(sign(k , 𝑠𝑘𝐴 []), pk(x)) for any
x. We leave to the attacker the task of start-ing the protocol with the
principal it wants, that is, the attacker will send a preliminary message
to , mentioning the public key of the principal with which should talk.
This principal can be , or another principal represented by the attacker.
Hence, if the attacker has some key pk(x), it can send pk(x) to A; A
replies with his first message, which the attacker can intercept, so the
attacker obtains pencrypt(sign(k, (𝑠𝑘𝐴 []), pk(x)). Therefore, we have a
clause of the form

attacker(pk(x)) ⇒ attacker(pencrypt(sign(k, (𝑠𝑘𝐴 []), pk(x))).
Moreover, a new key k is created each time the protocol is run.

Hence, if two different keys pk(x) are received by A, the generated
keys k are certainly different: k depends on pk(x). The clause becomes:

attacker(pk(x)) ⇒ attacker(pencrypt(sign(k[pk(x)], 𝑠𝑘𝐴[]), pk(x))).
(2)

Formal Methods for the Analysis of Security Protocols

92

When B receives a message, he decrypts it with his secret key 𝑠𝑘𝐵,
so B pects a message of the form pencrypt (x', pk(𝑠𝑘𝐵 []). Next, B
tests whether A signed x', that is, B evaluates checksign(x', pk 𝑠𝑘𝐴),
and this succeeds only when x' sign(y, 𝑠𝑘𝐴 []). If so, he assumes that
the key y is only known by A, and sends a secret s (a constant that the
attacker does not have a priori) encrypted under y. We assume t that the
attacker relays the message coming from A, and intercepts the message
sent by . Hence the clause:

attacker(pencrypt(sign(y,𝑠𝑘𝐴[]), pk(𝑠𝑘𝐵 []))) ⇒
attacker(sencrypt(s,y)).

Remark 3.1 With these clauses, cannot play the role of B and vice-
versa. In order to model a situation in which all principals play both
roles, we can replace all occurrences of 𝑠𝑘𝐵 [] with 𝑠𝑘𝐴[] in the
clauses above. Then A plays both roles, and is the only honest
principal.

More generally, a protocol that contains n messages is encoded by n
sets of clauses. If a principal X sends the ith message, the ith set of
clauses contains clauses that have as hypotheses the patterns of the
messages previously received by X in the protocol, and as conclusion
the pattern of the ith message. There may be several possible patterns
for the previous messages as well as for the sent message, in particular
when the principal X uses a function defined by several rewrite rules,
such as the function exp. In this case, a clause must be generated for
each combination of possible patterns. More-over, notice that the
hypotheses of the clauses describe all messages previously received,
not only the last one. This is important since in some protocols the fifth
message for instance can contain elements received in the first message.
The hypotheses summarize the history of the exchanged messages.

Formal Methods for the Analysis of Security Protocols

93

Computation abilities of the attacker:
For each constructor f of arity n:
attacker(𝑥1)∧ . . . ∧attacker(𝑥𝑛)⇒attacker(f(𝑥1, . . . , 𝑥𝑛))
For each destructor g, for each rewrite rule g(𝑀1, . . . ,𝑀𝑛) → M in

def(g):
that is attacker(𝑀1) ∧ . . . ∧ attacker(𝑀𝑛) ⇒ attacker(M)
pencrypt attacker(m) ∧ attacker(pk) ⇒ attacker(pencrypt(m, pk))
pk attacker(sk) ⇒ attacker(pk(sk))
 pdecrypt attacker(pencrypt(m, pk(sk))) ∧ attacker(sk)

⇒attacker(m)
sign attacker(m) ∧ attacker(sk) ⇒ attacker(sign(m, sk))
getmess attacker(sign(m, sk)) ⇒ attacker(m)
checksign attacker(sign(m, sk)) ∧ attacker(pk(sk)) ⇒ attacker(m)
sencrypt attacker(m) ∧ attacker(k) ⇒ attacker(sencrypt(m, k))
sdecrypt attacker(sencrypt(m, k)) ∧ attacker(k) ⇒ attacker(m)
Name generation:
attacker(a[])
Initial knowledge: attacker(pk(𝑠𝑘𝐴 [])), attacker(pk(𝑠𝑘𝐵[]))
The protocol:
First message: attacker(pk(x))
Second message: ⇒
attacker(pencrypt(sign(k[pk(x)], 𝑠𝑘𝐴[]), pk(x)))
 attacker(pencrypt(sign(y, 𝑠𝑘𝐴[]), pk(𝑠𝑘𝐵[])))
 ⇒ attacker(sencrypt(s,y))

Figure 3.2.Representation of the protocol

Remark 3.2 When the protocol makes some communications on
private channels, on which the attacker cannot a priori listen or send
messages, a second predicate can be used: message(C,M) meaning “the
message M can appear on channel C”. In this case, if the attacker
manages to get the name of the channel C, it will be able to listen and
send messages on this channel. Thus, two new clauses have to be added
to describe the behavior of the attacker. The attacker can listen on all
channels it has: message(x,y) ∧attacker(x) ⇒ attacker(y). It can send all
messages it has on all channels it has: attacker(x) ∧ attacker(y) ⇒
message(x,y).

Formal Methods for the Analysis of Security Protocols

94

Summary

To sum up, a protocol can be represented by three sets of Horn
clauses, as detailed in Figure 3.2 for the protocol:

- Clauses representing the computation abilities of the attacker:
constructors, destructors, and name generation.

- Facts corresponding to the initial knowledge of the attacker. In
general, there are facts giving the public keys of the participants and/or
their names to the attacker.

- Clauses representing the messages of the protocol itself. There is
one set of clauses for each message in the protocol. In the set
corresponding to the ith message, sent by principal , the clauses are of
the form attacker(𝑀𝑗1) ∧ . . . ∧ attacker(𝑀𝑗𝑛) ⇒ attacker(𝑀𝑖) where
𝑀𝑗1, … 𝑀𝑗𝑛 , are the patterns of the messages received by X before
sending the ith message, and 𝑀𝑖 is the pattern of the ith message.

Approximations

Specifically, the number of repetitions of each action is ignored,
since Horn clauses can be applied any number of times. So a step of the
protocol can be completed several times, as long as the previous steps
have been completed at least once between the same principals (even
when future steps have already been completed). For instance, consider
the following protocol (communicated by Véronique Cortier)

First step: A sends {|〈𝑁1, 𝑀〉|}𝑘𝑠 {|〈𝑁2,𝑀〉|}𝑘𝑠
Second step:
 If receives {|〈𝑥,𝑀〉|}𝑘𝑠 , he replies with x
Third step: If receives 𝑁1, 𝑁2 he replies with s
where 𝑁1, 𝑁2, and are nonces. In an exact model, never sends s,

since {|〈𝑁1, 𝑀〉|}𝑘𝑠 or {|〈𝑁2,𝑀〉|}𝑘𝑠 can be decrypted, but not both. In
the Horn clause model, even though the first step is executed once, the
second step may be executed twice for the same (that is, the
corresponding clause can be applied twice), so that both
{|〈𝑁1,𝑀〉|}𝑘

𝑠 and {|〈𝑁2,𝑀〉|}𝑘𝑠 can be decrypted, and may send s. We
have a false attack against the secrecy of s.

However, the important point is that the approximationsare sound:
if an attack exists in a more precise model, such as the applied pi
calculus [48] or multiset rewriting [49]. This is shown for the applied pi

Formal Methods for the Analysis of Security Protocols

95

calculus in [50] and for multiset rewriting in [30]. In particular, it has
shown formally that the only approximation with respect to the multiset
rewriting model is that the number of repetitions of actions is ignored.
Performing approximations enables us to build a much more efficient
verifier, which will be able to handle larger and more complex
protocols. Another advantage is that the verifier does not have to limit
the number of runs of the protocol. The price to pay is that false attacks
may be found by the verifier: sequences of clause applications that do
not correspond to a protocol run, as illustrated above. False attacks
appear in particular for protocols with temporary secrets: when some
value first needs to be kept secret and is revealed later in the protocol,
the Horn clause model considers that this value can be reused in the
beginning of the protocol, thus breaking the protocol. When a false
attack is found, we cannot know whether the protocol is secure or not: a
real attack may also exist. A more precise analysis is required in this
case. Fortunately, the representation is precise enough so that false
attacks are rare.

Secrecy Criterion

Our goal is to determine secrecy properties: for instance, can the
attacker get the secret s? That is, can the fact attacker(s) be derived
from the clauses? If attacker(s) can be derived, the sequence of clauses
applied to derive attacker(s) will lead to the description of an attack.

The notion of secrecy is that a term M is secret if the attacker
cannot get it by listening and sending messages, and performing
computations. This notion of secrecy is weaker than non-interference,
but it is adequate to deal with the secrecy of fresh names. Non-
interferenceis better at excluding implicit information flows or flows of
parts of compound values.

In example, attacker(s) is derivable from the clauses. The derivation
is as follows. The attacker generates a fresh name a[] (considered as a
secret key), it computes pk(a[]) by the clause for pk, obtains
pencrypt(sign(k[pk(a[])], 𝑠𝑘𝐴[]), pk(a[])) by the clause for the first
message. It decrypts this message using the clause for pdecrypt and its
knowledge of a[], thus obtaining sign(k[pk(a[])], 𝑠𝑘𝐴[]). It reencrypts
the sig-nature under pk(𝑠𝑘𝐵 []) by the clause for pencrypt (using its
initial knowledge of pk(𝑠𝑘𝐵 [])), thus obtaining pencrypt(sign(k[pk(a[
])], 𝑠𝑘𝐴[]), pk(𝑠𝑘𝐵[])). By the clause for the second message, it obtains

Formal Methods for the Analysis of Security Protocols

96

sencrypt(s, k[pk(a[])]). On the other hand, from sign(k[pk(a[])], 𝑠𝑘𝐴[
]), it obtains k[pk(a[])] by the clause for getmess, so it can de-crypt
sencrypt(s, k[pk(a[])]) by the clause for sdecrypt, thus obtaining s. In
other words, the attacker starts a session between A and a dishonest
participant of secret key a[]. It gets the first message pencrypt(sign(k,
𝑠𝑘𝐴 []), pk(a[])), decrypts it, reencrypts it under pk(𝑠𝑘𝐵 []), and sends
it to B. For B, this message looks like the first message of a ses-sion
between A and B, so B replies with sencrypt(s,k), which the attacker
can decrypt since it obtains from the first message. Hence, the obtained
derivation corresponds to the known attack against this protocol. In
contrast, if we fix the protocol by adding the public key of B in the first
message {|[〈𝑝𝑘𝐵, 𝑘〉]𝑠𝑘𝐴|}𝑝𝑘𝐵

𝑎 , attacker(s) is not derivable from the
clauses, so the fixed protocol preserves the secrecy of s.

Next, we formally define when a given fact can be derived from a
given set of clauses. Technically, the hypotheses 𝐹1, . . . , 𝐹𝑛 of a clause
are considered as a multiset. This means that the order of the
hypotheses is irrelevant, but the number of times a hypothesis is
repeated is important. (This is not related to multiset rewriting models
of protocols: the semantics of a clause does not depend on the number
of repetitions of its hypotheses, but considering multisets is necessary
in the proof of the resolution algorithm.) We use R for clauses (logic
programming rules),H for hypothesis, and C for conclusion.

Definition 3.1 (Subsumption) We say that 𝑯𝟏 ⇒𝑪𝟏 subsumes
𝑯𝟐⇒𝑪𝟐, and we write (𝑯𝟏 ⇒𝑪𝟏) ⊒ (𝑯𝟐⇒𝑪𝟐), if and only if there
exists a substitution such that 𝝈𝑪𝟏= 𝑪𝟐 and 𝑯𝟏⊆𝑯𝟐 (multiset
inclusion).

We write 𝑹𝟏 ⊒ 𝑹𝟐 when 𝑹𝟐 can be obtained by adding hypotheses
to a particular instance of 𝑹𝟏 . In this case, all facts that can be derived
by 𝑹𝟐 can also be derived by 𝑹𝟐 .

A derivation is defined as follows, as illustrated in Figure 3.3.
Definition 3.2 (Derivability) Let F be a closed fact, that is, a fact

without variable. Let R be a set of clauses. F is derivable from R if and
only if there exists a derivation of F from R, that is, a finite tree defined
as follows:

- Its nodes (except the root) are labeled by clauses R ∈R;
- Its edges are labeled by closed facts;

Formal Methods for the Analysis of Security Protocols

97

- If the tree contains a node labeled by R with one incoming edge
labeled by 𝐹0 and n outgoing edges labeled by 𝐹1, . . . ,𝐹𝑛, then R
⊒ 𝐹1∧ . . . ∧𝐹𝑛 ⇒V 𝐹0 .

- The root has one outgoing edge, labeled by F. The unique son of
the root is named the subroot.

Figure 3.3. Derivation of F

In a derivation, if there is a node labeled by R with one incoming
edge labeled by 𝐹0 and n outgoing edges labeled by 𝐹1, . . . , 𝐹𝑛 , then
𝐹0 can be derived from 𝐹1, . . . 𝐹𝑛, by the clause R. Therefore, there
exists a derivation of F from R if and only if F can be derived from
clauses in R (in classical logic).

Resolution Algorithm

The representation is a set of Horn clauses, and our goal is to
determine whether a given fact can be derived from these clauses or
not. This is exactly the problem solved by usual Prolog systems.
However, we cannot use such systems here, because they would not
terminate. For instance, the clause:

attacker(pencrypt(m, pk(sk))) ∧ attacker(sk) ⇒ attacker(m)
leads to considering more and more complex terms, with an

unbounded number of encryptions. We could of course limit arbitrarily

Formal Methods for the Analysis of Security Protocols

98

the depth of terms to solve the problem, but we can do much better than
that.

As detailed below, the main idea is to combine pairs of clauses by
resolution, and to guide this resolution process by a selection function:
our resolution algorithm is resolution with free selection [52]. This
algorithm is similar to ordered resolution with selection but without the
ordering constraints.

Notice that, since a term is secret when a fact is not derivable from
the clauses, soundness in terms of security (if the verifier claims that
there is no attack, then there is no attack) corresponds to the
completeness of the resolution algorithm in terms of logic programming
(if the algorithm claims that a fact is not derivable, then it is not). The
resolution algorithm that we use must therefore be complete.

The Basic Algorithm

Let us first define resolution: when the conclusion of a clause R
unifies with a hypothesis of another (or the same) clause R ′, resolution
infers a new clause that corresponds to applying R and R ′ one after the
other. Formally, resolution is defined as follows:

Definition 3.3 Let R and R ′ be two clauses, R = H ⇒ C, and R′ =
H′ ⇒ C′. Assume that there exists 𝐹0 ∈ H′ such that C and 𝐹0 are
unifiable and 𝜎 is the most general unifier of C and 𝐹0. In this case, we
define R ∘f0

 R '= 𝜎 (H∪(H′ ∖{𝐹0})) ⇒ 𝜎𝐶′. The clause R ∘f0
 R ' is the

result of resolving R' with R upon 𝐹0.
For example, if R is the clause (2), R' is the clause (1), and the fact

𝐹0 is 𝐹0 = attacker(pencrypt(m, pk(sk))), then R ∘f0

R ' is

attacker(pk(x)) ∧ attacker(x) ⇒ attacker(sign(k[pk(x)], 𝑠𝑘 𝐴 []))
with the substitution 𝜎 = {sk ↦ x, m ↦ sign(k[pk(x)], 𝑠𝑘 𝐴[])}.
We guide the resolution by a selection function:
Definition 3.4 A selection function sel is a function from clauses to

sets of facts, such that sel(H ⇒ C) ⊆ H. If F ∈ sel(R), we say that F is
selected in R. If sel() = ∅, we say that no hypothesis is selected in R, or
that the conclusion R of is selected.

The resolution algorithm is correct (sound and complete) with any
selection function, as we show below. However, the choice of the
selection function can change dramatically the behavior of the
algorithm. The essential idea of the algorithm is to combine clauses by

Formal Methods for the Analysis of Security Protocols

99

resolution only when the facts unified in the resolution are selected. We
will therefore choose the selection function to reduce the number of
possible unifications between se-lected facts. Having several selected
facts slows down the algorithm, because it has more choices of
resolutions to perform, therefore we will select at most one fact in each
clause. In the case of protocols, facts of the form attacker(x), with x
variable, can be unified will all facts of the form attacker(M).
Therefore, we should avoid selecting them. So a basic selection
function is a function sel0 that satisfies the constraint

The resolution algorithm works in two phases, described in Figure

3.4. The first phase transforms the initial set of clauses into a new one
that derives the same facts. The second phase uses a depth-first search
to determine whether a fact can be derived or not from the clauses.

The first phase, saturate(𝑅0), contains 3 steps.
- The first step inserts in R the initial clauses representing the

protocol and the attacker (clauses that are in 𝑅0), after elimination of
subsumed clauses by elim: if R' subsumes R, and R and R' are in R,
then R is removed by elim(R).

- The second step is a fixpoint iteration that adds clauses created
by resolution. The resolution of clauses R and R' is added only if no
hypothesis is selected in R and the hypothesis 𝐹0 of R' that we unify is
selected. When a clause is created by resolution, it is added to the set of
clauses R. Subsumed clauses are eliminated from R.

- At last, the third step returns the set of clauses of R with no
selected hypothesis.

Basically, saturate preserves derivability (it is both sound and
complete):

First phase: saturation saturate(𝑅0) =
R ← ∅.
For each R ∈𝑅0, R ← elim({R} ∪R).
Repeat until a fixpoint is reached
for each R ∈R such that sel(R) = ∅,
for each R' ∈R, for each 𝐹0 ∈ sel(R') such that R ∘f0

R ' is defined,

Formal Methods for the Analysis of Security Protocols

100

R ← elim({𝑅 ∘ 𝑓0 𝑅 ′ } ∪R).
Return {R ∈ R ∣ sel(R) = ∅ }.
Second phase: backward depth-first search

Figure 3.4. Resolution algorithm

Lemma 3.1 (Correctness of saturate) Let F be a closed fact. F is
derivable from 𝑅0 if and only if it is derivable from saturate(𝑅0).

This result is proved by transforming a derivation of F from 𝑅0 into
a derivation of F from saturate(𝑅0). Basically, when the derivation
contains a clause R' with sel(R') ≠ ∅, we replace in this derivation two
clauses R, with sel(R) ≠ ∅, and R' that have been combined by
resolution during the execution of saturate with a single clause 𝑅 ∘
𝑓0 𝑅 ′. This replacement decreases the number of clauses in the
derivation, so it terminates, and, upon termination, all clauses of the
obtained derivation satisfy 𝑠𝑒𝑙(𝑅′) = ∅ so they are in saturate(𝑅0).

Usually, resolution with selection is used for proofs by refutation.
That is, the nega-tion of the goal is added to the clauses, under the form
of a clause without conclusion: F ⇒. The goal F is derivable if and only
if the empty clause “⇒” can be derived. Here, we would like to avoid
repeating the whole resolution process for each goal, since in general
we prove the secrecy of several values for the same protocol. For non-
closed goals, we also want to be able to know which instances of the
goal can be derived. That is why we prove that the clauses in
saturate(𝑅0) derive the same facts as the clauses in 𝑅0. The set of
clauses saturate(𝑅0) can then be used to query several goals, using the
second phase of the algorithm described next.

The second phase searches the facts that can be derived from 𝑅1 =
saturate(𝑅0). This is simply a backward depth-first search. The call
derivable(F, 𝑅1) returns a set of clauses R = H ⇒C with no selected
hypothesis, such that R can be obtained by resolution from 𝑅1, C is an
instance of F, and all instances of F derivable from 𝑅1 can be derived

Formal Methods for the Analysis of Security Protocols

101

by using as last clause a clause of derivable(F, 𝑅1). (Formally, if F' is
an instance of F derivable from 𝑅1, then there exist a clause H ⇒C∈
derivable(F, 𝑅1) and a substitution 𝜎 such that F' = 𝜎𝐶 and 𝜎𝐻 is
derivable from 𝑅1.)

The search itself is performed by deriv(R, R, 𝑅1). The function
deriv starts with R = F ⇒ F and transforms the hypothesis of R by using
a clause R' of 𝑅1 to derive an element 𝐹0 of the hypothesis of R. So R
is replaced with 𝑅 ∘ 𝑓0 𝑅 ′ (third case of the definition of deriv). The
fact 𝐹0 is chosen using the selection function sel. (Hence deriv derives
the hypothesis of R using a backward depth-first search. At each step,
the clause R can be obtained by resolution from clauses of 𝑅1, and R
concludes an instance of F.) The set R is the set of clauses that we have
already seen during the search. Initially, R is empty, and the clause R is
added to R in the third case of the definition of deriv.

The transformation of R described above is repeated until one of the
following two conditions is satisfied:

- R is subsumed by a clause in R: we are in a cycle; we are looking
for instances of facts that we have already looked for (first case of the
definition of deriv);

- sel(R) is empty: we have obtained a suitable clause R and we
return it (second case of the definition of deriv).

Intuitively, the correctness of derivable expresses that if F', instance
of F, is derivable, then F' is derivable from 𝑅1 by a derivation in which
the clause that concludes F' is in derivable(F, 𝑅1).

Lemma 3.2 (Correctness of derivable) Let F' be a closed instance
of F. F' is derivable from 𝑅1. if and only if there exist a clause H ⇒C in
derivable(F, 𝑅1) and a substitution 𝜎 such that 𝜎𝐶 = 𝐹′ and all
elements of 𝜎 𝐻 are derivable from 𝑅1.

Basically, this result is proved by transforming a derivation of F'
from 𝑅1 into a derivation of F' whose last clause (the one that concludes
F') is H ⇒C and whose other clauses are still in 𝑅1. The transformation
relies on the replacement of clauses combined by resolution during the
execution of derivable.

It is important to apply saturate before derivable, so that all clauses
in 𝑅1 have no selected hypothesis. Then the conclusion of these clauses
is in general not attacker(x) (with the optimizations and a selection

Formal Methods for the Analysis of Security Protocols

102

function that satisfies (3), it is never attacker(x)), so that we avoid
unifying with attacker(x).

The following theorem gives the correctness of the whole
algorithm. It shows that we can use algorithm to determine whether a
fact is derivable or not from the initial clauses. The first part simply
combines Lemmas 1 and 2. The second part mentions two easy and
important particular cases.

Theorem 3.1 (Correctness) Let F' be a closed instance of F. F' is
derivable from 𝑅0 if and only if there exist a clause H ⇒C in
derivable(F, saturate(𝑅0)) and a substitution 𝜎 such that 𝜎 C=F' and all
elements of 𝜎𝐻 are derivable from saturate(𝑅0).

In particular, if derivable(F, saturate(𝑅0)) ≠ ∅, then no instance of
F is derivable from saturate(𝑅0). If the selection function satisfies (3)
and F is closed, then F is derivable from 𝑅0 if and only if derivable(F,
saturate(𝑅0))≠ ∅.

Proof:
The first part of the theorem is obvious from Lemmas 3.1 and 3.2.

The first particular case is also an obvious consequence. For the second
particular case, if F is derivable from 𝑅0, then derivable(F,
saturate(𝑅0)) ≠ ∅ by the first particular case. For the converse, suppose
that derivable(F, saturate(𝑅0)) ≠ ∅. Then derivable(F, saturate(𝑅0))
contains a clause H ⇒ C. By definition of derivable, C is an instance of
F, so C = F , and sel(H ⇒C) ≠ ∅, so all elements of are of the form
attacker(𝑥𝑖) for some variable 𝑥𝑖. The attacker has at least one term M,
for instance a[], so attacker(𝜎𝑥𝑖) is derivable from 𝑅0, where 𝜎𝑥𝑖 = M.
Hence all elements of 𝜎 𝐻 are derivable from 𝑅0, so from saturate(𝑅0),
and 𝜎𝐶 = 𝐹. Therefore, F is derivable from 𝑅0.

Formal Methods for the Analysis of Security Protocols

103

Figure 3.5. Merging of nodes of Lemma 3.3

Proofs

Let us consider the proofs of Lemmas 3.1 and 3.2. We first need to
prove a few preliminary lemmas. The first one shows that two nodes in
a derivation can be replaced by one when combining their clauses by
resolution.

Lemma 3.3 Consider a derivation containing a node η' , labeled R'.
Let 𝐹0 be a hypothesis of R' . Then there exists a son η of η' , labeled R,
such that the edge η' →η is labeled

by an instance of 𝐹0, 𝑅 0𝐹0R' is defined, and one obtains a
derivation of the same fact by replacing the nodes η and η' with a node
η'' labeled R''= 𝑅 0𝐹0R'.

Proof:
This proof is illustrated in Figure 3.5. Let R' = H' ⇒ C', 𝐻1′ be the

multiset of the labels of the outgoing edges of η', and 𝐶1′ the label of its
incoming edge. We have R' ⊒ (𝐻1′ ⇒ 𝐶1′)

so there exists a substitution 𝜎 such that 𝜎𝐻′⊆𝐻1′ and 𝜎𝐶′ = 𝐶1′.
Since 𝐹0 ∈ 𝐻′, 𝜎𝐹0 ∈ 𝐻1′ , so there is an outgoing edge of η' labeled
𝜎𝐹0. Let η be the node at the end of this edge, let R = H ⇒ C be the
label of η. We rename the variables of R so that they are distinct from
the variables of R' . Let 𝐻1 be the multiset of the labels of the outgoing
edges of η. So R⊒ (𝐻1⇒𝜎𝐹0). By the above choice of distinct variables,
we can then extend 𝜎 so that 𝜎H ⊆𝐻1 and = 𝐶 = 𝜎𝐹0 .

Formal Methods for the Analysis of Security Protocols

104

The edge η' →η is labeled 𝜎𝐹0, instance of 𝐹0. Since = 𝜎𝐶 = 𝜎𝐹0,
the facts C and 𝐹0 are unifiable, so 𝑅 ∘𝐹0 𝑅′ is defined. Let 𝜎′ be the
most general unifier of C and 𝐹0, and 𝜎′′ such that 𝜎 = 𝜎′′𝜎′. We have
𝑅 ∘𝐹0 𝑅

′ = 𝜎′(𝐻 ∪ (𝐻′\{𝐹0})) ⇒ σ
′C′. Moreover, 𝜎′′𝜎′𝐶′(𝐻 ∪

(𝐻′\{𝐹0})) ⊆ H1 ∪ (𝐻
′\{𝜎𝐹0}) and 𝜎′′𝜎′𝐶′ = 𝜎𝐶′ = 𝐶1

′. Hence
𝑅′′ = 𝑅 ∘𝐹0 𝑅

′⊒(H1 ∪ (𝐻
′\{𝜎𝐹0}) ⇒ 𝐶1

′ . The multiset of labels of
outgoing edges of η'' is precisely H1 ∪ (𝐻′\{𝜎𝐹0}) and the label of its
incoming edge is 𝐶1′ , therefore we have obtained a correct derivation
by replacing η and η' with η''.

Lemma 3.4 If a node η of a derivation D is labeled by R, then one
obtains a derivation D' of the same fact as D by relabeling η with a
clause R' such that R' ⊒ R.

Proof:
Let H be the multiset of labels of outgoing edges of the considered

node η, and C be the label of its incoming edge. We have R ⊒ H ⇒ C.
By transitivity of ⊒, R' ⊒ H ⇒ C. So we can relabel η with R'.

Lemma 3.5 At the end of saturate, R satisfies the following
properties:

- For all R ∈ 𝑅0, R is subsumed by a clause in R;
- Let R∈R and R' ∈R. Assume that sel(R) = ∅ and there exists 𝐹0∈

sel(R') such that 𝑅 ∘𝐹0 𝑅
′ is defined. In this case, 𝑅 ∘𝐹0 𝑅

′ is subsumed
by a clause in R.

Proof:
To prove the first property, let R ∈𝑅0. We show that, after the

addition of R to R, R is subsumed by a clause in R.
In the first step of saturate, we execute the instruction R ←

elim({R}∪R). After execution of this instruction, R is subsumed by a
clause in R.

Assume that we execute R ← elim({R′′}∪R) for some clause R'' and
that, before this execution, R is subsumed by a clause 𝑅 in R, say R'. If
R' is removed by this instruction, there exists a clause 𝑅1′ in R that
subsumes R', so by transitivity of subsumption, 𝑅1′ subsumes R, hence
R is subsumed by the clause 𝑅1′ ∈ 𝑅 after this instruction. If R' is not
removed by this instruction, then R is subsumed by the clause 𝑅′ ∈ 𝑅
after this instruction.

Formal Methods for the Analysis of Security Protocols

105

Hence, at the end of saturate, R is subsumed by a clause in R, which
proves the first property.

In order to prove the second property, we just need to notice that
the fixpoint is reached at the end of saturate, so R = elim({𝑅 ∘𝐹0 𝑅

′ }
∪R). Hence, 𝑅 ∘𝐹0 𝑅

′ is eliminated by elim, so it is subsumed by some
clause in R.

Proof of Lemma 3.1:
Assume that F is derivable from 𝑅0 and consider a derivation of F

from 𝑅0. We show that F is derivable from saturate(𝑅0).
We consider the value of F the set of clauses R at the end of

saturate. For each clause R in 𝑅0, R is subsumed by a clause in R
(Lemma 3.5, Property 3.1). So, by Lemma 3.4, we can replace all
clauses R in the considered derivation with a clause in R. Therefore, we
obtain a derivation D of F from R.

Next, we build a derivation of F from 𝑅1, where 𝑅1 = saturate(𝑅0).
If D contains a node labeled by a clause not in 𝑅1, we can transform D
as follows. Let η′ be a lowest node of D labeled by a clause not in 𝑅1.
So all sons of η′ are labeled by elements of R1. Let R' be the clause
labeling η′. Since 𝑅′ ∉ 𝑅1, sel(R')≠ ∅. Take 𝐹0 ∈ 𝑠𝑒𝑙(𝑅′) . By Lemma
3.3, there exists a son of η of η' labeled by R, such that 𝑅 ∘𝐹0 𝑅

′ is
defined, and we can replace η and η' with a node η'' labeled by 𝑅 ∘𝐹0 𝑅

′.
Since all sons of η' are labeled by elements of 𝑅1,R ∈𝑅1. Hence sel(R)
= ∅. So, by Lemma 3.5, Property 2, 𝑅 ∘𝐹0 𝑅

′ is subsumed by a clause
R'' in R. By Lemma 3.4, we can relabel η'' with R''. The total number of
nodes strictly decreases since η and η' are replaced with a single node
η''.

So we obtain a derivation D' of F from R, such that the total number
of nodes strictly decreases. Hence, this replacement process terminates.
Upon termination, all clauses are in 𝑅1. So we obtain a derivation of F
from 𝑅1, which is the expected result.

For the converse implication, notice that, if a fact is derivable from
𝑅1, then it is derivable from R, and that all clauses added to R do not
create new derivable facts: if a fact is derivable by applying the clause
𝑅 ∘𝐹0 𝑅

′ then it is also derivable by applying R and R'.
Proof of Lemma 3.2:
Let us prove the direct implication. We show that, if F' is derivable

from 𝑅1, then there exist a clause H ⇒C in derivable(F, 𝑅1) and a

Formal Methods for the Analysis of Security Protocols

106

substitution 𝜎 such that 𝜎C=F' and all elements of 𝜎H are derivable
from 𝑅1.

Let D be the set of derivations D' of F' such that, for some R, the
clause R' at the subroot of D' satisfies deriv(R' , R, 𝑅1) ⊆ derivable(F,
𝑅1) and ∀R'' ∈R, R'' R' and the other clauses of D' are in 𝑅1.

Let 𝐷0 be a derivation of F' from 𝑅1. Let 𝐷0′ be obtained from 𝐷0 by
adding a node labeled by R' = F ⇒ F at the subroot of 𝐷0. By definition
of derivable, deriv(R, ∅,𝑅1) ⊆ derivable(F, 𝑅1), and ∀R''∈ ∅,R'' R'.
Hence 𝐷0′ is a derivation of F' in D, so D is non-empty.

Now, consider a derivation 𝐷1 in D with the smallest number of
nodes. The clause R' labeling the subroot η' of 𝐷1 satisfies deriv(R,
R, 𝑅1) ⊆ derivable(F, 𝑅1), and ∀R''∈R, R'' R'. In order to obtain a
contradiction, we assume that sel(R')≠ ∅. Let 𝐹0 ∈ 𝑠𝑒𝑙(𝑅′). By
Lemma 3.3, there exists a son η of η', labeled by R, such that 𝑅 ∘𝐹0 𝑅

′
is defined and we can replace η and η' with a node η'' labeled by
𝑅0 = 𝑅 ∘𝐹0 𝑅

′, obtaining a derivation 𝐷2 of F' with fewer nodes than
𝐷1. The subroot of 𝐷2 is the node η'' labeled by 𝑅0.

By hypothesis on the derivation 𝐷1, R ∈𝑅1, so deriv(𝑅0,{R'}∪R,
𝑅1) ⊆ deriv(R', R, 𝑅1) ⊆ derivable(F, 𝑅1) (third case of the definition
of deriv(R', R, 𝑅1)).

If ∀𝑅1 ∈ {R'} ∪R, 𝑅1 𝑅0, 𝐷2 is a derivation of F' in D, with
fewer nodes than 𝐷1, which is a contradiction.

Otherwise, ∃𝑅1∈ {R'} ∪R, 𝑅1 ⊒𝑅1. Therefore, by Lemma 3.4, we
can build a derivation 𝐷1 by relabeling η'' with 𝑅1 in 𝐷2. There is an
older call to deriv, of the form deriv(𝑅1,R', 𝑅1), such that deriv(𝑅1,R',
𝑅1) ⊆ derivable(F, 𝑅1). Moreover, 𝑅1 has been added to R' in this call,
since 𝑅1 appears in {R'} ∪R. Therefore the third case of the definition
of deriv(𝑅1, R', 𝑅1) has been applied, and not the first case. So
∀𝑅2 ∈R', 𝑅2 𝑅1, so the derivation 𝐷3 is in D and has fewer nodes
than 𝐷1, which is a contradiction.

In all cases, we could find a derivation in D that has fewer nodes
than 𝐷1. This is a contradiction, so sel(R') = ∅, hence deriv(R, R, 𝑅1) =
{R'} (second case of the definition of deriv), so R' ∈derivable(F, 𝑅1).
The other clauses of this derivation are in 𝑅1. By definition of a
derivation, R' ⊒ H' ⇒ F where H' is the multiset of labels of the
outgoing edges of the subroot of the derivation. Taking R' = H ⇒ C,

Formal Methods for the Analysis of Security Protocols

107

there exists 𝜎 such that 𝜎𝐶 = 𝐹 and H ⊆ H', so all elements of 𝜎𝐻 are
derivable from 𝑅1.

The proof of the converse implication is left to the reader.
(Basically, if a fact is derivable by applying the clause 𝑅 ∘𝐹0 𝑅

′, then it
is also derivable by applying R and R'.)

Optimizations

The resolution algorithm uses several optimizations, in order to
speed up resolution. The first two are standard, while the last three are
specific to protocols.

Elimination of duplicate hypotheses If a clause contains several
times the same hypotheses, the duplicate hypotheses are removed, so
that at most one occurrence of each hypothesis remains.

Elimination of tautologies If a clause has a conclusion that is
already in the hypotheses, this clause is a tautology: it does not derive
new facts. Such clauses are removed.

Elimination of hypotheses attacker(x) If a clause H ⇒C contains in
its hypotheses attacker(x), where is a variable that does not appear
elsewhere in the clause, then the hypothesis attacker(x) is removed.
Indeed, the attacker always has at least one message, so attacker(x) is
always satisfied for some value of x.

Decomposition of data constructors A data constructor is a
constructor f of arity n that comes with associated destructors 𝑔𝑖 for i ∈
{1, . . . ,n } defined by 𝑔𝑖(f(𝑥1, . . . , 𝑥𝑛)) → 𝑥𝑖. Data constructors are
typically used for representing data structures. Tuples are examples of
data constructors. For each data constructor f, the following clauses are
generated:

attacker(𝑥1) ∧...∧ attacker(𝑥𝑛) ⇒ attacker(f(𝑥1, . . . , 𝑥𝑛)) (Rf)
attacker(f(𝑥1,..., 𝑥𝑛))⇒attacker(𝑥𝑖) (Rg)
Therefore, attacker(f(𝑝1, . . . , 𝑝𝑛)) is derivable if and only if ∀i

∈{1, . . . ,n}, attacker(𝑝𝑖) is derivable. When a fact of the form
attacker(f(𝑝1, . . . , 𝑝𝑛)) is met, it is replaced with attacker(𝑝1)∧. .
.∧attacker(𝑝𝑛). If this replacement is done in the conclusion of a clause
H ⇒ attacker(f(𝑝1, . . . , 𝑝𝑛)), n clauses are created: H ⇒ attacker(𝑝𝑖) for
each i ∈ {1, . . . ,n }. This replacement is of course done recursively: if
𝑝𝑖 itself is a data constructor application, it is replaced again. The
clauses (Rf) and (Rg) for data constructors are left unchanged. (When

Formal Methods for the Analysis of Security Protocols

108

attacker(x) cannot be selected, the clauses (Rf) and (Rg) for data
constructors are in fact not necessary, because they generate only
tautologies during resolution. However, when attacker(x) can be
selected, which cannot be excluded with certain extensions, these
clauses may become necessary for soundness.)

Secrecy assumptions When the user knows that a fact will not be
derivable, he can tell it to the verifier. (When this fact is of the form
attacker(M), the user tells that M remains secret.) The tool then
removes all clauses which have this fact in their hypotheses. At the end
of the computation, the tool checks that the fact is indeed underivable
from the obtained clauses. If the user has given erroneous information,
an error message is displayed. Even in this case, the verifier never
wrongly claims that a protocol is secure.

Mentioning such underivable facts prunes the search space, by
removing useless clauses. This speeds up the resolution algorithm. In
most cases, the secret keys of the principals cannot be known by the
attacker. So, examples of underivable facts are attacker(𝑠𝑘𝐴 []),
attacker(𝑠𝑘𝐵 []), ...

Termination

In general, the resolution algorithm may not terminate. (The
derivability problem is un-decidable.) In practice, however, it
terminates in most examples.

In [53] it is shown that it always terminates on a large and
interesting class of protocols, the tagged protocols [53]. We consider
protocols that use as crypto-graphic primitives only public-key
encryption and signatures with atomic keys, shared-key encryption,
message authentication codes, and hash functions. Basically, a protocol
is tagged when each application of a cryptographic primitive is marked
with a distinct constant tag. It is easy to transform a protocol into a
tagged protocol by adding tags. For instance, example of protocol can
be transformed into a tagged protocol, by adding the tags 𝑐0, 𝑐1, 𝑐2 to
distinguish the encryptions and signature:

 Message 1. 𝐴 → 𝐵 {|〈𝑐1, [〈𝑐0, 𝑘〉]𝑠𝑘𝐴〉|}𝑝𝑘𝐵
𝑎

Message 2. 𝐵 → 𝐴 {|〈𝑐2, 𝑠〉|}𝑘𝑠
Adding tags preserves the expected behavior of the protocol, that is,

the attack-free ex-ecutions are unchanged. In the presence of attacks,

Formal Methods for the Analysis of Security Protocols

109

the tagged protocol may be more secure. Hence, tagging is a feature of
good protocol design: the tags are checked when the messages are
received; they facilitate the decoding of the received messages and
prevent confusions between messages. More formally, tagging pre-
vents type-flaw attacks, which occur when a message is taken for
another message. However, the tagged protocol is potentially more
secure than its untagged version, so, in other words, a proof of security
for the tagged protocol does not imply the security of its untagged
version.

Extensions. Treatment of Equations

Up to now, we have defined cryptographic primitives by
associating rewrite rules to destructors. Another way of defining
primitives is by equational theories, as in the applied pi calculus [54].
This allows us to model, for instance, variants of encryption for which
the failure of decryption cannot be detected or more complex primitives
such as Diffie-Hellman key agreements. The Diffie-Hellman key
agreement enables two principals to build a shared secret. It is used as
an elementary step in more complex protocols, such as SSH, SSL, and
IPsec.

The Horn clause verification approach can be extended to handle
some equational theories. For example, the Diffie-Hellman key
agreement can be modeled by using a constant g and a function exp that
satisfy the equation
exp(exp(𝑔, 𝑥) , 𝑦) = exp(exp(𝑔, 𝑦) , 𝑥). (4)
In practice, the function is exp(x,y) = 𝑥𝑦 mod , where is prime

and g is a generator of ℤ𝑝∗ . The equation exp(exp(𝑔, 𝑥) , 𝑦) =
(𝑔𝑥)𝑦 𝑚𝑜𝑑 𝑝 = (𝑔𝑦)𝑥 𝑚𝑜𝑑 𝑝 = exp (exp(𝑔, 𝑦) , 𝑥) is satisfied. In
ProVerif, following the ideas used in the applied pi calculus [6], we do
not consider the underlying number theory; we work abstractly with the
equation (4). The Diffie-Hellman key agreement involves two
principals A and B. A chooses a random name 𝑥0, and sends
𝑒𝑥𝑝(𝑔, 𝑥0) to B. Similarly, B chooses a random name 𝑥1, and sends
𝑒𝑥𝑝(𝑔, 𝑥1) to A. Then A computes exp (exp(𝑔, 𝑥1) , 𝑥0) and B
computes 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑥0), 𝑥1). Both values are equal by (4), and they
are secret: assuming that the attacker cannot have 𝑥0 or 𝑥1, it can
compute neither exp (exp(𝑔, 𝑥1) , 𝑥0) nor 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑥0), 𝑥1).

Formal Methods for the Analysis of Security Protocols

110

In ProVerif, the equation (4) is translated into the rewrite rules
𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑥), 𝑦) → 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑦), 𝑥) 𝑒𝑥𝑝(𝑥 , 𝑦) → 𝑒𝑥𝑝(𝑥, 𝑦).

Notice that this definition of exp is non-deterministic: a term such
as 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑎), 𝑏) can be reduced to 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑏), 𝑎) and
𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑎), 𝑏), so that 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑎), 𝑏) re-duces to its two forms
modulo the equational theory. The rewrite rules in the definition of
function symbols are applied exactly once when the function is applied.
So the rewrite rule 𝑒𝑥𝑝(𝑥 , 𝑦) → 𝑒𝑥𝑝(𝑥, 𝑦) is necessary to make sure
that exp never fails, even when the first rewrite rule cannot be applied,
and these rewrite rules do not loop because they are applied only once
at each application of exp.

This treatment of equations has the advantage that resolution can
still use syntactic unification, so it remains efficient. However, it also
has limitations; for example, it cannot handle associative functions,
such as XOR, because it would generate an infinite number of rewrite
rules for the destructors. Recently, other treatments of equations that
can han-dle XOR and Diffie-Hellman key agreements with more
detailed algebraic relations (in-cluding equations of the multiplicative
group modulo p) within the Horn clause approach have been proposed
by Küsters and Truderung: they handle XOR provided one of its two
arguments is a constant in the clauses that model the protocol [55] and
Diffie-Hellman key agreements provided the exponents are constants in
the clauses that model the pro-tocol [56]; they proceed by transforming
the initial clauses into richer clauses on which the standard resolution
algorithm is applied.

Translation from the Applied Pi Calculus

ProVerif does not require the user to manually enter the Horn
clauses described previ-ously. These clauses can be generated
automatically from a specification of the protocol in the applied pi
calculus [6]. On such specifications, ProVerif can verify various
security properties, by using an adequate translation into Horn clauses:

- secrecy, as described above. The translation from the applied pi
calculus to Horn clauses is given in [50].

- correspondences, which are properties of the form “if an event
has been executed, then other events have been executed” [45]. They
can in particular be used for formalizing authentication.

Formal Methods for the Analysis of Security Protocols

111

- some process equivalences, which mean intuitively that the
attacker cannot distinguish two processes (i.e. protocols). Process
equivalences can be used for for-malizing various security properties,
in particular by expressing that the attacker cannot distinguish a process
from its specification. ProVerif can prove particular cases of
observational equivalences. It can prove strong secrecy [57], which
means that the attacker cannot see when the value of the secret changes.
This is a stronger notion of secrecy than the one mentioned previously.
It can be used, for instance, for expressing the secrecy of values taken
among a set of known constants, such as bits: one shows that the
attacker cannot distinguish whether the bit is 0 or 1. More generally,
ProVerif can also prove equivalences between processes that differ by
the terms they contain, but have otherwise the same structure [58]. In
particular, these equivalences can express that a password-based
protocol is resistant to guessing attacks: even if the attacker guesses the
password, it cannot verify that its guess is correct.

As for secrecy, when no derivation from the clauses is found, the
desired security prop-erty is proved. When a derivation is found, there
may be attack. ProVerif then tries to reconstruct a trace in the applied pi
calculus semantics that corresponds to this derivation [59]. (Trace
reconstruction may fail, in particular when the derivation corresponds
to a false attack; in this case, one does not know whether there is an
attack or not.)

Application to Examples of Protocols

The automatic protocol verifier ProVerif is available at
http://www.proverif. ens.fr/. It is successfully applied to many
protocols of the literature, to prove secrecy and authentication
properties: flawed and corrected versions of the Needham-Schroeder
public-key [82,74] and shared-key [43,82, 83], Woo-Lam public-key
[88,89] and shared-key [9, 12, 62,88,89], Denning-Sacco [54,9],
Yahalom [43], Otway-Rees [9,84, 85], and Skeme [70] protocols. No
false attack occurred in the tests and the only non-termination cases
were some flawed versions of the Woo-Lam shared-key protocol. The
protocols can be verified in less than one second [31].

ProVerif is also used for proving strong secrecy in the corrected
version of the Needham-Schroederpublic-keyprotocol [74] and in the
Otway-Rees [84], Yahalom [43], and Skeme [70] protocols, the

Formal Methods for the Analysis of Security Protocols

112

resistance to guessing attacks for the password-based protocols EKE
[18] and Augmented EKE [20], and authentication in the Wide-Mouth-
Frog protocol [8] (version with one session). The runtime goes from
less than one second to 15 s on the tests [29,34].

Moreover, ProVerif is also used in more substantial case studies:
- With Abadi [4], is applied to the verification of a certified email

protocol [7]. We can use correspondence properties to prove that the
receiver receives the message if and only if the sender has a receipt for
the message. (We can use simple manual arguments to take into
account that the reception of sent messages is guaranteed.) One of the
tested versions includes the SSH transport layer in order to establish a
secure channel.

- With Abadi and Fournet [5], we can study the JFK protocol (Just

Fast Keying) [10], which was one of the candidates to the replacement
of IKE as key exchange proto-col in IPSec. We combined manual
proofs and ProVerif to prove correspondences and equivalences.

- With Chaudhuri [35], we can study the secure filesystem Plutus
[68] with ProVerif, which allowed us to discover and fix weaknesses of
the initial system.

Other authors also use ProVerif for verifying protocols or for
building other tools:

- Bhargavan et al. [21,23,27] use it to build the Web services
verification tool Tu-laFale: Web services are protocols that send XML
messages; TulaFale translates them into the input format of ProVerif
and uses ProVerif to prove the desired security properties.

- Bhargavan et al. [24,25,26] use ProVerif for verifying
implementations of protocols in F# (a functional language of the
Microsoft .NET environment): a sub-set of F# large enough for
expressing security protocols is translated into the in-put format of
ProVerif. The TLS protocol, in particular, was studied using this
technique [22].

- Canetti and Herzog [44] use ProVerif for verifying protocols in
the computational model: they show that, for a restricted class of
protocols that use only public-key encryption, a proof in the Dolev-Yao
model implies security in the computational model, in the universal
composability framework. Authentication is verified using
correspondences, while secrecy of keys corresponds to strong secrecy.

Formal Methods for the Analysis of Security Protocols

113

- ProVerif is also can be used for verifying a certified email web
service [75], a certified mailing-list protocol [69], e-voting protocols
[16,71], the ad-hoc routing protocol ARAN (Authenticated Routing for

Adhoc Networks) [61], and zero-knowledge protocols [17].
Finally, Goubault-Larrecq and Parrennes [65] also use the Horn

clause method for analyzing implementations of protocols written in C.
However, they translate protocols into clauses of the 𝐻1 class and use
the 𝐻1 prover by Goubault-Larrecq [64] rather than ProVerif to prove
secrecy properties of the protocol.

Conclusion

A strong aspect of the Horn clause approach is that it can prove
security properties of protocolsfor an unboundednumber of sessions, in
a fully automatic way. This is essential for the certification of protocols.
It also supports a wide variety of security primitives and can prove a
wide variety of security properties.

On the other hand, the verification problem is undecidable for an
unboundednumber of sessions, so the approach is not complete: it does
not always terminate and it performs approximations, so there exist
secure protocols that it cannot prove, even if it is very precise and
efficient in practice.

Tasks for laboratory work №3.
1. According to given in Table 3.1 variant verify security

protocols based on an abstract representation of protocols by
Horn clauses.

2. Use the protocol verifier ProVerif.
3. Use different sets of sessions for protocol verification.
4. Specify different cryptographic primitives defined by rewrite

rules or equations.
5. Prove the security authentication properties .
6. Prove the process equivalences.

Formal Methods for the Analysis of Security Protocols

114

Table 3.1. Variants

№ Protocol
1 S/MIME
2 VPN
3 IPSec
4 TLS
5 SSL
6 HTTPS
7 PGP
 S-HTTP
 KERBEROS
 SET

Requirements to the report
The report should consists of:
- title sheet;
- the aim and the task of the laboratory work;
- results of the security protocols verification based on the abstract

representation of protocols by Horn clauses;
- results of the usage of the protocol verifier ProVerif;
- results of the usage of the different sets of sessions for protocol

verification;
- list of the specified cryptographic primitives defined by rewrite

rules or equations;
- presentation of the provement of the the security authentication

properties and the process equivalences;
- conclusions.

Advancement questions

1. What we should do to verify security protocols based on an
abstract representation of protocols by Horn clauses?

2. How to use the protocol verifier ProVerif?
3. How to use different sets of sessions for protocol verification?
4. What cryptographic primitives can be defined by rewrite rules

or equations?

Formal Methods for the Analysis of Security Protocols

115

5. How to prove the security authentication properties?
6. How to prove the process equivalences?
7. What is the main goal of Horn clauses?
8. What can be verified by an approach based on Horn clauses

and how?
9. What is the the Dolev-Yao model?
10. What do the methods rely on sound abstractions overestimate

the possibilities of attacks?

2.2 Laboratory work №4. Validating security protocols under the
general attacker

The aim and the task of the laboratory work
The aim of this laboratory work is to analyze the security protocols

under the General Attacker threat model.
Task of the work:
- get acquainted with the General Attacker threat model.
- use model checker SATMC to automatically validate a protocol

under the new threats, in order to found retaliation and anticipation
attacks automatically.

Preparation for laboratory work
- to clarify the aims and objectives;
- to study theoretical material given in the description.

Theoretical material

Introduction

The analysis of security protocols stands among the most attractive
niches of research in computer science, as it has attracted efforts from
many communities. It is difficult to even provide a satisfactory list of
citations, which would have to at least include process calculi, strand
spaces, the inductive method and advanced model checking techniques
[61-67].

Any meaningful statement about the security of a system requires a
clear specification of the threats that the system is supposed to
withstand. Such a specification is usually referred to as threat model .

Formal Methods for the Analysis of Security Protocols

116

Statements that hold under a threat model may no longer hold under
other models. For example, if the threat model only accounts for
attackers that are outsiders, then Lowe’s famous attack on the
Needham-Schroeder Public-Key (NSPK) protocol cannot succeed, and
the protocol may be claimed secure. But the protocol is notoriously
insecure under a model that allows the attacker as a registered principal.
The standard threat model for symbolic protocol analysis is the Dolev-
Yao model (DY in brief), which sees a powerful attacker control the
whole network traffic. The usual justification is that a protocol secure
under DY certainly is secure under a less powerful, perhaps more
realistic attacker. By contrast, a large group of researchers consider DY
insufficient because a DY attacker cannot do cryptanalysis, and their
probabilistic reasoning initiated with a foundational research. This
sparked off a research thread that has somewhat evolved in parallel
with the DY research line, although some efforts exist in the attempt to
conjugate them [68]. The present research is not concerned with
probabilistic protocol analysis. The main argument is that security
protocols may still hide important subtleties even after they are proved
correct under DY. These subtleties can be discovered by symbolic
protocol analysis under a new threat model that adheres to the present
real world more strictly than DY does. The new model we develop here
is the General Attacker (GA in brief), which features each protocol
participant as a DY attacker who does not collude or share knowledge
with anyone else. In GA, it is meaningful to continue the analysis of a
protocol after an attack is mounted, or to anticipate the analysis by
looking for extra flaws before that attack, something that has never
been seen in the relevant literature. This can assess whether additional
attacks can be mounted either by the same attacker or by different
attackers. Even novel scenarios whereby principals attack each other
become possible. A significant scenario is that of retaliation [69],
where an attack is followed by a counterattack. It recasts that scenario
into the new GA threat model. Also, a completely new scenario is
defined, that of anticipation, where an attack is anticipated, before its
termination, by another attack by some other principal.

As its main contribution, the research tailors an existing formalism
suited for model checking to accommodate the GA threat model. This
makes it possible to analyse protocol subtleties that go beyond standard
security properties such as confidentiality and authentication. We begin

Formal Methods for the Analysis of Security Protocols

117

by extending an existing setrewriting formalisation of the classical DY
model to capture the GA model. Then, we leverage an established
model checking tool for security protocols to tackle the validation
problems arisen from the new threat model. Finally, we run the tool
over the NSPK protocol and its variants to investigate retaliation and
anticipation attacks.

The General Attacker

DY can be considered the standard threat model to study security
protocols [47]. The DY attacker controls the entire network although he
cannot perform cryptanalysis. Some historical context is useful here.
The model was defined in the late 1970s when remote computer
communications were still confined to military/espionage contexts. It
was then natural to imagine that the entire world would collude joining
their forces against a security protocol session between two secret
agents of the same country. The DY model has remarkably favoured
the discovery of significant protocol, but the prototype attacker is
significantly changed today. To become an attacker has never been so
easy as in the present technological setting because hardware is
inexpensive, while security skill is at hand—malicious exploits are
even freely downloadable from the web.

A seminal threat model called BUG [69] is recalled here. The name
is a permuted acronym for the “Good”, the “Bad” and the “Ugly”. This
model attempts stricter adherence than DY’s to the changed reality by
partitioning the participants in a security protocol into three groups. The
Good principals would follow the protocol, the Bad would in addition
try to subvert it, and the Ugly would be ready to either behaviour. This
seems the first account in the literature of formal protocol verification
on the chance that attackers may attempt to attack each other without
sharing knowledge. More recently, Bella observed [70] that the
partition of the principals had to be dynamically updated very often, in
principle at each event of a principal’s sending or receiving a message,
depending on whether the principal respected the protocol or not. Thus,
BUG appeared overly detailed, and he simplified it as the Rational
Attacker threat model: each principal may at any time make
cost/benefit decisions to either behave according to the protocol or not
[71]. After BUG’s inception, homologous forms of rational attackers
were specifically carved out in the area of game theory and therefore

Formal Methods for the Analysis of Security Protocols

118

are, as such, not directly related to the symbolic analysis [71-73].
Analyzing a protocol under the Rational Attacker requires specifying
each principal’s cost and benefit functions, but this still seems out of
reach, especially for classical model checking. By abstracting away the
actual cost/benefit analysis, we derive the following simplified model:
The General Attacker (GA) threat model: each principal is a Dolev-Yao
attacker.

The change of perspective in GA with respect to DY is clear:
principals do not collude for a common aim but, rather, each of them
acts for his own personal sake. Although there is no notion of collusion
constraining this model, the human protocol analyser can define some
for their particular investigations. The GA model has each principal
endowed with the entire potential of a DY attacker. So, each principal
may at any stage send any of the messages he can form to anyone. Of
course, such messages include both the legal ones, conforming to the
protocol in use, and the illegal, forged ones. As we shall see, analysing
the protocols under the GA threat model yields unknown scenarios
featuring retaliation or anticipation attacks. This paves the way for a
future analysis under the Rational Attacker. For example, if an attack
can be retaliated under GA, such a scenario will not occur under the
Rational Attacker because the cost of attacking clearly overdoes its
benefit, and hence the attacker will not attack in the first place.

1. A→ B : {𝑁𝑎 , 𝐴}𝐾𝑏
2. B→ A : {𝑁𝑎 , 𝑁𝑏}𝐾𝑎
3. A→ B : {𝑁𝑏}𝐾𝑏
4a. A→ B : {“𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑋1 𝑓𝑟𝑜𝑚 𝐴’𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑡𝑜 𝑌 1’𝑠”}〈𝑁𝑎,𝑁𝑏〉
4b. B→ A : {“𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑋2 𝑓𝑟𝑜𝑚 𝐵’𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑡𝑜 𝑌 2’𝑠”}〈𝑁𝑎,𝑁𝑏〉

Fig. 4.1. NSPK++: the NSPK protocol terminated with the completion
steps

This argument is after all not striking: even a proper evaluation of
the “realism” of classical attacks found under DY would have required
a proper cost/benefit analysis.

The research suggests that if in the real world an attacker can mount
an attack that can be retaliated, then he may rationally opt for not
attacking in the first place. In consequence, even a deployed protocol
suffering an attack that can be retaliated may perhaps be kept in place.

Formal Methods for the Analysis of Security Protocols

119

The BUG threat model was demonstrated over the public-key
Needham-Schroeder protocol [72]. Let us recast that analysis under the
GAmodel. The protocol version studied here,which we address
asNSPK++, is its original design terminated with the completion steps
for reciprocal, authenticated money transfers (Figure 4.1). It can be
seen that principal A issues a fresh nonce Na in message 1, which she
sees back in message 2. Because message 1 is encrypted under B’s
public key, the nonce was fresh and cryptanalysis cannot be broken by
assumption, A learns that B acted at the other end of the
network.Messages 2 and 3 give B the analogous information about A by
means of nonce Nb. This protocol version is subject to Lowe’s attack,
as described in Figure 4.2. It can be seen how the attackerC

masquerades asA withB to carry out an illegal money transfer atB

(which intuitively is a bank) fromA’s to C’s account. It is known that
the problems originated with the confidentiality attack upon the nonce
Nb. Another observation is that there is a second nonce whose
confidentiality is violated—by B, not by C— in this scenario: it is Na.
Although it is invented byAto be only sharedwith C, also B learns it.
This does not seem to be an issue in the DY model, where all principals
except C followed the protocol like soldiers follow orders.What one of
them could do with a piece of information not meant for him therefore
became uninteresting. To what extent this is appropriate to the current
real world, where there often are various attackers with targets of their
own, is at least questionable. Strictly speaking, B’s learning of Na is a
new attack because it violates the confidentiality policy upon the
nonces, which are later used to form a session key. It can be easily
captured in the GA threat model, where more than one principal may
act illegally at the same time for their own sake.

We are facing a new perspective of analysis. Principal B did not
have to act to learn a nonce not meant for him, therefore this is named
an indeliberate attack. To use a metaphor, B does not know which lock
the key Na can open. This is not an issue in the GA threat model, where
each principal just sends out anything he can send to anyone.
Nevertheless, there are at least four methods to help B practically
evaluate the potential of Na [74].

Formal Methods for the Analysis of Security Protocols

120

1. A→ C : {𝑁𝑎 , 𝐴}𝐾𝑐
1'. C(A) → B : {𝑁𝑎 , 𝐴}𝐾𝑏
2'. B→ A : {𝑁𝑎 , 𝑁𝑏}𝐾𝑎
2. C→ A : {𝑁𝑎 , 𝑁𝑏 }𝐾𝑎
3. A→ C : { 𝑁𝑏 }𝐾𝑐
3'. C(A) → B : { 𝑁𝑏 }𝐾𝑏

4a'.C(A)→B:{“𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 1000 𝑓𝑟𝑜𝑚 𝐴’𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 to 𝐶’𝑠”}〈𝑁𝑎,𝑁𝑏〉
Fig. 4.2. Lowe’s attack to the NSPK++ protocol

4b'. B(C)→A: {“𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 2000 𝑓𝑟𝑜𝑚 𝐶’𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑡𝑜 𝐵’𝑠”}〈𝑁𝑎,𝑁𝑏〉

Fig. 4.3. Retaliation attack following Lowe’s attack

The natural consequence of B’s learning Na is the retaliation attack

in Figure 4.3. Note that the first method indicated above gives B a
reasonable set of target principals to try retaliation against, while the
second one gives him a probabilistic answer originated from traffic
analysis. However, the remaining two methods exactly tell him who the
target for retaliation is.

It is worth remarking once more that a retaliation attack cannot be
captured in the standard DY threat model, where all potential attackers
merely collude to form a super-potent one. However, the GA model can
support this notion.

An important finding that will be detailed below is that B learns Na

before C learns Nb (Figure 4.2). This may lead to the unknown scenario
that sees B steal money by step 4b from Figure 4.3 before C does it by
step 4a' from Figure 4.2. The more quickly does B use any of the first
three methods given above to evaluate Na and pinpoint C, the more
realistic this scenario. Potentially, B’s illegal activity may even succeed
before message 3 reaches C disclosing Nb. This attack will be
addressed as anticipation attack.

Extending the Validation Method over the General Attacker

To perform the experiments: the SAT-based model checker
SATMC, one of the AVISPA backends was used. This tool has
successfully tackled the problem of determining whether the concurrent

Formal Methods for the Analysis of Security Protocols

121

execution of a finite number of sessions of a protocol enjoys certain
security properties in spite of the DY attacker [75,76]. Leveraging on
that work, we aim at relaxing the assumption of a single, super-potent
attacker to specify the GA threat model, where principals can even
compete each other. It was already stated above that the aim is to study
novel protocol subtleties that go beyond the violation of standard
security properties such as confidentiality and authentication. We are
currently focusing on retaliation attacks and anticipation attacks. Also
these notions can be recast into a model checking problem.

Basics of SAT-Based Model Checking

Let us outline the basic definitions and concepts underlying SAT-
based model checking. The reader who is familiar with such concepts
can skip this. Let us recall that a model checking problem can be stated
as M |= G , where M is a labelled transition system modelling the
initial state of the system and the behaviours of the principals
(including their malicious activity) and G is an LTL formula expressing
the security property to be checked.

The states of M are represented as sets of facts i.e. ground atomic
formulas of a first-order language with sorts. If S is a state, then its facts
are interpreted as the propositions holding in the state represented by S,
all other facts being false in that state (closed-world assumption). A
state is written down by the convenient syntax of a list of facts
separated by the . symbol, as we shall see.

The transitions of M are represented as set-rewriting rules that
define mappings between states. Each rule has a label expressing what
the rule is there for: for example, the label 𝑠𝑡𝑒𝑝𝑖 is for a rule that
formalises the i-th legal protocol step, the label overhear is for a rule
whereby an attacker reads some traffic, and so on. Each rule label is
parameterised by the rule variables or proper instances of them, and we
will encounter a number of self-explaining rule labels below.

Let (L
𝑝
→ R) be (an instance of) a rewriting rule and S be a set of

facts. If L ⊆ S then we say that ρ is applicable in S and that S' = 𝑎𝑝𝑝𝜌
(S) = (S \L) ∪ R is the state resulting from the execution of ρ in S. A
path π is an alternating sequence of states and rules
𝑆0𝜌1𝑆1 . . . 𝑆𝑛−1𝜌𝑛𝑆𝑛 such that 𝑆𝑖 = 𝑎𝑝𝑝𝜌𝑖 (𝑆𝑖−1) (i.e. 𝑆𝑖 is a state
resulting from the execution of 𝜌𝑖 in 𝑆𝑖−1), for i = 1, . . . , n. Let I be the

Formal Methods for the Analysis of Security Protocols

122

initial state of the transition system; if S0 ⊆ I, then we say that the path
is initialised. Let π = 𝑆0𝜌1𝑆1 . . . 𝑆𝑛−1𝜌𝑛𝑆𝑛 be a path. We define π(i) =
𝑆𝑖 and 𝜋𝑖 = 𝑆𝑖𝑝𝑖+1𝑆𝑖+1 . . . 𝑆𝑛−1𝜌𝑛𝑆𝑛. Therefore, π(i) and 𝜋𝑖 are the i-th
state of the path and the suffix of the path starting with the i-th state
respectively. Also, it is assumed that paths have infinite length. This
can be always obtained by adding stuttering transitions to the transition
system.

The language of LTL used here has facts and equalities over ground
terms as atomic propositions, the usual propositional connectives
(namely, ￢, ∨) and the temporal operators X (next), F (eventually)
and O (once). Let π be an initialised path of M, an LTL formula φ is

valid on π, written π |= φ, if and only if (π, 0) |= φ, where (π, i) |= φ (φ

holds in π at time i) is inductively defined as:
 (π, i) |= f iff f ∈ π(i) (f is a fact)
 (π, i) |= (𝑡1 = 𝑡2) iff 𝑡1 and 𝑡2 are the same terms
 (π, i) |= ￢φ iff (π, i) φ

 (π, i) |= (φ1 ∨ φ2) iff (π, i) |= φ1 or (π, i) |= φ2
 (π, i) |= Xφ iff (π, i + 1) |= φ

 (π, i) |= Fφ iff ∃j ∈ [i,∞).(π, j) |= φ
 (π, i) |= Oφ iff ∃j ∈ [0, i].(π, j) |= φ
In the sequel we use (φ1∧ φ2), (φ1⇒ φ2) and Gφ as abbreviations

of ￢(￢φ1∨￢φ2),

(￢φ1 ∨ φ2) and ￢F ￢φ respectively.

Formalising the General Attacker

We conveniently adopt the IF language as it can specify inputs to
the AVISPA backends and more specifically to SATMC, a successful
SAT-based model checker [75] that will be used in the final validation
phase. The following syntactical conventions are adopted in the sequel.

- Lower-case typewriter fonts, such as na, denote IF constants.
- Upper-case typewriter fonts, such as A, denote IF variables.
- Lower-case italics fonts of 0 arity, such as s indicating a session

identifier, compactly denote IF terms.
- Lower-case italics fonts of positive arity, such as attack(a, v, s),

denote metapredicates

Formal Methods for the Analysis of Security Protocols

123

- that aim at improving the readability of this manuscript, but in
fact do not belong to the current IF formalisation.

- Upper-case italics fonts serve diverse purposes, as specified each
time.

To specify the GA threat model, a number of new facts must be
defined in our language. They are summarised with their informal
meaning in Table1.

If S is a set of facts representing a state, then the state of principal a

is represented by the facts of form 𝑠𝑡𝑎𝑡𝑒𝑟(j, a, es, s) (called state-facts)
and of form ak(a,m) occurring in S. It is assumed that for each session s

and for each principal a there exists at most one fact of the form
𝑠𝑡𝑎𝑡𝑒𝑟(j, a, es, s) in S. This does not prevent a principal from playing
different roles in different sessions.

The dedicated account on the attacker’s knowledge in DY must be
extended as a general account on principals’ knowledge in GA. In
practice, what was the ik fact to represent the DY attacker knowledge is
now replaced by ak, which has as an extra parameter the principal’s
identity whose knowledge is being defined. Incidentally, we
conveniently write down the set of facts in a state by enumerating the
facts and interleaving them a dot. Here is the definition of ak:

ak(a,m) . ak(a, k)
𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑉𝐴𝑅𝑆(𝑎,𝑘,𝑚))
→ ak(a, {𝑚}𝑘) .

LHS

ak(a, {𝑚}𝑘) . ak(a, �̅�)
𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑉𝐴𝑅𝑆(𝑎,�̅�,𝑚))
→ ak(a,m) . LHS

ak(a,𝑚1) . ak(a, 𝑚2)
𝑝𝑎𝑖𝑟𝑖𝑛𝑔(𝑉𝐴𝑅𝑆(𝑎,𝑚1,𝑚2))
→ ak(a, 〈𝑚1,𝑚2〉).LHS

ak(a, 〈𝑚1,𝑚2〉)
𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑉𝐴𝑅𝑆(𝑎,𝑚1,𝑚2))
→ ak(a, 𝑚1) . ak(a, 𝑚2).

LHS
where VARS (𝑡1, . . . , 𝑡ℎ) and LHS abbreviate in each rule,

respectively, all the IF variables occurring in the IF terms represented
by 𝑡1, . . . , 𝑡ℎ and the set of facts occurring in the left hand side of the
rule. Also, k and k are the inverse keys of one another.

Formal Methods for the Analysis of Security Protocols

124

Table 4.1. New facts and their informal meaning
Fact Holds when

𝑠𝑡𝑎𝑡𝑒𝑟(j, a, es, s) Principal a, playing role r, is ready to execute step j
in session s of the protocol, and has internal state

es, which is a list of expressions affecting her
future behaviour.

ak(a,m) Principal a knows message m.
nt(a) Principal a is not trustworthy.
c(n) Term n is the current value of the counter used to

issue fresh terms, and is incremented as s(n) every
time a fresh term is issued.

msg(rs, b, a,m) Principal rs has sent message m to principal a

pretending to be principal b.
contains(db,m) Message m is contained into set db. Sets are used,

e.g., to share data between honest principals.
confidential(m, g) Message m is a secret shared among the group of

principals
g (the set g is clearly populated through

occurrences of contains(g, a) for each principal a

intended to be in g).
transferred(rs,a, b, c,x,s) rs, in the disguise of a, transferred x from a’s

account to c s at b (which intuitively is a bank) in
session s.

Under the GA threat model any principal may behave as a DY
attacker. We may nonetheless need to formalise protocols that
encompass trusted third parties, or where a principal loses her
trustworthiness due to a certain event. Reading through Table 1, it can
be seen that our machinery features the nt(a) predicate, holding of a
principal a that is not to be trusted. It may conveniently be used either
statically, if added to the initial state of principals, or dynamically when
introduced by rewriting rules. It is understood that if all principals but
one are declared as trustworthy, then we are back to the DY threat
model.

The fact c(n) holds of the current counter n used to generate fresh
nonces. For example, c(0) holds in the initial state, and c(s(0)) after the
generation of the first fresh nonce, which takes the value 0. More
generally, if the fact c(na) holds, a fresh nonce na can be issued
producing another state with counter c(s(na)).

Formal Methods for the Analysis of Security Protocols

125

The initial state of the system defines the initial knowledge and the
statefacts of all principals involved in the considered protocol sessions.
Its standard definition is omitted here but can be found elsewhere [77].
Appropriate rewriting rules specify the evolution of the system. Those
for honest principals, which also serve to demonstrate the remaining
facts enumerated in Table 1, are of the form:

msg(rs, 𝑏1, a, 𝑚1). 𝑠𝑡𝑎𝑡𝑒𝑟(i, a, es, s)
𝑠𝑡𝑒𝑝𝑙(𝑉𝐴𝑅𝑆(𝑎,𝑏1,𝑏2,𝑟𝑠,𝑒𝑠,𝑒𝑠

′,𝑚1,𝑚2,𝑠))
→

msg(a, a, 𝑏2,𝑚2) . 𝑠𝑡𝑎𝑡𝑒𝑟(j, a, es', s) . ak(a, 𝑚1). ak(a, 𝑚2),
where l is the step label, i and j are integers and r is a protocol role

(e.g., the NSPK++ has two roles Alice and Bob, also said Initiator and
Responder roles). Rule 2 models the reception by a principal of a
message and the principal’s sending of the next message according to
the protocol. More precisely, it states that if principal a, who is playing
role r at step i with internal state es in session s of the protocol, has
received message m1 supposedly from b1 (while the real sender is rs),
then she can honestly send message m2 to b2. In doing so, a updates
her internal state as es_ and her knowledge accordingly, that is the new
state registers the facts ak(a,m1) and ak(a,m2). Note that rule 2 may
take slightly different forms depending on the protocol step it models.
For example, if j = 1 and a sends the first message of the protocol, the
fact msg(rs, b1, a,m1) does not appear in the left hand side of the rule,
reflecting a’s freedom to initiate the protocol at anytime. Similarly, for
generating and sending a fresh term, c(N) is included in the left hand
side of the rule, while c(s(N)) and ak(a, N) appear in the right hand side
to express the incremented counter and the principal’s learning the
fresh term. A further variant is necessary when the step involves either
a membership test or an update of a set of elements. In this case, facts
of the form contains(db,m) must be properly defined. Facts such as
confidential(m, g) or transferred(rs, b, a, c, x, s) added to the right hand
side express respectively confidentiality for a group of principals, and a
successful transfer of money.

To illustrate the specification of concrete protocol rules we consider
two steps of the NSPK++ protocol. The transition in which B receives
the first message of the protocol (supposedly) from A and replies with
the second protocol message is modelled by the following rule:

msg(RS, A,B,{〈𝐴, 𝑁𝐴〉}KB) . 𝑠𝑡𝑎𝑡𝑒𝑏𝑜𝑏(1, B, [A, KA, KB, G], S) .

c(NB)
𝑠𝑡𝑒𝑝2(𝐵,𝐴,𝑅𝑆,𝐾𝐴,𝐾𝐵,𝑁𝐴,𝑁𝐵,𝐺,𝑆)
→

Formal Methods for the Analysis of Security Protocols

126

msg(B, B, A,{〈𝑁𝐴,𝑁𝐵〉}KA).𝑠𝑡𝑎𝑡𝑒𝑏𝑜𝑏 (3, B,[A, KA, KB, NA, NB,
G],S).ak(B,{ 〈𝐴, 𝑁𝐴〉}KB) . ak(B, NB) . contains(G, A) . contains(G, B)
. confidential(NB, G) .c(s(NB)),

where G represents the group of principals that are allowed to share
the freshly generated nonce NB. This also illustrates our different
treatment of confidentiality with respect to DY’s. While DY reduced
confidentiality of a message to keeping the message confidential from
the attacker, GA requires the original, subtler and unsimplified,
definition of confidentiality: “confidentiality is the protection of
information from disclosure to those not intended to receive it”[78]. For
example, it regards the confidentiality of a message as compromised if
ever anyone beyond its intended peers learns it. To provide another
example of a protocol rule, the completion step 4b in which A receives
and then executes a money transfer from B is modeled by two rules,
one for B’s sending and one for A’s reception. Here is the latter:

msg(RS, B, A, {𝑡𝑟(𝐵, 𝐶, 𝑋)}〈NA,NB〉) . 𝑠𝑡𝑎𝑡𝑒𝑎𝑙𝑖𝑐𝑒(4, A, [B, KA, KB,
NA, NB, G], S)
𝑠𝑡𝑒𝑝4𝑏𝑟𝑒𝑐(𝐴,𝐵,𝐶,𝑅𝑆,𝐾𝐴,𝐾𝐵,𝑁𝐴,𝑁𝐵,𝑋,𝐺,𝑆)
→

 𝑠𝑡𝑎𝑡𝑒𝑎𝑙𝑖𝑐𝑒 (4, A, [B, KA, KB, NA, NB, G], S).ak(A,

{𝑡𝑟(𝐵, 𝐶, 𝑋)}〈NA,NB〉) . ak(A, X) . transferred(RS, B, A, C, X, S)
The rule states the fact transferred(RS, B, A, C, X, S) to record that

RS, who is not necessarily B, transferred X from B’s account to C's

at A (which intuitively is a bank) in session S. This is not to be
confused with {𝑡𝑟(𝐵, 𝐶, 𝑋)}〈NA,NB〉, which is a message expressing the
request of a transfer.

The malicious behaviour of each principal C acting as a DY
attacker can be specified by the following rules:

nt(C).ak(C, M).ak(C, A).ak(C, B)
𝑓𝑎𝑘𝑒(𝐶,𝐴,𝐵,𝑀)
→ msg(C, A, B,

M).LHS

nt(C) . msg(RS, A, B, M)
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑟(𝑅𝑆,𝐴,𝐵,𝐶,𝑀)
→ ak(C, M) . LHS

nt(C) . msg(RS, A, B, M)
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝑅𝑆,𝐴,𝐵,𝐶,𝑀)
→ ak(C, M) . nt(C)

Although the model outlined so far is accurate, it is not the most
appropriate to perform automatic analysis efficiently. This is not a big
issue for validating the NSPK++protocol in particular, but it is in

Formal Methods for the Analysis of Security Protocols

127

general. Themain problem is the specification of themalicious
behaviour of principals. It allows for the forging ofmessages that will
clearly not help to attack the protocol, as they do not correspond to the
forms that the protocol prescribes. In other words, forging messages
that no one will ever accept is of no use to any attacker. Efficiency of
the analysis improves by adopting a refinedmodel ofmalicious activity,
for example by introducing a forged message only if it conforms to one
of the forms that belong to the protocol. More narrow-scoped, though
realistic, impersonate rules detailed elsewhere [26] can easily be recast
in the GA threat model. For example, the following impersonate
rulemodels a principal C who, pretending to be A, sends the
firstmessage of our example protocol to B, who is exactly waiting for a
message of that form:

nt(C) . 𝑠𝑡𝑎𝑡𝑒𝑏𝑜𝑏(2, B, [A, KA, KB, G], S).ak(C, A).ak(C, NA).ak(C,

KB)
𝑖𝑚𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑡𝑒2(𝐶,𝐴,𝐵,𝐾𝐴,𝐾𝐵,𝑁𝐴,𝐺,𝑆)
→

 msg(C, A, B, {〈𝐴, 𝑁𝐴〉}KB) . ak(C, {〈𝐴, 𝑁𝐴〉}KB) . LHS

Formalising Protocol Properties under the General Attacker

One may expect that standard security properties such as
confidentiality and authentication can be routinely specified and
checked under the GA threat model using a model checker. Yet,
confidentiality deserves particular consideration in what the GA model
differs from the DY one.

In general, the confidentiality of a message m w.r.t. a group of
principals g is guaranteed if and only if m is only known to principals in
g. This property is clearly violated anytime a principal a outside g

learns, for any reason, m. However, under DY, where all principals but
the attacker meticulously follow the protocol, the violation is by design
not considered so unless a is the attacker. There are many real
scenarios—ranging from a betrayed person who publishes his/her
partner’s credit card details, to a scenario where a fired employee
discloses sensitive information about its former employer—in which
this violation is significant and therefore not negligible. In the GA
model this confidentiality breach is not overlooked, as it can be

Formal Methods for the Analysis of Security Protocols

128

checked by the following meta-predicate formalising a violation of
confidentiality:

voc(a, m, g) = F(confidential(m, g) ∧ ak(a,m) ∧ ￢contains(g, a))
The negation of the meta-predicate given above corresponds to G in

the model checking problem 1 and represents the confidentiality
property.

The GA threat model paves the way to investigate subtler protocol
properties than confidentiality and authentication. The retaliation is a
common practice in the real world. (Even anyone who is most peaceful
may react under attack—whether this is fortunate or unfortunate lies
outside our focus.) Depending on who reacts against the attacker,
retaliation can be named differently [16]: if it is the victim, then there is
direct retaliation; if it is someone else, then there is indirect retaliation.
Let attack(c, a, b) be a meta-predicate holding if and only if an attacker
c has successfully attacked a victim a (being a ≠ c and a ≠ b) with the
(unaware) support of b (if any). Of course, “has successfully attacked”
denotes the violation of the specific property that the protocol under
analysis is supposed to achieve. Any violation of a protocol property
should make the predicate hold, and therefore the predicate should be
defined by cases. If we focus for simplicity on the didactic attack to the
NSPK++ protocol seen above, which is an illegal money transfer, then
the meta-predicate can be defined as:

attack(c, a, b) = transferred(c, a, b, r, x, s) ∧ c ≠ a (4)
Clearly, this definition can be extended to check other kinds of

attacks. Because not all money transfers are illegal, the second conjunct
in the formula is crucial: the illegal transfers are only those that are not
requested by the account holder.

Direct and indirect retaliation can be respectively modelled as the
following meta-predicates:

direct retaliation(a,c) = F(attack(c,a,b1) ∧XFattack(a, c, b2)) (5)
indirect retaliation(a,c,b) = F(attack(c,a,b) ∧XFattack(b,c,a)) (6)
It can be seen that the formula defined by Definition 4.5 is valid on

those paths where an attacker hits a victim who hits the attacker back.
Each attack can be carried out with the help of potentially different
supporters b1 and b2. By contrast, Definition 6 of indirect retaliation
shows that who hits the attacker back is not the victim but the

Formal Methods for the Analysis of Security Protocols

129

supporter, who perhaps realises what he has just done and decides to
rebel against the attacker.

The definition of anticipation attack is deferred to the next
subsection because it is best demonstrated upon the actual experiments.

Validating the NSPK++ Protocol under the General Attacker

The previous subs ection outlined the model checking problem in
general, and described how to formalise the GA threat model for the
validation of security protocols. For the sake of demonstration, it
presented the formalisation of a step of the NSPK++ protocol. It
concluded with the specification of protocol properties under the GA
threat model.

Having digested the innovative aspects, deriving the full
formalisation of the NSPK++ protocol under the General Attacker,
which is omitted here, became an exercise. That formalisation was fed
to SATMC, a state-of-the-art SAT-based model checker for security
protocols, to carry out the first protocol validation experiments under
GA. The details of SATMC appear elsewhere [76]. Its core is a
procedure that automatically generates a propositional formula. The
satisfying assignments of this formula, if any exist, correspond to
counterexamples (i.e. execution traces of M that falsify G) of length
bounded by some integer k, which can be iteratively deepened. Finding
violations (of length k) on protocol properties boils down to solving
propositional satisfiability problems. SATMC accomplishes this task by
invoking state-of-the-art SAT solvers, which can handle satisfiability
problems with hundreds of thousands of variables and clauses.

In running SATMC over the formalisation of the NSPK++ protocol,
we considered the classical scenario in which a wants to talk with b in
one session and with c in another session. Because the formalisation
accounted for the new threat model, we were pleased to observe that it
passed simple sanity checks: SATMC outputs the known
confidentiality attack whereby c learns nb, and the known
authentication attack whereby c impersonates a with b. As these are
well known, they are omitted here. More importantly, the tool also
reported what are our major findings: b’s confidentiality attack upon na,
and interesting retaliation attacks, which are detailed in the following.
We argue that this is the first mechanised treatment of these subtle

Formal Methods for the Analysis of Security Protocols

130

properties, laying the ground for much more computer-assisted analysis
of security protocols.

Formal Methods for the Analysis of Security Protocols

131

0: [step_1(a,c,ka,kc,na,nb,set_ac,1)]
1: [overhear(c,a,a,c,{na,a}kc)]
2: [decrypt(c,inv(kc),{na,a})]
3: [impersonate_2(c,a,b,ka,kb,na,set_ab,2)]
4: [step_2(b,a,c,ka,kb,na,nb,set_ab,2)]
5: [decrypt(b,inv(kb),{na,a})]
Fig.4. 4. Trace of NSPK++ featuring b’s confidentiality attack

6: [impersonate_3(b,c,a,ka,kc,na,nb,set_ac,1)]
7: [step_3(a,c,b,ka,kc,na,nb,set_ac,1)]
8: [overhear(c,a,a,c,{nb}kc)]
9: [decrypt(c,inv(kc),{nb})]
10: [impersonate_3_rec(c,a,b,ka,kb,nb,set_ab)]
11: [step_3_rec(b,a,c,ka,kb,na,nb,set_ab,2)]
12: [impersonate_4a_rec(c,a,b,c,ka,kb,na,nb,set_ab,2)]
13: [step_4a_rec(b,a,c,c,ka,kb,na,nb,1K,set_ab,2)]
14: [impersonate_4b_rec(b,c,a,b,ka,kc,na,nb,set_ac,1)]
15: [step_4b_rec(a,c,b,b,ka,kc,na,nb,2K,set_ac,1)]
Fig. 4.5. Trace of NSPK++ (continuation) featuring b’s indirect

retaliation

Figure 4.4 reports the protocol trace that the tool outputs when
checking a violation of confidentiality by the formula voc(A, M, G).
Precisely, the trace is obtained by mildly polishing the partial-order
plan returned by SATMC. Each trace element reports the label of the
rule that fired, and hence the trace can be interpreted as the history of
events leading to the confidentiality attack.

A full description of the trace requires a glimpse at the protocol
formalization — each rule label in a trace element must be matched to
the actual rule—but we will see that the trace can be automatically
converted into a more user-friendly version. Element 0 means that
principal a initiates the protocol with principal c. Elements 1, 2 and 3
show c’s illegal activities respectively of getting the message,
decrypting it and forging a well-formed one for principal b. Although c
does not need in practice to overhear a message meant for him, element
1 is due to our monolithic formalisation of the acts of receiving a
message and of sending out its protocol-prescribed reply. Therefore, for
a principal to abuse a message, the principal must first overhear it.

Formal Methods for the Analysis of Security Protocols

132

Element 3 reminds that c’s forging of the message for b counts as an
attempt to impersonate a. The last two elements signal b’s legal
participation in the protocol by receiving the message meant for him,
and his subsequent deciphering of the nonce. SATMC now returns
because voc(b, na, set_ac) holds (where the set set_ac = {a, c}).

To illustrate the detection of a retaliation attack, SATMC can be
launched on a significant property such as indirect retaliation(A, B, C).
It returns a trace that continues as in Figure 4.5 the one seen in Figure
4.4. The impersonate rules show that both b and c are acting illegally in
this trace, a development that has never been observed by previous
analyses under DY. Elements 6 and 7 show that b is impersonating c
with a, who naively replies to c. The next three elements confirm c’s
attempt at fooling b, who legally replies as element 11 indicates. Now c
can finalise his attack as in elements 12 and 13. The latter element
indicates the firing of rule 4a, which makes attack(c, a, b) hold. The last
two elements witness b’s retaliation attack by making attack(b, c, a)
hold. Therefore, by Definition 4.6, the property indirect retaliation(a, c,

b) holds, indicating that the tool reports the retaliation attack described
above (Figure 3.3).

Formal Methods for the Analysis of Security Protocols

133

Fig. 4.6. Graphics of b’s indirect retaliation in NSPK++

A graphical illustration of this retaliation attack is in Figure 6, and
can be easily built. First, we run a procedure to transform the output of
the tool into a more readable and intuitive version. Then, we coherently
associate the significant phrases of this version to graphical elements,
and hence build the image. The behaviours and interactions of the
principals can be observed by looking at the figure from top to bottom.
The overhear and impersonate icons emphasise the significant number
of illegal steps taken by both principals c and b).

We run the tool repeatedly on the protocol model, each time
adjusting the property to check. In particular, we tried an alternative
definition of indirect retaliation where the X operator was left out. The
tool returned a trace leading to a state where both attacks held, as if
retaliation did not need be triggered by another attack. This called for
more attention at the trace.

In consequence, we observed from element 3 in Figure 4.4 that c
initialises his attack very early—precisely, with his impersonation of a
based upon the repetition to b of a’s nonce na. This means that b learns

Formal Methods for the Analysis of Security Protocols

134

na when c has not yet learned nb and hence cannot attack yet. We thus
defined the self-explaining fact nonce_leak(c, a, b). In the GA threat
model, it is plausible that b exploits his knowledge before c does. This
can be interpreted as a scenario in which a potential victim realises that
he is going to be attacked, and therefore reacts successfully before
being actually attacked. We name such a successful reaction
anticipation attack and define it as a meta-predicate below. For the sake
of efficiency, we decided to add a rule that introduces the fact nonce
leak(C, A, B) following c’s attack initialisation:

confidential(NA, G) . ak(B, NA) . ￢contains(G, B) .
ak(B, 𝐾𝐵−1) . msg(C, A, B, {〈𝐴, 𝑁𝐴〉}KB)

 𝑖_𝑔𝑜𝑡_𝑦𝑜𝑢(𝐶,𝐴,𝐵,𝑁𝐴,𝐺)
→

nonce_leak(C, A, B)
A meta-predicate attack init(c, a, b) must be introduced to formalise

some c’s act of initialising an attack, which is yet to be carried out,
while interleaving sessions with some a and b. In the same fashion of
Definition 4 of attack(c, a, b), we provide a definition that is
appropriate for the attack under analysis, and corresponds to the nonce
leak:

attack_init(c, a, b) = nonce_leak(c, a, b)
The definition of anticipation attack can be given now. It insists that

an attack initiated by someone, such as c, is followed by an actual
attack carried out by someone else, such as b:

anticipation_attack(c, a, b) = F(attack_init(c, a, b) ∧
 XFattack(b, c, a)) (7)
SATMC validated our intuition.When run on anticipation attack(C,

A, B) as a goal, the tool produced the partial order plan reported in
Figure 7. Element 6 in the trace indicates that c leaked a nonce created
by a by sending it to b. So, the meta-predicate attack_init(c, a, b)
holds.Moreover, the last two elements witness b’s anticipation attack by
making attack(b, c, a) hold. Therefore, by Definition 4.7, we have that
anticipation_attack(c, a, b) is true, which signifies that the tool reports
the anticipation attack described above (Figure 4.8).

Formal Methods for the Analysis of Security Protocols

135

0: [step_1(a,c,ka,kc,na,nb,set_ac,1)]
1: [overhear(c,a,a,c,{na,a}kc)]
2: [decrypt(c,inv(kc),{na,a})]
3: [impersonate_2(c,a,b,ka,kb,na,set_ab,2)]
4: [overhear(b,c,a,b,{na,a}kb)]
5: [decrypt(b,inv(kb),{na,a})]
6: [i_got_you(c,a,b,na,set_ac)]
7: [impersonate_3(b,c,a,ka,kc,na,nb,set_ac,1)]
8: [step_3(a,c,b,ka,kc,na,nb,set_ac,1)]
9: [impersonate_4b_rec(b,c,a,b,ka,kc,na,nb,set_ac,1)]
10: [step_4b_rec(a,c,b,b,ka,kc,na,nb,2K,set_ac,1)]
Figure. 4.7. Trace of NSPK++ featuring b’s anticipation attack

Figure. 4.8. Graphics of b’s anticipation attack in NSPK++

Various experiments produced, that SATMC reported a trace
describing the following scenario. In a session, a discloses to c her

Formal Methods for the Analysis of Security Protocols

136

nonce generated for b. In another session, a discloses to b another
nonce of hers generated for c. In consequence, both b and c become
capable of attacking each other with a’s support if needed. Moreover, b
and c may be initially unaware of each other’s capability of attack. This
reflects the real-world situation in which someone creates strife in a
couple that starts fighting.

Conclusions

The General Attacker threat model seems most appropriate to the
present social/technological setting. Reasoning that was impossible
under DY can now be carried out, highlighting protocol niceties that are
routinely overseen.

Retaliation teaches us that we can perhaps live with flawed
protocols. We are used to go back to design when a protocol is found
flawed, even if already deployed. However, an attack that can be
retaliated may in practice convince an attacker to refrain from attacking
in the first place. If the “cost” of attacking overdoes its “benefits” then
the attacker will not be carried out. Retaliation makes that precondition
hold.

Anticipation teaches us to ponder the entire sequence of events
underlying an attack. An attack typically is an interleaving of legal and
illegal steps rather than a single illegal action. Therefore, we may face a
scenario, unreported so far, where a principal mounts an attack by
successfully exploiting for his own sake the illegal activity initiated but
not yet finalised by someone else. This is routine for the present
hackers’ community.

Tasks for laboratory work №4.
1. According to given in Table 4.2 variant of the security

protocols define its properties.
2. According to given in Table 4.2 variant use the threat model

and automatically validate a protocol under the new threats, so
that retaliation and anticipation attacks can automatically be
found.

Table 4.2. Variants
№ Protocol Threat model
1 S/MIME Dolev-Yao
2 VPN Rational Attacker

Formal Methods for the Analysis of Security Protocols

137

3 IPSec General Attacker
4 TLS Dolev-Yao
5 SSL Rational Attacker
6 HTTPS General Attacker
7 PGP Dolev-Yao
8 S-HTTP Rational Attacker
9 KERBEROS General Attacker
10 SET Rational Attacker

Requirements to the report
The report should consists of:
- title sheet;
- the aim and the task of the laboratory work;
- the list of the defined properties of the security protocols;
- results of the usage of the threat model and validation of the

protocol under the new threats with the demonstration that retaliation
and anticipation attacks can automatically be found;

- conclusions.

Advancement questions

1. Can Dolev-Yao be considered the standard threat model to
study security protocols and why?

2. Can Dolev-Yao attacker control the entire network without
perform cryptanalysis and how?

3. Can the relation attack be captured in the standard Dolev-Yao
threat mode and why?

4. What tool is able to successfully tackle the problem of
determining whether the concurrent execution of a finite
number of sessions of a protocol enjoys certain security
properties ?

5. What are the main syntactical conventions are adopted to
Formalize the General Attacker?

6. How the dedicated account on the attacker’s knowledge in
Dolev-Yao must be extended?

7. What the initial state of system defines?
8. What are the main definitions of SAT-based model?
9. How to define properties of security protocols?

Formal Methods for the Analysis of Security Protocols

138

10. How to validate a protocol under the new threats, so that
retaliation and anticipation attacks can automatically be found?

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

139

3 FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

3.1 Seminar №1. Formal Goal-Oriented Development of
Resilient MAS in Event-B

The aim and the task of the laboratory work
The aim of this laboratory work is to get acquainted with a formal

goal-oriented approach to development of resilient multi agent system.
Task of the work:
- to define goals in Event-B and ensure goal reachability by

refinement.
- To defined a set of modelling and refinement patterns that

describe generic solutions common to formal modelling of multi agent
system

- Use the rigorous modelling of the impact of agent failures on
goal achieving I order to build a dynamic goal reallocation mechanism
that guarantees system resilience in presence of agent failures

Preparation for laboratory work
- to clarify the aims and objectives;
- to study theoretical material given in the description.

Theoretical material

Introduction

Goal-Oriented Development [79,80] has been recognised as an
useful framework for structuring and specifying complex system
requirements. In goal-oriented development, the system requirements
are defined in terms of goals - the functional and non-functional
objectives that a system should achieve. Often changes in system
operational environment, e.g., caused by failures of agents -
independent system components of various types - might hinder
achieving the desired goals. Hence, to ensure system resilience [81],
i.e., guarantee its dependability in spite of the changes, we need
formally verify reachability of the targeted goals. Traditionally, such a
verification is undertaken by abstracting implementation up to

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

140

requirements level and model-checking satisfiability of goals. However,
such an approach suffers from a state explosion that is especially
prohibitive for such applications as multi-robotic systems [82].

Let us consider a formal development approach that ensures goal
reachability “by construction”. It is based on refinement in Event-B.
Event-B [83] is a formal top-down development approach to correct-
by-construction system development. The main development technique
- refinement - allows us to ensure that a concrete specification preserves
globally observable behaviour and properties of abstract specification.
Verification of each refinement step is done by proofs. The Rodin
platform [84] automates modelling and verification in Event-B.
Currently Event-B is actively used within EU project DEPLOY [85] to
model dependable systems from various domains.

The goal-oriented development by defining a set of specification
and refinement patterns is formalised. The formalisation reflects the
main concepts of the goal- oriented engineering. In particular, we
demonstrate how to define system goals at different levels of
abstraction and guarantee goal reachability while specifying
collaborative agent behaviour. Moreover, we propose refinement
patterns that allow the system to dynamically reallocate goals from
failed agents to healthy ones and per se, guarantee resilience. A
development of an autonomous multi- robotic system illustrates
application of the proposed patterns.

Formal Modelling and Refinement in Event B

Let us consider formal framework - Event-B. The Event-B
formalism is an extension of the B Method [86]. It is a state-based
formal approach that promotes the correct-by-construction development
paradigm and formal verification by theorem proving. Event-B has
been specifically designed to model and reason about parallel,
distributed and reactive systems.

Modelling in Event-B

In Event-B, a system model is specified using the notion of an
abstract state machine [87]. An abstract state machine encapsulates
the system state represented as a collection of model variables, and
defines operations on this state, i.e., it describes the dynamic behaviour

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

141

of the modelled system. A machine may also have the accompanying
component, called context. A context might include user- defined
carrier sets, constants and their properties, which are given as a list of
model axioms. In Event-B, the variables are strongly typed by the
constraining predicates called invariants. Moreover, the invariants
specify important properties that should be preserved during the system
execution.

The dynamic behaviour of the system is defined by the set of
atomic events. Generally, an event can be defined as follows:

evt ̂any ul where g then S end
where vl is a list of new local variables (parameters), g is the event

guard, and S is the event action. The guard is a state predicate that
defines the conditions under which the action can be executed, i.e.,
when the event is enabled. If several events are enabled at the same
time, any of them can be chosen for execution non-deterministically. If
none of the events is enabled then the system deadlocks. In general, the
action of an event is a parallel composition of deterministic or non-
deterministic assignments.

Event-B Refinement

Event-B employs a top-down refinement-based approach to system
development. Development starts from an abstract system specification
that non-deterministically models the most essential functional
requirements. In a sequence of refinement steps we gradually reduce
non-determinism and introduce detailed design decisions. In particular,
we can replace abstract variables by their concrete counterparts, i.e.,
perform data refinement. In this case, the invariant of the refined
machine formally defines the relationship between the abstract and
concrete variables. Via such a gluing invariant we establish a
correspondence between the state spaces of the refined and the abstract
machines.

Often a refinement step introduces new events and variables into
the abstract specification. The new events correspond to the stuttering
steps that are not visible at the abstract level, i.e., they refine implicit
skip. To guarantee that the refined specification preserves the global
behaviour of the abstract machine, we should demonstrate that the
newly introduced events converge. To prove it, we need to define a

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

142

variant - an expression over a finite subset of natural numbers - and
show that the execution of new events decreases it. Sometimes,
convergence of an event cannot be proved due to a high level of non-
determinism. Then the event obtains the status anticipated. This
obliges the designer to prove at some later refinement step, that the
event indeed converges.

Each refinement step requires to verify a number of proof
obligations that ensure that the refined specification adheres to its
abstract counterpart [87]. The verification efforts, in particular,
automatic generation and proving of the required proof obligations, are
significantly facilitated by the Rodin platform [84].

Refinement and proof-based verification of Event-B offers the
designers a scalable support for the development of such complex
systems as multi-agent systems (MAS). MAS are decentralised
distributed systems composed of agents asynchronously
communicating with each other. Agents are computer programs acting
autonomously on behalf of a person or organisation, while coordinating
their activities by communication [88]. MAS are increasingly used in
various critical applications such as factories, hospitals, rescue
operations in disaster areas, etc.

A Formal View of Goal-Oriented Multi-Agent System. Patterns for
Goal-Oriented Development

The goal-oriented engineering facilitates structuring complex
system requirements in terms of goals - objectives that the system
should meet [80]. In this subsection we focus on modelling functional
goals, i.e., the goals defining objectives of the services that the system
should deliver. We propose a number of specification and refinement

patterns that interpret essential activities of goal-oriented engineering
in terms of Event-B refinement.

A pattern in Event-B is an abstract machine that defines a generic
modelling solution that can be reused in similar developments via
instantiation. Usually, an Event-B pattern contains abstract types,
constants and variables. The context of such a model constraints the
instantiation by defining the properties that should be satisfied by
concrete instantiations of abstract data structures. The invariant
properties of a pattern, once proven, remain valid for all instantiations.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

143

The aim of defining a pattern is to capture experience gained in
modelling a certain problem. To illustrate how patterns are defined, let
us now present a pattern that allows the designers to explicitly define
goals while modelling a system in Event-B. We call it Abstract Goal

Modelling Pattern.

Abstract Goal Modelling Pattern

Let GST ATE be an abstract type defining the system state space3.
Moreover, let Goal be a non-empty proper subset of GST AT E that
abstractly defines the given system goals. We say that the system has
achieved the desired goals if its current state belongs to Goal. Both
GST ATE and Goal are the abstract types. Together with their
properties they are defined in the model context as follows:

Goal and Goal GST ATE.
Let us note that GSTATE and Goal are generic parameters of the

initial pattern. During a system development, we should supply their
concrete instantiations that satisfy the properties shown above.

While modelling a system in Event-B, we should ensure that the
system under development achieves the desired goal. We can formally
express this by requiring that the system terminates in a state belong to
Goal. The machine M_AGM is defined according to the Abstract Goal

Modelling Pattern:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

144

The dynamic behaviour of the system is abstractly modelled by the
event Reaching_Goal. The system terminates when Reaching_Goal
becomes disable, i.e., when a state satisfying Goal is reached.

The event Reaching_Goal has the status anticipated. Hence, in the
machine M_AGM goal reachability is postulated rather than proved.
However, it also obliges us to prove (at some refinement step) that the
event or its refinements converge. Therefore, while refining a concrete
specification defined according to Abstract Goal Modelling Pattern,
we will be forced to prove goal reachability.

Let us assume that we have a collection of Event-B patterns: P1, P2,

..., Pn that refine each other in the following way:
P1 is refined by P2 ... is refined by Pn.
Such a refinement chain expresses a generic development by

refinement. Abstract data structures of all the involved patterns become
generic parameters of the development. Each pattern abstractly defines
a solution for specifying a certain modelling aspect. Therefore, each
refinement step has a rationale behind it - its meta-level description. We
use it to formulate modelling aspects that the refinement transformation
aims at defining. The result of refinement transformation is called a
refinement pattern.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

145

Next we propose several refinement patterns that allow us to
implement the ideas of goal-oriented engineering in Event-B
refinement. We start from defining Goal Decomposition Pattern.

Goal Decomposition Pattern

The main idea of goal-oriented development is to decompose the
high-level system goals into a set of subgoals. This is an iterative
process that aims at building the hierarchy of system goals. Essentially,
subgoals define intermediate stages of the process of achieving the
main goal.

The purpose of Goal Decomposition Pattern is to explicitly model
subgoals in the system specification. While defining this pattern, we
should ensure that high- level goals remain achievable. Hence the
refinement pattern should reflect the relation between the high-level
goals and subgoals. Moreover, it should ensure that high-level goal
reachability is preserved and can be defined via reachability of lower-
layer subgoals.

In this subsection we assume that subgoals are independent of each
other. This means that reachability of any subgoal does not affect
reachability of another one. Moreover, while a certain subgoal is
reached, it remains reached, i.e., the system always progresses towards
achieving its goals. Formally, it can be expressed as a stability property
with respect to some state predicate P:

Stable(P) “once P becomes true it remains true”.

In Event-B, stability properties can be easily expressed by
introducing auxiliary variables for storing the previous value of the
state and then formulating stability properties as the invariant properties
of the form:

P(prev state) = TRUE P(state) = TRUE.

To express a goal decomposition in terms of Event-B, let us define
a corresponding refinement pattern. We present it by the machine
M_GD. The new pattern allows us to introduce a number of subgoals
into our system model and express their reachability. Moreover, the
refinement relation between patterns allows us to express reachability
of the main goal via reachability of its subgoals.

Let us assume for simplicity, that system goal Goal is achieved by
reaching three subgoals. The subgoals are defined as corresponding

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

146

variables of the M_GD machine: Subgoali, Subgoal2, and Subgoal3.
The goal independence assumption allows us to partition high-level
goal state space GST ATE into three non-empty subsets: SGST AT E1,

SGST ATE2, SGST ATE3. We define the subgoals as follows:
Subgoali and Subgoali SGSTATEi, i 1..3.

To establish a relationship between the new state spaces SG_STATEi, i
 1..3, of the M_GD machine and the abstract state space of M_AGM
machine we define the following function:

State_map SG_STATE1 x SG_STATE2 x SG_STATE3 GSTATE,

where designates a bijection function. Essentially it partitions
the original goal state space into three independent parts.

To postulate that the main goal is reached if and only if all three
subgoals are reached, we add an axiom into the context of the M_GD
machine:

GoalsgsgsgmapState

SubgoalsgSubgoalSubgoalsgsgsgsg

)321(_

313,2,1 321

Refinement performed according to the Goal Decomposition Pattern is
an example of the Event-B data refinement. We replace the abstract
variable gstatei with the new variables gstatei SG_STATEi, i 1..3.
The new variables model the state of the corresponding subgoals. The
following gluing invariant allows us to prove data refinement:

)321(_ gstategstategstatemapStategstate

Essentially the M_GD machine decomposes the Reaching_Goal
event of the M_AGM machine into three similar events
Reaching_SubGoali, i 1..3:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

147

Let us observe that we can easily verify that the following stability

property holds for the pattern M_GD:

)(

)()(

33

2211

SubgoalgstateStable

SubgoalgstateStableSubgoalgstateStable

The proposed Goal Decomposition Pattern can be repeatedly used

to refine subgoals into the subgoals of finer granularity until the desired
level of details is reached.

Agent Modelling Pattern

The elaborated Abstract Goal Modelling and Goal Decomposition
patterns allow us to specify the system goal(s) at different levels of
abstraction. In multi-agent systems, (sub)goals are usually achieved by
system agents. Agents are independent entities that are capable of
performing certain tasks. In general, the system might have several
types of agents that are distinguished by the type of tasks that they are
capable of performing. The next refinement pattern - Agent Modelling

Pattern - allows us to model agents and associate them with goals.
We introduce the set AGENTS that abstractly defines the set of

system agents. In this refinement pattern we also introduce a concept of
agent eligibility. An agent is eligible if it is capable of achieving a
certain task (subgoal). We define the non-empty sets EL_AG1,

EL_AG2, and EL_AG3 of the agents eligible to achieve each particular
subgoal.

Agent might fail while trying to achieve a certain subgoal. Then it
is removed from the dynamic set of the eligible agents represented by
the variable eligi: eligi ELAGi, i 1..3.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

148

A goal is achieved if there is at least one eligible agent associated
with it. This is formulated as the corresponding invariant property in
the pattern:

 321 eligandeligandelig
The dynamic part of the Agent Modelling Pattern is defined in the

machine M_AM. Since we assumed that the agents can fail, the goal
assigned to the failed agent cannot be reached. To reflect this
assumption in our model, we refine the abstract event
Reaching_SubGoali by two events Successful_Reaching_SubGoali and
Failed_Reaching_SubGoali, i 1..3, which respectively model
successful and unsuccessful reaching of the subgoal by some eligible
agent:

In the guard of the event Failed_Reaching_SubGoali we restrict

possible agent failures by postulating that at least one agent associated
with the subgoal remains operational: card(eligi) > 1, i 1..3. This
assumption allows us to change the event status from anticipated to
convergent. In other words, we are now able to prove that, for each
subgoal, the process of reaching it eventually terminates. To prove the
convergence we define the following variant expression:

card(elig1) + card(elig2) + card(elig3).

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

149

When an agent fails, it is removed from a corresponding set of
eligible agents eligi. This in turn decreases the value of card(eligi) and
consequently the whole variant expression. On the other hand, when an
agent succeeds in reaching the goal, all the events become disabled,
thus ensuring system termination as well.

In practice, the constraint to have at least one operational agent
associated with our model can be validated by probabilistic modelling
of goal reachability. Let us also note that for multi-robotic systems with
many homogeneous agents this constraint is usually satisfied.

Agent Refinement Pattern

Above we have defined the notion of agent eligibility quite
abstractly. We establish the relationship between subgoals (tasks) and
agents that are capable of achieving them. The last refinement pattern,
Agent Refinement Pattern, aims at unfolding the notion of agent
eligibility. Here we define the agent eligibility by introducing agent
attributes - agent types and agent statuses. An eligible agent will be an
operational agent that belongs to a particular agent type.

We define an enumerated set of agent types AG_TYPE = {TYPE1,

TYPE2, TYPE3} and establish the correspondence between abstract sets
of eligible agents and the corresponding agent types by the following
axioms:

3..1,)(_ iTYPEiagatypeAGiELagag
Fig.5.1. An agent is eligible to perform a certain subgoal if it has

the type associated with this subgoal.
An agent might be operational or failed. To model the notion of

agent status we define an enumerated set AGSTATUS = {OK, KO},
where constants OK and KO designate operational and failed agents
correspondingly.

Below we present an excerpt from the dynamic part of the Agent

Refinement Pattern - the machine M_AR. We add a new variable
astatus to store the dynamic status of each agent:

astatus AGENTS AG_STATUS.
Moreover, we data refine the variables eligi. The following gluing

invariants relate them with the concrete sets:

3..1},)(

)(|{

iOKaastatus

TYPEiaatypeAGENTSaaelig i

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

150

In our case, the dynamic set of agents eligible to perform a certain
subgoal becomes a set of active agents of the particular type. The event
Failed_Reaching_SubGoal1 is now refined to take into account the
concrete definition of agent eligibility. The event also updates the status
of the failed agent.

As mentioned above, to prove the defined goal reachability

property, we had to make the assumptions related to agent reliability,
i.e., assume that some agents remain operational to successfully
complete the goal achieving process. To validate this assumption, we
can employ quantitative assessment probabilistic model checking
techniques.

To enable probabilistic analysis of Event-B models in the
probabilistic model checker PRISM, we can rely on the continuous-
time probabilistic extension of the Event-B framework. The idea of this
approach is as follows. We annotate actions of all model events with
real-valued rates (e.g.,failure rate, service rate) and then transform such
a probabilistically augmented Event-B specification into a continuous-
time Markov chain, which we can represent in PRISM. Then we can
assess the probability of achieving the goal as well as to compare
several alternative system configurations.

The resilience-explicit goal-oriented refinement approach presented
above allowed us to identify the key concepts required for formal
development of resilient MAS. It has inspired as to propose a
conceptual framework for goal-oriented reasoning about resilient MAS

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

151

that puts a specific emphasis of rigorous definition of of system
reconfigurability.

Case Study: a Multi-Robotic System. A Case Study Description

As a case study we consider a multi-robotic system. The goal of the
system is to coordinate identical robots to get a certain area cleaned.
The area is divided into several zones, which can be further divided into
a number of sectors. Each zone has a base station - a static computing
and communicating device - that coordinates the cleaning of the zone.
In its turn, each base station supervises a number of robots by assigning
cleaning tasks to them.

A robot is an autonomous electro-mechanical device - a special
kind of a rover that can move and clean. The base station may assign a
robot a sector a certain area in the zone - to clean. As soon as the robot
receives a new cleaning task, it autonomously travels to this area and
starts to clean it. After successfully completing its mission, it returns
back to the base station to receive a new order. The base station keeps
track of the cleaned sectors. A robot may fail to clean the assigned
sector. In that case, the base station assigns another robot to perform
this task. To ensure that the whole area is eventually cleaned, each base
station in its turn should ensure that its zone is eventually cleaned.

The system should function autonomously, i.e., without human
intervention. Such kind of systems are often deployed in hazardous
areas (nuclear power plants, disaster areas, mine fields, etc.). Hence
guaranteeing system resilience is an important requirement. Therefore,
we should formally demonstrate that the system goal is achievable
despite possible robot failures.
Pattern-Driven Refinement of a Multi-Robotic System

Let us consider the case study that describes the formal
development of a multi-robotic system in Event-B. The development is
concluded via instantiation of the proposed patterns, with the goal
decomposition pattern being applied twice in a row.

Abstract model. The initial model defined by the machine
MRS_Abs specifies the behaviour of a multi-robotic system according
to the Abstract Goal Modelling Pattern. We apply this pattern by

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

152

instantiating abstract variables with the concrete values and specifying
events that model system behaviour.

The state space of the initial model is defined by the type BOOL.
The value TRUE corresponds to the situation when the desired goal is
achieved (i.e., the whole territory is cleaned), while FALSE represents
the opposite situation.

Similarly to the pattern machine M_AGM, the machine MRS_Abs
contains an event, CleaningTerritory, that models system behaviour. It
abstractly represents the process of cleaning the territory, where a
variable completed € BOOL models the current state of the system
goal. This event is constructed according to the pattern event
Reaching_Goal by taking all the instantiations into account, as shown
below:

The system continues its execution until the whole territory is

cleaned, i.e., as long as completed stays FALSE. At this level of
abstraction, the event CleaningTerritory has the anticipated status. In
other words, similarly to the abstract pattern, we delay the proof that
the event eventually converges to subsequent refinements. It is easy to
see that the machine AbsMRS is an instantiation of the pattern machine
M_AGM, where the abstract type GSTATE its replaced with BOOL,
the constant Goal is instantiated with a singleton set {TRUE}, and the
variable gstate is renamed into completed.

First refinement. The initial model specifies system behaviour in a
highly abstract way. It models the process of cleaning the whole
territory. The goal of the first refinement is to model the cleaning of the

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

153

territory zones. Refinement is performed according to the Goal

Decomposition Pattern.
In the first refinement step resulting in the machine MRS_Ref1, we

augment our model with representation of subgoals. The whole territory
is divided into n zones, n N and n >= 1. We associate the notion of a
subgoal with the process of cleaning a particular zone. Thus a subgoal
is achieved when the corresponding zone is cleaned. A new variable
zone-completed represents the current subgoal status for every zone.
The value TRUE corresponds to the situation when the certain zone is
cleaned:

...1_ BOOLncompletedzone
The refined model MRS_Ref1 is built as an instantiation of the

Goal Decomposition Pattern machine M_GD, where the subgoal
states are defined as elements of the variable zone_comvleted, i.e.,

...1),(_ niforicompletedzonegstatei
This observation suggests the following gluing invariant between

the initial and the refined models:
}{]..1[_ TRUEncompletedzoneTRUEcomleted

The invariant can be understood as follows: the territory is
considered to be cleaned if and only if its every zone is cleaned.

The pattern events Reaching.SubGoali correspond to a single event
Cleaning Zone.

Second refinement. In the development of a multi-robotic system

we should apply the goal decomposition pattern twice, until we reach
the level of “primitive” goals, i.e., the goals for which we define the
classes of agents eligible for execution of these goals

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

154

Every zone in our system is divided into k sectors, k € N and k > 1.
A robot is responsible for cleaning a certain sector. We associate the
notion of a subsubgoal (or simply task) with the process of cleaning a

particular sector. The task is completed when the sector is cleaned. A
new variable sector -completed represents the current task status for
every sector.

)..1(..1_sec BOOLkncompletedtor
The refined model is again built as an instantiation of the Goal

Decomposition Pattern, where the subsubgoal states are defined as the
elements of the variable sector_completed, i.e.,

kjniforjicompletedtorgstateij ..1,..1),)((_sec
A gluing invariant expresses the relationship between subgoals and

tasks:

}){]..1)[(_sec

)(_(..1

TRUEkzonecompletedtor

TRUEzonecompletedzonenzonezone

The invariant postulates that any zone is cleaned if and only if its

every sector is cleaned. The abstract event CleaningZone is refined by
the event CleaningSector. The subsubgoal will be achieved if this
section is eventually cleaned:

Now we have reached the desire level of granularity of our

subgoals. In the next refinement step (the machine MRS_Ref3) we are
going to augment our model with an abstract representation of agents.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

155

Third refinement. The next refined model of our development is
constructed according to the refinement Agent Modelling Pattern. As a
result, we introduce the abstract set AGENTS, and its subset ELIG
containing the eligible agents for executing the tasks. A new variable
elig represents the dynamic set of (currently available) eligible agents.
Following the proposed pattern, we should also guarantee that there
will be at least one eligible agent for cleaning the sector. This property
is formulated as an additional invariant: elig .

Moreover, according to the pattern, we need abstractly introduce
agent failures. This is achieved by refining the abstract event
CleaningSector by two events SuccessfulCleaningSector and
FailedCleaningSector, which respectively model successful and
unsuccessful execution of the task by some eligible agent:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

156

Following the proposed pattern, we add in the event

FailedCleaningSector the guard card(elig) > 1 to restrict possible agent
failure in task performance. Let us also note that for multi-robotic
systems with many homogeneous agents this constraint is not
unreasonable. This assumption allows us to prove the convergence of
the goal-reaching events, i.e., to prove that the process of cleaning the
territory eventually terminates.

Fourth refinement. Finally, the Agent Refinement Pattern for
introducing agent types and their statuses is applied to produce the last
refined model of our multi-robotic system. In this refinement step we
explicitly define the agent types - robots and base stations. We partition
our abstract set AGENTS by disjointed non-empty subsets RB and BS,
that represent robots and base stations respectively. In this case study
robots perform the cleaning task. Hence our abstract set of eligible
agents is completely represented by robots: ELIG = RB. Robots might

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

157

be active or failed. We introduce the enumerated set STATUS, which in
our case has two elements {active, failed}.

At previous refinement step we have modelled agent faults while
performing their tasks in a very abstract way. Now we will specify
them more concretely. We assume that only robots may fail in our
multi-robotic system. Their dynamic status is stored in the variable
rbstatus:

STATUSRBstatusrb _ .
The abstract variable elig is now data refined by the concrete set:

}.)(_)(|{ activeastatusrbRBaatypeAGENTSaaelig

The concrete events are also built according to the proposed pattern.
For instance, the event FailedCleaningSector can now be specified as
follows:

An overview of the development of an autonomous multi-robotic

system according to the proposed specification and refinement patterns
is shown in the Fig. 5.1.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

158

Fig. 5.1. Overview of the development

While modelling the behaviour of a multi-robotic system, we have
shown that refinement process allows us also to discover restrictions
that we have to impose on system behaviour to guarantee its resilience.
In our case, the goal was achievable only if at least one robot remains
healthy. Feasibility of such a restriction can be checked
probabilistically based on the failure rates of robots.

Tasks for seminar 1.
1. Preparation (determining) of the theme for the work (abstract

analytical review, development) and clarifying the tasks.
Topics of work can be formed by students on their own and agreed

with the leaders on the basis of the indicative list:
– formal development and quantitative assessment of a resilient

multi-robotic system;
– formal reasoning about resilient goal-oriented multi-agent

systems;

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

159

- integrating event-b modelling and discrete-event simulation to
analyse resilience of data stores in the cloud;

- biological immunity and software resilience;
- dynamic software diversity for resilient redundant embedded

systems;
- designing a resilient deployment and reconfiguration

infrastructure for remotely managed cyber-physical systems.
2. Search of the subject information (library, the Internet) and its

preanalysis.
Submission of abstract and presentation in English.
Guidelines and a list of recommended reading to abstracts issued

individually.
3. The report plan development and project presentation.
Report plan (and presentation) includes the preparation of the

following sections:
- introduction of (motivation, previous works, state-of-art, the main

task of the abstract, the structure and characteristics of the content, the
work plan);

- a systematic presentation of the basic parts of the report
(classification schemes, the characteristic of models, methods, tools,
techniques in groups, the choice of indicators and criteria for
evaluation, comparative analysis);

- conclusions (achieving statement of the goal, the basic theoretical
and practical results, its importance, further work directions);

- references;
- appendix.
4. Report writing. The report shoud has a 15-20 A4 pages (font size

14, half interval, margins 2 cm), including the title page, the content,
the main text, references, appendix. Reports prepared by the simple
compilation of Internet material without careful structuring, using the
incorrect terminology, and without conclusions are not considered.

5. Presentation preparation. The presentation should be designed in
PowerPoint and corresponded to the plan of the repotrt (10-15 slides)
according to the presentation time - 10 min.

The presentation should include the following slides:
- the title slide (with the theme of the report, the author, date of

presentation);

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

160

- the content (structure) of the report;
- the motivation of the issues, purpose and tasks of the report on the

basis of this analysis;
- slides with highlighted questions according to tasks;
- the conclusions of the report;
- references.
Each slide should contain a footer with the title and author of the

report.
Slide content should not be a part of the text of the report, and

include keywords, pictures, formulas.
Submission information can be dynamic.
Report defense
Report defense is carried during the seminar, itshould take about 15

minutes and include the actual report with a presentation (10 minutes)
and discussion (5 minutes).

Assessment
Assessment takes into account the quality of the report text (form

and content), presentations (content and design), the report (structure,
content and conclusions), completeness, and correctness of answers.

Advancement questions

1. What frameworks are useful for structuring and specifying
complex system requirements?

2. What are the main steps to ensure system resilience in order to
guarantee its dependability?

3. What have to do to correct-by-construction system
development?

4. What verification is undertaken by abstracting implementation
up to requirements level and model-checking satisfiability of
goals?

5. What does allow us to ensure that a concrete specification
preserves globally observable behavior and properties of
abstract specification?

6. What the Event-B framework has been designed for?
7. What does an abstract state machine encapsulate?
8. What a refinements patterns allow perform concerning to te

system?

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

161

9. What notion is specified using in Event-B?
10. In Event-B, the variables are strongly typed by the constraining

predicates called invariants
11. What are the main features in constraining predicates in Event-

B?

3.2 Seminar№2. Formal Modelling of Resilient Data Storage in
Cloud

The aim and the task of the laboratory work
The aim of this laboratory work is to formalise an industrial

approach to implementing resilient cloud data storage.
Task of the work:
- To ensure resilience, F-Secure combined the WAL mechanism

with the log replication.
- describe the formally expressed data integrity and consistency

properties in three different replication architectures and explicitly
identified situations that lead to data loss.

- use modelling approach to facilitate early design exploration and
evaluate benefits of different fault tolerance mechanisms in
implementing resilience requirements.

Preparation for laboratory work
- to clarify the aims and objectives;
- to study theoretical material given in the description.

Theoretical material

Introduction

Rapid development of digital technology puts a high demand on
reliable handling and storage of large volumes of data. It is forecasted
that worldwide consumer digital storage needs will grow from 329
exabytes in 2011 to 4.1 zettabytes in 2016 [89]. Often algorithms for
data storage in cloud reuse the ones that have been proposed for
databases. The transactional model adopted in databases guarantees

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

162

ACID properties - Atomicity, Consistency, Isolation and Durability,
and as such delivers high resilience guarantees. However, in a pursue of
high performance, cloud data storages rarely rely on the transactional
model and hence deliver weaker guarantees regarding data integrity.
This subsection undertakes a formal study of data integrity and
consistency properties that can be guaranteed by several different
architectures of cloud data stores.

To achieve a high degree of fault tolerance, let us has combine
write-ahead logging (WAL) [81,82] - a widely used mechanism for
database error recovery - and massive data replication. As such, this
combination gives very high resilience guarantees (usually in the form
of eventual consistency). However, these guarantees are different in
non-transactional settings typical for cloud. Moreover, data integrity
and consistency properties vary in the synchronous, semi-synchronous
and asynchronous architectures used for data replication. Therefore, it
is useful to rigorously define and compare the properties that can be
ensured by different solutions.

To formally model write-ahead logging in replicated data stores the
Event-B method and the associated Rodin platform is used. Event-B
[86] is a formal framework that is particularly suitable for the
development of distributed systems. System development starts from an
abstract specification that is transformed into a detailed specification in
a number of correctness- preserving refinement steps. Here the
synchronous, semi-synchronous and asynchronous replication
architectures are separately modelled. Event-B and the Rodin platform
[84] allow us to explicitly define the data integrity and consistency
properties as model invariants and compare them in all three models.
Such approach allows the designers to gain formally grounded insights
on properties of cloud data stores and their resilience.

Modelling in Event-B

Event-B is a state-based formal approach that promotes the correct-
by-construc- tion development paradigm and formal verification by
theorem proving. In Event-B, a system model is specified using the
notion of an abstract state machine [86]. An abstract state machine
encapsulates the model state, represented as a collection of variables,
and defines operations on the state, i.e., it describes the dynamic

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

163

behaviour of a modelled system. The variables are strongly typed by
the constraining predicates that together with other important system
properties are defined as model invariants. Usually, a machine has an
accompanying component, called a context, which includes user-
defined sets, constants and their properties given as a list of model
axioms.

The dynamic behaviour of the system is defined by a collection of
atomic events. Generally, an event has the following form:

e ̂ any a where Ge then Re end,
where e is the event’s name, a is the list of local variables, and (the

event guard) Ge is a predicate over the model state. The body of an
event is defined by a multiple (possibly nondeterministic) assignment
to the system variables. In Event-B, this assignment is semantically
defined as the next-state relation Re.

The event guard defines the conditions under which the event is
enabled, i.e., its body can be executed. If several events are enabled at
the same time, any of them can be chosen for execution
nondeterministically.

Event-B employs a top-down refinement-based approach to system
development. A development starts from an abstract specification that
nondeterministically models the most essential functional requirements.
In a sequence of refinement steps we gradually reduce nondeterminism
and introduce detailed design decisions. In particular, we can add new
events, refine old events as well as replace abstract variables by their
concrete counterparts, i.e., perform data refinement. In the latter case,
we need to define gluing invariants, which define the relationship
between the abstract and concrete variables. The proof of data
refinement is often supported by supplying witnesses - the concrete
values for the replaced abstract variables. Witnesses are specified in the
event clause with.

The consistency of Event-B models, i.e., verification of model well-
formedness, invariant preservation as well as correctness of refinement
steps, is demonstrated by discharging the relevant proof obligations.
The Rodin platform [84] provides an automated support for modelling
and verification. In particular, it automatically generates the required
proof obligations and attempts to discharge them.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

164

Event-B adopts an event-based modelling style that facilitate a
correct-by- construction development of a distributed system. Since
cloud data storage is a large-scale distributed system, Event-B is a
natural choice for its formal modelling and verification.

Resilient Cloud Data Storage

Essentially, a cloud data storage can be seen as a networked online
data storage available for its clients as a cloud service. Data are stored
in virtualised data stores (pools) usually hosted by third parties.
Physically, the data stores may span across multiple distributed servers.
Cloud data storage providers should ensure that their customers can
safely and easily store their content and access it from their computers
and mobile devices. Therefore, there is a clear demand to achieve both
resilience and high performance in handling data.

Write-ahead logging (WAL) is a standard data base technique for
ensuring data integrity. The main principle of WAL is to apply the
requested changes to data files only after they have been logged, i.e.,
after the log has been stored in the persistent storage (disk). The WAL
mechanism ensures fault-tolerance because, in case of a crash, the
system would be able to recover using the log. Moreover, the WAL
mechanism helps to optimise performance, since only the log file
(rather than all the data changes) should be written to the permanent
storage to guarantee that a transaction is (eventually) committed.

The WAL mechanism has been thoroughly studied under the
reliable persistent storage assumption, i.e., if the disk containing the log
never crashes. However, in the cloud implementing such a highly-
reliable data store is rather unfeasible. Therefore, to ensure fault
tolerance, F-Secure has proposed a solution that combines WAL with
replication. The resulting system - distributed data store (DDS) -
consists of a number of nodes distributed across different physical
locations. One of the nodes, called master, is appointed to serve
incoming data requests from DDS clients and report on success or
failure of such requests. As a result, for instance, the client may receive
an acknowledgment that the data have been successfully stored in the
system. The remaining nodes, called standby nodes, contain replicas of
the stored data.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

165

Each request received by the master is translated into a number of
reading and writing commands. These commands are first recorded in
the master log and then applied to the stored data. After this, an
acknowledgement is sent to the client. (In the non-replicated version of
WAL widely used in the databases, an acknowledgement to the client is
sent already after the request is written in the log). The standby nodes
are constantly monitoring and streaming the master log records into
their own logs, before applying them to their persistent data in the same
way. Essentially, the standby nodes are continually trying to “catch up”
with the master. If the master crashes, one of the standby nodes is
appointed to be the master in its stead. At this point, the appointed
standby effectively becomes the new master and starts serving all data
requests.

DDS can implement different models (architectures) of logging. In
the asynchronous model, the client request is acknowledged after the
master node has performed the required modifications in its persistent
storage. The second option - the cascade master-standby - is a semi-
synchronous architecture. The client receives an acknowledgement
after both the master and its warm standby (called upper standby) has
performed the necessary actions. Finally, in the synchronous model,
only after all replica nodes have written into their persistent storage,
i.e., fully synchronised with the master node, the transaction can be
committed. Obviously, such different logging models deliver different
resilience guarantees.

In the formal modelling, we aim at formally defining and
comparing data integrity and consistency properties that can be ensured
by each architecture.

Modelling the Asynchronous Architecture

In the asynchronous model of replication, the standby nodes may
stream the master log records only after the required changes have been
committed and reported to the client. If the master crashes shortly after
committing the required modifications, some changes will not be
replicated thus leading to an inconsistent system state. In particular, this
might happen because a standby node has not yet received (streamed)
all the master log records when the master failed. To minimise such a
data loss, the node that has the freshest (and hence the most complete)

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

166

copy of the master log is chosen to become the next master. A graphical
representation of the system architecture is shown in Fig.6.1.

Abstract specification. The initial model - the machine
Replicationl_m0 abstractly describes the behaviour of the master node -
receiving and processing of the received requests. The overall model
structure is given on Fig.6.2.

The variable comp, comp COMP, represents the dynamic set of
active system nodes (data stores), where COMP is a set (type) of all
available data stores. The variable master, such that master comp,
represents the master node. The other variables buffer, inprocess and
processed represent the received data requests at different stages of
their processing by the master. They are modelled as disjoint sets of the
abstract data type REQUESTS. In particular, the variable buffer stores
the requests that have been received by the master and are waiting to be
handled. The variable inprocess contains the requests that the master
node is currently processing, while the variable processed keeps the
requests that are completed and acknowledged to the client.

Figure.6.1. A graphical representation of the system architecture

The event Requestln specifies arriving of a new request to the
master. Processing of the received requests and sending notifications to
the client are modelled by the events Process and RequestOut

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

167

respectively. The events update the variables buffer, inprocess and
processed to reflect the progress in request handling.

Figure. 6.2. Asynchronous model: the abstract model

The event ChangeMaster models a crash of a master and selection
of a new master. One of the remaining nodes is non-deterministically
chosen to become a new master, while the old master is removed from
the set of active nodes. Due to possible data loss, the requests being
handled by the new master may be only a subset of those of the failed
master. This is reflected by the guard condition:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

168

processedinprocessbufferprocessedinprocessnbuffern __

where n_buffer, n_inprocess, and n_processed are the corresponding
data structures of the new master.

Finally, the last two events, CompActivation and
CompDeactivation, model a possibility to add new data storage nodes
from the cloud and remove some currently active nodes from the
system respectively. Only standby nodes can be activated and
deactivated in this way.

First Refinement. In the first refinement step (defined by the
machine Replication1_ref1), we extend the abstract model by explicitly
representing the behaviour of the standby nodes.

To accomplish this, we lift the abstract variables buffer, inprocess,

processed to become node-dependent functions. In Event-B, this is
achieved by data refinement that replaces these variables with the new
variables comp_buffer, comp-inprocess and comp-processed. The
following gluing invariants are defined to to prove correctness of data
refinement:

 buffermasterbuffercompREQUESTScompbuffercomp)(_)(_
 inprocessmasterinprocesscompREQUESTScompinprocesscomp)(_)(_

processedmasterprocessedcompREQUESTScompprocessedcomp)(_)(_

The overview of the refined model is presented in the Fig. 6.3. The set
of model events includes the refined versions of the abstract events
(RequestInMst, ProcessMst, RequestOutMst, ChangeMaster,
CompActivation, and CompDeactivation) as well as new events
describing the behaviour of standby nodes.

We refine the event ChangeMaster to a deterministic procedure of
choosing the node with the freshest log as a new master to the failed
master. We formulate this condition as a new guard of the event
ChangeMaster in the following way:

 mastercmasternewccompcc _
)(_)(_)(_ cprocessedcompcinprocesscompcbuffercomp

)_(_)_(_)_(_ masternewprocessedcompmasternewinprocesscompmasternewbuffercomp

The standby nodes are continuously streaming the master log.

Essentially, this means that, as soon as the master node completes the
request(s), i.e., performs the required modifications in its persistent
storage, the standby nodes start copying the corresponding entries in the

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

169

master log. This behaviour is modelled by the new event RequestInStb.
Similarly as for the master node, the processing of requests and their
completion by the standby nodes are respectively modelled by the
events ProcessStb and RequestOutStb.

In our model, we assume that the nodes might become temporary
unavailable (i.e., crush and recover). The new variable failed, failed
comp, is introduced to store such failed nodes. The new event
CompFailure and CompStbRecovery model possible node crashes and
recoveries correspondingly.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

170

Figure 6.3. Asynchronous model: the first refinement

Now we are ready to formulate and prove some data consistency
properties expressing the relationships between the requests handled by
the master and those handled by the standby nodes. Since any standby
node is continuously copying the master log, we can say that any
standby node is logically “behind” the master node. Mathematically,
this means that all the standby requests (no matter what stage of
processing they are in) are subset of those of the master node.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

171

Moreover, all the requests that are now handled by a standby node
should have been already completed by the master before. We can
formulate these two properties as the following system invariants:

As it turns out, the last property cannot be proven as an

(unconditional) invariant of the system. Indeed, it can be violated right
after one of the standby nodes is appointed the new master. A short
transitional period may be needed for the new master to “catch up” with
some of the standby nodes that got ahead by handling the requests still
not committed by the new master. It is easy to show termination of this
transitional period, since all such standby nodes are blocked from
reading any new requests from the master until the master catches up
with them by processing its requests.

We can formally model this transitional stage by introducing the
variable in-transit, inJtransit BOOL. The variable obtains the value
TRUE when a new master is appointed, and reobtains the value FALSE
(in the new event TransitionOver) when all the remaining standby
nodes have the requests already processed by the new master.

Then we can reformulate the property (3) as a system invariant and
prove its preservation:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

172

Second Refinement. In the previous refinement step we introduced

the standby nodes and their interactions with the master. We also
modelled how the received data requests are transferred through the
different processing stages on the master and standby sides. The
variables buffer, inprocess and processed were used to store incoming,
processing and processed requests. The goal of the second refinement
step is explicitly model the WAL mechanism and the resulting inter-
dependencies between the master and standby logs/

Mathematically, any log can be represented as a sequence, i.e., as a
function of the type

ELEMENTSkany ..1log_
where k is the index of the last written element.
In our case, we want to store in the node log all the requests -

received, being processed, or completed. This can be represented as
partitioning of the component log into three separate parts. To achieve
that, we introduce three variables index_written, index_inprocess, and
index_processed:

such that

For any component c, index_written(c) defines the index of the last
written log entry, index_inprocess(c) - the index of the last request
being processed, and index_processed(c) - the index of the last
completed request. Graphically, this can be represented as shown in
Fig.6.4.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

173

Figure. 6.4. The log partition

Then the logs of all the components can be defined as the following
function:

),(log REQUESTSNATcomp
such that

),(_..1))(log(cwrittenindexcdomcompс
where dom is the functional domain operator.
The function log is introduced to replace (data refine) the abstract

variables comp_buffer, comp-inprocess, and comp-processed. To
prove correctness of such data refinement, the following gluing
invariants are added:

where R[S] denotes relational image of R with respect to the given

set S.
An introduction of the sequential representation of the component

log allows us to refine some proven invariants as well as prove some
new ones. For instance, the invariant property (4) now can be
reformulated in terms of new variables

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

174

The formulated data refinement also affects all the events where the
abstract variables were used. For instance, the event RequestOutMst
(see Fig. 6.5) now specifies completion of master request processing by
recording this in the node log, i.e., by increasing
index_processed(master).

We can refine the procedure of choosing a new master by
reformulating the guard condition (1) of the event ChangeMaster as
follows:

Here we check that the new candidate for the master has the largest

index_written, i.e., the freshest log copy. The other events are refined
in a similar way. The overview of the refined model is presented in Fig.
5.6. Moreover, we can explicitly formulate and prove the log data
integrity properties as model invariants:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

175

Figure 6.5. Asynchronous model: the second refinement

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

176

These properties state that the corresponding log elements of any
two storage (master or standby) nodes are always the same. In other
words, all logs are consistent with respect to the log records of the
master node.

The Cascade Master-Standby and Synchronous Architectures

An alternative, semi-syncronous replication model is the cascade

master-standby. Besides the master node that serves incoming data
base requests, we single out another functional node - upper standby.
The upper standby node starts streaming the master log as soon as the
master records the requests in its log. Moreover, the master node waits
until the upper standby reads its processed records and, only after that,
commits the changes and reports to the client.

In its turn, the other standby nodes are constantly monitoring and
streaming the upper standby log records into their own logs.
Essentially, the standby nodes are continually trying to catch up with
the upper standby.

If the master node goes down, the upper standby node is
automatically appointed to be the master in its stead. Moreover, the
next candidate for the new upper standby node becomes the node that is
closest (with respect to the copied log file) to the current upper standby.

Let us note that this proposed cascade replication mode allows to
decrease the possibility of loss of the committed changes if the master
node fails. Indeed, at that point, when the master node fails, the upper
standby node had already recorded all the changes that were committed
and reported to the client by master before. Therefore, such an
architectural solution increases the system resilience. A possibility of
data loss leading to an inconsistent system state is still present.
However, for this to happen, the master node and the upper standby
node should both fail in a very short time period. A graphical
representation of the system architecture is shown in Fig.6.6.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

177

Fig. 6.6. Cascade system architecture

The formal development of the proposed replication model consists
of an initial specification and its two refinements. The initial model
abstractly describes the system behaviour focusing on the master and
the upper standby nodes. The first refinement step introduces the
remaining standby nodes and their interoperation with the upper
standby, while the second refinement explicitly models the sequential
logging mechanism and the interdependencies between the master, the
upper standby and others standby logs. Let us note that the
development is similar to that of the asynchronous model. Due to the
lack of space we will only highlight the most significant differences
between them.

Abstract specefication. In the initial model defined by the machine
Replication2_m0 we focus on the master and upper standby
components and their interoperation. The overall model structure is
given on Fig.6.7.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

178

In addition to the master node,we single out one more node to serve
as an upper standby node. We model this by inrodusing the variable
ups_stanbdy, such that ups_stanbdy comp and ups_stanbdy master

The variables m_buffer, m_inprocess, m_processecl represent the
received requests at different stages of their processing by the master.
Similarly, the variables ups_buffer, ups_inprocess, ups_processed are
introduced to model the respective data structures for the upper
standby. The events RequestlnMst, ProcessMst, RequestOutMst and
RequestlnUps, ProcessUps, RequestOutUps specify the corresponding
request stages for the master and upper standby nodes.

The master node can not commit the changes until the upper
standby reads them. We model this requirement by adding the
following guard condition in the event RequestOutMst:

The process of changing of the master node by the upper standby is

modelled by the event ChangeMaster. The event also specifies the
selection procedure of a new upper standby. Due to possible data loss,
the requests being handled by the new upper standby may be only a
subset of those of the current upper standby:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

179

Fig. 6.7. Cascade architecture: abstract model

Moreover, a similar event, ChangeUpsStb, models the selection of a

new upper standby in the case when the current one fails.
First Refinement. In the first refinement step we extend the

abstract model by explicitly introducing the behaviour of the remaining

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

180

standby nodes. Similarly as for the asynchronous model, we data refine
the abstract variables m_buffer, m_inprocess, m_processed and
ups_buffer, ups_inprocess, ups_processed by the new functional
variables comp_buffer, comp_inprocess and comp_processed.

In addition, a number of the new events are added to describe the
behaviour of standby nodes, node failures and recovery (RequestInStb,
ProcessStb, RequestOutStb, CompFailure, CompStbRecovery).

As for the asynchronous model, we can formulate and prove data

consistency properties between the involved components. The property
(2) (stating that a standby node is always behind the master in terms of
handled requests) corresponds to two properties for the cascade
replication mode: the first one stating this property between any
standby and the upper standby, while the second one stating the same
property between the upper standby and master nodes.

The property (4) for the asynchronous mode expresses the
relationships between the processed requests of the master node and
read requests of the standby nodes. This property again corresponds to
two properties for the cascade mode: one between the upper standby
and remaining standbys, and the other one between the master and
upper standby nodes. In both cases, the properties may be violated for a
short period (indicated by in_transit = TRUE) right after a new upper
standby node is chosen to replace a failed one:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

181

Note how the requirement that the master cannot commit a request

before it is read by the upper standby reverses the inclusion relationship
in the (11).

Second Refinement. The goal of the second refinement step is
explicitly model the write-ahead logging mechanism and the resulting
interdependencies between the master, upper standby and other standby
logs.

We data refine the abstract variables comp_buffer,

comp_inprocess, and comp_processed by the introduced function log.
The following gluing invariants allow us to prove correctness of such a
data refinement:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

182

Introducing the sequential representation of the component log
allows us to reformulate some proven invariants as well as prove some
new ones. For instance, the invariant properties (10) and (11) now can
be reformulated in terms of the new variables as follows:

Finally, the log data integrity properties (in the exact form as in (7))
are formulated and proved for this replication mode as well.

Synchronous Architecture. The last development formalises the
synchronous replication architecture, which can be considered as a
combination of both asynchronous and cascade models. The essential
differences of this model are following. The standby nodes start
streaming the master log records as soon as master records the
commands in its log. Moreover, the master node waits until all the

standby nodes read processed records from its log and, only after that,
commits the corresponding changes and reports to the client. If the
master goes down, one of the standby nodes is appointed to be the
master in its stead. Essentially, it is a generalisation of the cascade
model where all the standby nodes play the role of upper standby.

This architecture allows to avoid a possibility of loss of the
committed changes if the master fails. Indeed, at that point, all the
standby nodes have already recorded all the changes that were
committed and reported to the client by master. On the other hand, the
necessity for the master to synchronise in such a way with all the
standbys may negatively affect the performance of this model.

Developing the formal model of this architecture, we essentially
repeat the refinement steps of the asynchronous model. In particular,
the initial model is the same as the abstract model presented on Fig.6.2.
In the first refinement step, in the RequestOutMst event modelling the
commitment of the changes by master, we have to impose an additional
restriction for this behaviour. Namely, the master node can not commit
the changes until all the standby nodes have read them. We model this
requirement by adding the following guard condition to the event:

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

183

where we check that the request r has already been recorded by all

the standby nodes. Moreover, in the eventRequestInStb, we relax its
guard by allowing to copy the master log as soon as the master records
requests in its log.

Similarly as for the first two models, we formulate and prove log
data consistency properties. Specifically, the property (2), stating that
the standby nodes are continuously trying to catch up with the master in
terms of handled requests, can be proved for this architecture as well.
Moreover, since the master can not commit the changes until the all
standbys have read the corresponding log records, it means that all the
requests committed by the master have been previously read by all
standbys. We can formulate this property as follows:

Note that, once again, this property can be violated right after a new

master is appointed and thus a transitional period is needed. This
property is very similar to that of (11) (for the cascade architecture) and
is inverse, with respect to the inclusion relation, to that of (4) (for the
asynchronous architecture).

As in the previous two developments, in the second refinement step
we introduce component logs as sequences. In terms of the new
variables, the (14) property can be then reformulated as follows:

Finally, the log data integrity properties (7), stating that the

corresponding log elements of any two storage components are always
the same, are proved for this model as well. The full formal
developments can be found in [88].

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

184

Proof Statistics To verify correctness of the presented formal
developments, we have discharged around 400 proof obligations for the
first model, more than 750 proof obligations for the second model, and
around 400 for the third model. In total, around 90% of them have been
proved automatically by the Rodin platform and the rest have been
proved manually in the Rodin interactive proving environment. The
proof statistics in terms of generated proof obligations for the presented
Event B developments is shown in the Table 6.1. The numbers
represent the total number of proof obligations and the percentage of
manual effort for each model in each refinement step. The whole
development and proving effort has taken around one person-month.

Table 6.1. The proof statistics

Tasks for seminar 2.
1. Preparation (determining) of the theme for the work (abstract

analytical review, development) and clarifying the tasks.
Topics of work can be formed by students on their own and agreed

with the leaders on the basis of the indicative list:
– empirical assessment of resilience;
– quantitative verification of system safety in event-B;
- architecting resilient computing systems;
- predictability and evolution in resilient systems;
- modelling resilience of data processing capabilities of CPS;
- safety lifecycle development process modeling for embedded

systems.
2. Search of the subject information (library, the Internet) and its

preanalysis.
Submission of abstract and presentation in English.
Guidelines and a list of recommended reading to abstracts issued

individually.

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

185

3. The report plan development and project presentation.
Report plan (and presentation) includes the preparation of the

following sections:
- introduction of (motivation, previous works, state-of-art, the main

task of the abstract, the structure and characteristics of the content, the
work plan);

- a systematic presentation of the basic parts of the report
(classification schemes, the characteristic of models, methods, tools,
techniques in groups, the choice of indicators and criteria for
evaluation, comparative analysis);

- conclusions (achieving statement of the goal, the basic theoretical
and practical results, its importance, further work directions);

- references;
- appendix.
4. Report writing. The report shoud has a 15-20 A4 pages (font size

14, half interval, margins 2 cm), including the title page, the content,
the main text, references, appendix. Reports prepared by the simple
compilation of Internet material without careful structuring, using the
incorrect terminology, and without conclusions are not considered.

5. Presentation preparation. The presentation should be designed in
PowerPoint and corresponded to the plan of the repotrt (10-15 slides)
according to the presentation time - 10 min.

The presentation should include the following slides:
- the title slide (with the theme of the report, the author, date of

presentation);
- the content (structure) of the report;
- the motivation of the issues, purpose and tasks of the report on the

basis of this analysis;
- slides with highlighted questions according to tasks;
- the conclusions of the report;
- references.
Each slide should contain a footer with the title and author of the

report.
Slide content should not be a part of the text of the report, and

include keywords, pictures, formulas.
Submission information can be dynamic.
Report defense

FORMAL AND INTELLECTUAL METHODS FOR SYSTEM
SECURITY AND RESILIENCE

186

Report defense is carried during the seminar, itshould take about 15
minutes and include the actual report with a presentation (10 minutes)
and discussion (5 minutes).

Assessment
Assessment takes into account the quality of the report text (form

and content), presentations (content and design), the report (structure,
content and conclusions), completeness, and correctness of answers.

Advancement questions

1. What does the F-Secure do to ensure resilience?
2. What are the main steps to describe the formally expressed data

integrity and consistency properties in three different
replication architectures and explicitly identified situations that
lead to data loss?

3. 2.Q. ?
4. What have we do to facilitate early design exploration and

evaluate benefits of different fault tolerance mechanisms in
implementing resilience requirements?

5. What can we use to write-ahead logging in replicated data
stores?

6. What are the main phases to construct the detailed specification
in a number of correctness-preserving refinement steps?

7. What does allow us to explicitly define the data integrity and
consistency properties as model invariants and compare them
in all three models?

8. What does promotes Event-B?
9. What does abstract state machine describe?
10. What does abstract state machine include?

REFERENCES

187

REFERENCES

References for preparation for laboratory work № 1

1. Riham Hassan Abdel-Moneim Mansour Formal Analysis and
Design for Engineering Security / Riham Hassan Abdel-
Moneim Mansour // PhD thesis. - Blacksburg, Virginia, 2009.

2. Cheng B. Using Security Patterns to Model and Analyze
Security Requirements: Technical Report MSU-CSE-03-18 /
Cheng B. - Michigan : Michigan State University, 2003.

3. Schumacher M. Security Patterns - Integrating Security and
Systems Engineering / M. Schumacher. : John Wiley & Sons,
2005.

4. Fontaine P.J. Goal-Oriented Elaboration of Security
Requirements / P.J. Fontaine // PhD Thesis. - Louvain :
University of Louvain, 2001.

5. Letier E. Reasoning About Agents in Goal-Oriented
Requirements Engineering / Letier E. // PhD Thesis Louvain :
Universite Catholique de Louvain, Louvain-la-Neuve, 2001.

6. Amoroso E. J. Fundamentals of Computer Security / Amoroso
E.J. - Prentice-Hall, 1994.

7. van Lamsweerde Handling Obstacles in Goal-Oriented
Requirements Engineering / A. van Lamsweerde and E. Letier
// IEEE Transactions on Software Engineering. Special Issue on
Exception Handling, Vol. 26 No. 10, 2000.

8. Schumacher M. Security Patterns - Integrating Security and
Systems Engineering / M. Schumacher. - John Wiley & Sons,
2005.

9. Schneider Steve The b-method” / Steve Schneider. -
PALGRAVE, 2001.

10. Edmund Wing J. Formal Methods: State of the Art and Future
Directions / Edmund Wing J. . - ACM Computing Surveys,
Vol. 28, No. 4, 1996.

11. Lehman M. M. On understanding Laws, evolution and
conversation in the large program lifecycle / M. M. Lehman //
Journal of Software & Systems, vol. 1, 1980.

References for preparation for laboratory work № 2

REFERENCES

188

12. Constance L. Heitmeyer Applying Formal Methods to a
Certifiably Secure Software System / Constance L. Heitmeyer,
Myla M. Archer, Elizabeth I. Leonard and John D. McLean //
IEEE Transactions on Software Engineering. – 2008. - №34 –
С.82-98.

13. J. Rushby "Design and Verification of Secure Systems" / J.
Rushby // Proc. Eighth ACM Symp. Operating System
Principles, 1981.

14. B. Lampson Protection / B. Lampson // Proc. Fifth Princeton
Conf. Information Sciences and Systems, 1991.

15. Shankar N. PVS Prover Guide Version 2.4 : technical report /
N. Shankar, S. Owre, J.M. Rushby, D.W.J. Stringer-Calvert. -
Computer Science Laboratory, 2001.

16. Anderson J. "Computer Security Technology Planning Study" :
Technical Report ESD-TR-73-51 / Anderson J. - Hanscom
AFB : ESD/AFSC, 1972.

17. Common Criteria for Information Technology Security Evalua-
tion, Parts 1-3: Technical Reports CCIMB-2004-01-001
through CCIMB-2004-01-003, Version 2.2, Revision 256, Jan.
2004.

18. Archer M. Proving Invariants of I/O Automata with TAME /
M. Archer, C.L. Heitmeyer, and E. Riccobene // Automated
Software Eng. – 2002. - vol. 9, no. 3. - p. 201-232.

19. J. Owre. Formal Verification for Fault-Tolerant Architectures:
Prolegomena to the Design of PVS / J. Owre, N. Rushby, D.
Shankar, F. von Henke // IEEE Trans. Software Eng. – 1995. -
№21. - p. 107-125.

20. Xcode Version 8 [Electronic resource]: Xcode 8. – Access
mode : http://developer.apple.com/tools/xcode/index.html. -
Name from the screen.

21. M. Abadi. The Existence of Refinement Mappings / M. Abadi,
L. Lamport // Theoretical Computer Science. - 1991. №2, vol
21. - p. 253-284.

22. McMillan K.L. Verification of Infinite State Systems by
Compositional Model Checking. / K.L. McMillan // Proc. 10th
IFIP WG 10.5 Advanced Research Working Conf. Correct
Hardware Design and Verification Methods. - 1999.

REFERENCES

189

23. E. Clarke. Counterexample-Guided Abstraction Refinement. /E.
Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith // Proc. 12th
Int'l Conf. Computer-Aided Verification. - 2000.

24. B. Alpern. Defining Liveness / B. Alpern and F.B. Schneider //
Information Processing Letters. -1985. - №4, vol 21. - p.181-
185.

25. L. Lamport. Proving the Correctness of Multiprocess Programs.
/ L. Lamport. Proving // IEEE Trans. Software Eng. -1977.
№2, vol 3. - p.125-143.

26. C.L. Heitmeyer. Tools for Constructing Requirements
Specifications: The SCR Toolset at the Age of Ten. / C.L.
Heitmeyer, M. Archer, R. Bharadwaj, and R.D. Jeffords //
Computer Systems: Science and Eng. - 2005. - №1, vol 20.

References for preparation for laboratory work № 3

27. Bruno Blanchet Using Horn Clauses for Analyzing Security
Protocols / Blanchet Bruno // Cryptology and Information
Security Series. Models and Techniques for Analyzing Security
Protocols. – 2011.- vol 5. – p. 86-111.

28. N. Durgin. Multiset rewriting and the complexity of bounded
security protocols. / N. Durgin, P. Lincoln, J. C. Mitchell //
Journal of Computer Security. -2004. -№2, Том 12. -С.247-
311.

29. L. C. Paulson. The inductive approach to verifying
cryptographic protocols. / L. C. Paulson // Journal of Computer
Security. - 1998. - №1-2, vol. 6. -С.85-128.

30. C. Weidenbach. Towards an automatic analysis of security
protocols in first-order logic. / C. Weidenbach // 16th Inter-
national Conference on Automated Deduction (CADE-16). -
1999. – vol. 1632. - p.314-328.

31. D. Bolignano. Towards a mechanization of cryptographic
protocol verification / D. Bolignano // 9th International
Conference on Computer Aided Verification (CAV’97). - 1997.
– vol. 1254. – p..131-142.

32. D. Monniaux. Abstracting cryptographic protocols with tree
automata. / D. Monniaux // Science of Computer Programming.
- 2003. – vol. 2-3, №47. - p.177-202.

REFERENCES

190

33. J. Goubault-Larrecq. A method for automatic cryptographic
protocol verification / J. Goubault-Larrecq // Fifth International
Workshop on Formal Methods for Parallel Programming:
Theory and Applications. - 2000. – vol. 1800. - p.977-984.

34. T. Genet. Rewriting for cryptographic protocol verification. / T.
Genet and F. Klay // 17th International Conference on
Automated Deduction. - 2000. – vol. 1831. – p.271-290.

35. Y. Boichut. Validation of prouvé protocols using the automatic
tool TA4SP. / Y. Boichut, N. Kosmatov, L. Vigneron //
Proceedings of the Third Taiwanese-French Conference on
Information Technology. - 2006. - p.467-480.

36. C. Bodei Security Issues in Process Calculi / C. Bodei // PhD
thesis, 2000.

37. Bodei C. Control flow analysis for the calculus / Bodei
C.,Degano P.,Nielson F.,Nielson H. R.In // International
Conference on Concurrency Theory. – Springer. – vol. 1466. -
1998 – p. 84-98.

38. Bodei C. Static validation of security protocols / Bodei C.,
Buchholtz M., Degano P., Nielson F., Nielson H. R. // Journal
of Computer Security. – 2005. – 13(3) – p. 347-390.

39. Bozga L. Pattern-based abstraction for verifying secrecy in
protocols / Bozga L., Lakhnech Y., Périn M. // International
Journal on Software Tools for Technology Transfer. – 2006 –
8(1) – p. 57-76.

40. Backes M. Causality-based abstraction of multiplicity in
security protocols / Backes M., Cortesi A., Maffei M. // 20th
IEEE Computer Security Foundations Symposium. – 2007 – p.
355-369.

41. Millen K. The Interrogator: Protocol security analysis / Millen
K., Clark S.C., Freedman S.B. // IEEE Transactions on
Software Engineering. – 1987 – SE-13(2) – p. 274-288.

42. Meadows C.A. The NRL protocol analyzer: An overview /
Meadows C.A. // Journal of Logic Programming. – 1996 –
vo.26(2) – p. 113-131.

43. Escobar S. A rewriting-based inference system for the NRL
protocol analyzer and its meta-logical properties / Escobar S.,
Meadows C., Meseguer J. // Theoretical Computer Science. –
2006 – vol. 367 – p. 162-202.

REFERENCES

191

44. Abadi M. Secrecy types for asymmetric communication / Abadi
M., Blanchet B. // Foundations of Software Science and
Computation Structures – 2001 – vol. 2030 – p. 25-41.

45. Blanchet B. Automatic verification of correspondences for
security protocols / Blanchet B. // Journal of Computer
Security. – 2009 – vol. 17(4) – p. 363-434.

46. Filé G. Expressive power of definite clauses for verifying
authenticity / Filé G., Vigo R. // 22nd IEEE Computer Security
Foundations Symposium. – 2009. - p 251-265.

47. Dolev D. On the security of public key protocols / Dolev D.,
Yao A.C. // IEEE Transactions on Information Theory. – 1983
– vol. 29(12) – p. 198-208.

48. Abadi M. Mobile values, new names, and secure
communication / Abadi M., Fournet C. // 28th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. – 2001 – p. 104-115.

49. Denker G. Protocol specification and analysis in Maude /
Denker G., Meseguer J., Talcott C. // Workshop on Formal
Methods and Security Protocols – 1998.

50. Abadi M. Analyzing security protocols with secrecy types and
logic programs / Abadi M., Blanchet B. // Journal of the ACM.
–2005 – vol. 52(1) – p. 102-146.

51. Blanchet B. Security protocols: From linear to classical logic by
abstract interpretation / B.Blanchet // Information Processing
Letters. – 2005 – 95(5) – p. 473-479.

52. Bachmair L. Resolution theorem proving / Bachmair L.,
Ganzinger H. // Handbook of Automated Reasoning. – 2001 –
vol .1 – p. 19-100.

53. Blanchet B. Verification of cryptographic protocols / Blanchet
B., Podelski A. // Tagging enforces termination. Theoretical
Computer Science. – 2005 – vol. 333 – p. 67-100.

54. Abadi M. Mobile values, new names, and secure
communication / Abadi M., Fournet C. // 28th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. – 2001 – p. 104-15.

55. Küsters R. Reducing protocol analysis with XOR to the XOR-
free case in the Horn theory based approach / R.Küsters,

REFERENCES

192

T.Truderung // Proceedings of the 15th ACM conference on
Computer and communications security. - 2008. – p. 129–138.

56. Küsters R. Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation / R.Küsters, T.Truderung // 22nd IEEE
Computer Security Foundations Symposium. - 2009. – p. 157–
171.

57. Blanchet B. Automatic proof of strong secrecy for security
protocols / B.Blanchet // IEEE Symposium on Security and
Privacy. - 2004. – p. 86–100.

58. Blanchet B. Automated verification of selected equivalences for
security protocols / B.Blanchet, M.Abadi, C.Fournet // Journal
of Logic and Algebraic Programming. - 2008. - p.3 –51.

59. Allamigeon X. Reconstruction of attacks against cryptographic
protocols / X.Allamigeon, B.Blanchet // 18th IEEE Computer
Security Foundations Workshop. - 2005. – p. 140–154.

References for preparation for laboratory work № 4

60. Wihem Arsac Validating Security Protocols under the General

Attacker / Wihem Arsac, Giampaolo Bella, Xavier Chantry,
Luca Compagna // Lecture Notes in Computer Science. -
Springer. – vol. 5511. – p. 34-51.

61. Abadi M. A calculus for cryptographic protocols: the spi
calculus / M.Abadi, A.Gordon // Information and Computation
148(1). - 1999. – p.1–70.

62. Ryan P.Y.A. Modelling and Analysis of Security Protocols /
P.Y.A.Ryan, S.Schneider, M.Goldsmith, G.Lowe, A.W.Roscoe
// AW. - 2001.

63. F´abrega F.J.T. Strand spaces: Proving security protocols
correct. / F.J.T.F´abrega, J.C.Herzog, J.D.Guttman // Journal of
Computer Security 7. - 1999. – p. 191–230.

64. Caleiro C. Relating strand spaces and distributed temporal logic
for security protocol analysis / C.Caleiro, L.Vigan`o, D.Basin
// Logic Journal of the IGPL 13(6). - 2005. - pages 637–663.

65. Bella G. Formal Correctness of Security Protocols //
Information Security and Cryptography. Springer, Heidelberg. -
2007.

REFERENCES

193

66. Paulson L.C. The inductive approach to verifying cryptographic
protocols // Journal of Computer Security. – vol. 6. - 1998. –
p.85–128.

67. Blanchet B. Automatic verification of cryptographic protocols:
a logic programming approach // Proceedings of the 5th
International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, Uppsala, Sweden. -
2003. - p. 1–3.

68. Backes M. Relating symbolic and cryptographic secrecy /
M.Backes, B.Pfitzmann // RelatingIn: IEEE Symposium on
Security and Privacy. - 2005.

69. Bella G. Retaliation: Can we live with flaws? / G.Bella,
S.Bistarelli, F.Massacci // Essaidi, M., Thomas, J. (eds.) Proc.
of the Nato Advanced Research Workshop on Information
Security Assurance and Security. Nato through Science. - IOS
Press. – 2006. - vol. 6. – p. 3–14.

70. Bella G. The Rational Attacker [electronic resource] / G. Bella
G. // Home page. - Access mode :
http://www.dmi.unict.it/~giamp/Seminars/rationalattackerSAP0
8.pdf – Name from the screen.

71. Bella G. Confidentiality levels and deliberate/indeliberate
protocol attacks / G.Bella, S.Bistarelli // Security Protocols. –
Heidelberg : Springer. - 2004. - vol. 2845. – p. 104–119.

72. Aiyer A.S. Bar fault tolerance for cooperative services /
A.S.Aiyer, L.Alvisi, A.Clement, M.Dahlin, J.P.Martin, C.Porth
// ACM SIGOPS Operating Systems Review. – vol. 39(5). -
2005. – p. 45–58.

73. Butty´an L. A formal model of rational exchange and its
application to the analysis of syverson’s protocol / Butty´an L.,
Hubaux, J.P. // Journal of Computer Security – 2004. – 12(3-4)
– p. 551-587.

74. Bella G. What is Correctness of Security Protocols? / Bella G.
// Journal of universal computer science. - 2008 – vol. 14(12) –
p. 2083-2107.

75. Armando A. SAT-based Model-Checking for Security
Protocols Analysis / Armando A., Compagna L. // International
Journal of Information Security. - 2007 – vol. 6(1) – p. 3-32.

REFERENCES

194

76. Armando A. LTL Model Checking for Security Protocols /
Armando, A., Carbone, R., Compagna, L. // AI
Communications. - Springer, Heidelberg. – 2007. - p.112-133.

77. Armando A. Model-Checking for Security Protocols Analysis /
Armando, A., Compagna, L. // International Journal of
Information Security. - 2008 – vol. 7(1) – p. 3-32.

78. Neuman, B.C. An authentication service for computer
networks, from IEEE communications magazine / Neuman,
B.C., Ts’o, T.: Kerberos // Practical Cryptography for Data
Internetworks. - Los Alamitos : IEEE Press,. - 1996.

References for preparation for seminar №1 and №2

79. Pereverzeva Inna Formal Development of Resilient Distributed

Systems / Inna Pereverzeva // PhD diss., Turku Centre for
Computer Science, Abo Akademi University, Faculty of
Science and Engineering, Joukahaisenkatu, Turku, Finland. –
2015.

80. Back R. J. R. From Action Systems to Modular Systems / R. J.
R. Back, K. Sere. - 1996 – 17(1) – p. 26-39.

81. Baier C. Principles of Model Checking / C. Baier, J.-P. Katoen
// MIT press. - 2008.

82. Bernardeschi C. Analysis of wireless sensor network protocols
in dynamic scenarios / C. Bernardeschi, P. Masci, H. Pfeifer //
Lecture Notes in Computer Science.- Springer. - 2009. – P.
105-119.

83. Bacherini S. A story about formal methods adoption by a
railway signaling manufacturer / S. Bacherini, A. Fantechi,
M.Tempestini, and N.Zingoni // Lecture Notes in Computer
Science. - Springer. - 2006. – P. 179-189.

84. Barker K. Resilience-based network component importance
measures / K. Barker, J. E.Ramirez-Marquez, C. M. Rocco
Sanseverino // Reliability Engineering & System Safety. – 2013
– vol. 117 – p. 89-97.

85. Back R. J. R. Stepwise Refinement of Action Systems.
Structured Programming / R. J. R. Back, K. Sere // Lecture
Notes in Computer Science. – 1991 – 12(1) – p. 17-30.

REFERENCES

195

86. Aziz B. From goal-oriented requirements to event-b
specifications / B. Aziz, A. Arenas, J. Bicarregui, Ch. Ponsard,
Ph. Massonet // NFM. - 2009. - P. 96-105.

87. Bacherini S. A story about formal methods adoption by a
railway signaling manufacturer / S. Bacherini, A. Fantechi,
M.Tempestini, N.Zingoni // Lecture Notes in Computer
Science. - Springer. - 2006. - P. 179-189.

88. Ball E. Event-B Patterns for Specifying Fault-Tolerance in
Multi-agent Interaction / E. Ball, M. Butler // Lecture Notes in
Computer Science. - Springer. - 2009. - P. 104-129.

89. Back R. J. R. Decentralization of Process Nets with
Centralized Control / R. Kurki-Suonio, R. J. R. Back //
Proceedings of the second annual ACM symposium on
Principles of distributed computing. - 1983. – P.131-142.

90. Banks Jerry. Principles of simulation. / John Wiley & Sons //
Handbook of Simulation. - 2007. – P. 3-30.

Content

196

CONTENT
GLOSSARY .. 3
Introduction ... 4
1 Formal Analysis and Design for Security Engineering 6
1.1 Laboratory work №1. Formal Analysis and Design for Security
Engineering. The Spy Network Case Study 6

1.2 Laboratory work 2. Applying Formal Methods to a Certifiably
Secure Software System .. 50

2 Formal Methods for the Analysis of Security Protocols 85
2.1 Laboratory work №3. Using Horn Clauses for Analyzing
Security Protocols .. 85

2.2 Laboratory work №4. Validating security protocols under the
general attacker .. 115

3 Formal and Intellectual Methods for System Security and Resilience
 139
3.1 Seminar №1. Formal Goal-Oriented Development of Resilient
MAS in Event-B .. 139

3.2 Seminar№2. Formal Modelling of Resilient Data Storage in
Cloud ... 161

REFERENCES .. 187
Content .. 196
Appendix A. Curriculum ... 197

Appendix A. Curriculum

197

Appendix A. Curriculum

DESCRIPTION OF THE MODULE

TITLE OF THE MODULE Code
Formal and Intellectual Methods for System

Security and Resilience

Teacher(s) Department

Coordinating: Oksana
Pomorova

Others: Sergii Lysenko,
Dmytro Medzatyi

System Programming

Study cycle Level of the

module
Type of the
module

Doctoral A Full-time tuition

Form of delivery Duration Langage(s)

Full-time tuition

One semester

English

Prerequisites

Prerequisites:
Formal Methods; Foundation of
Modeling; Computer Networks;
Artificial Intelligence; Computer
Systems and System Analysis

Co-requisites (if necessary):

Credits of

the module
Total

student
workload

Contact
hours

Individual
work hours

4 108 36 72

Aim of the module (course unit): competences foreseeen by the study

programme

Appendix A. Curriculum

198

The aim of module is to create a knowledge base for formal methods for
System Security and Resilience and to provide a prerequisites for practical use
of B-method for specifying and designing computer systems and software with
formal notation. The study also expands the current research on artificial
intelligence in cyber defense.

.
Learning outcomes of

module (course unit)
Teaching/lear

ning methods
Assessment
methods

At the end of course, the
successful student will be able
to:

1. apply Formal Analysis
and Design for Security
Engineering to industry-related
case studies in order to
demonstrate the feasibility and
effectiveness of the approach in
building secure computer
systems and software in a
provable way

Interactive lectures,
Learning in
laboratories,
Just-in-Time
Teaching

Module
Evaluation
Questionnaire

2. model and analyze the
security properties in
architecture designs; model
security functional and non-
functional properties; to use the
automated analysis of non-
functional properties by formal
methods; use a combination of
semi-formal UML and formal
methods in order to achieve the
modelling efficiency provided
by UML and the rigorous
analysis provided by formal
methods; use the model
checking and theorem prover as
the tools in the analysis of non-
functional properties; use of
different notations, tailored
notations for modelling and
analyzing a comprehensive
collection of security properties

Interactive lectures,
Learning in
laboratories,
Just-in-Time
Teaching

Module
Evaluation
Questionnaire

Appendix A. Curriculum

199

in software architectures
3. use model checkers and

theorem provers for verifying
that a formal specification
satisfies a security property of
interest; automatically generate
test cases that check source code
annotations; automatically
construct efficient provably
correct code from specifications

Interactive lectures,
Learning in
laboratories,
Just-in-Time
Teaching

Module
Evaluation
Questionnaire

4. use the BAN logic and
the authentication of logic in
order to verify in the correctness
of a protocol; use the process
algebra CSP for describing and
reasoning about the behaviour of
concurrent systems and for
reasoning about the high-level
interactions and events that may
occur during a run of a protocol;
take into account the security
properties and build methods for
assessing the security of a
system; use formal methods for
the detection of weaknesses and
possible attacks; use and apply
tools that automatically translate
abstract descriptions of security
protocols into process-algebraic
descriptions that can be
analyzed with model checkers

Interactive lectures,
Learning in
laboratories,
Just-in-Time
Teaching

Module
Evaluation
Questionnaire

5. architect of an intelligent
system for information security
management; build the adaptive
and capable systems for
discovering and building new
knowledge for the information
security domain

Interactive lectures,
Learning in
laboratories,
Just-in-Time
Teaching

Module
Evaluation
Questionnaire

6. use the techniques based
on Artificial Intelligence for
information security

Interactive lectures,
Learning in
laboratories,

Module
Evaluation
Questionnaire

Appendix A. Curriculum

200

management and cyber defense Just-in-Time
Teaching

7. use and apply the
quantitative safety assessment
into resilient system
development in event-B; apply
b-method for merging logical
(qualitative) reasoning about
resilience of system behaviour;
involve the B Method and
Event-B in the development of
resilient systems

Interactive lectures,
Learning in
laboratories,
Just-in-Time
Teaching

Module
Evaluation
Questionnaire

Appendix A. Curriculum

201

Themes

Contact work hours
Time and tasks
for individual

work

Le
ct

ur
es

C
on

su
lta

tio
ns

Se
m

in
ar

s

Pr
ac

tia
cl

 w
or

k

La
bo

ra
to

ry
 w

or
k

Pl
ac

em
en

ts

T
ot

al
 c

on
ta

ct
 w

or
k

In
di

vi
du

al
 w

or
k

Tasks

1. Formal Analysis and
Design for Security
Engineering
1.1. Introduction to
formal methods.
1.2. Formal Analysis
and Design for Security
Engineering
1.3. Formal methods for
Architecting Secure
Software Systems

6 4 10 21

2. Formal Methods for
the Analysis of
Security Protocols
2.1. Formal Methods for
Assuring Security of
Computer Networks
2.2. Formal Methods for
the Analysis of Security
Protocols. Soundness of
Formal Encryption
2.3. Formal Methods for
the Analysis of Security
Protocols. Process
Algebras for Studying
Security
2.4. A Process Algebra
for Reasoning about
Quantum Security

8 4 12 28

3. Formal and
Intellectual Methods
for System Security
and Resilience
3.1. Intellectual methods

6 4 10 23

Appendix A. Curriculum

202

for security
3.2. Methods and
Techniques for Formal
Development and
Quantitative
Assessment. Resilient
systems
3.3. Formal
Development and
Quantitative Assessment
of Resilient Distributed
Systems

Iš viso

20 4 8 32 72

Assessment
strategy

Weight
in %

Deadlines Assessment criteria

Lecture activity,
including
fulfilling special
self-tasks

10 7,14 85% – 100% Outstanding
work, showing a full grasp of
all the questions answered.
70% – 84% Perfect or near
perfect answers to a high
proportion of the questions
answered. There should be a
thorough understanding and
appreciation of the material.
60% – 69% A very good
knowledge of much of the
important material, possibly
excellent in places, but with a
limited account of some
significant topics.
50% – 59% There should be a
good grasp of several
important topics, but with only
a limited understanding or
ability in places. There may be
significant omissions.

45% – 49% Students will
show some relevant knowledge
of some of the issues involved,
but with a good grasp of only a

Appendix A. Curriculum

203

minority of the material. Some
topics may be answered well,
but others will be either
omitted or incorrect.
40% – 44% There should be
some work of some merit.
There may be a few topics
answered partly or there may
be scattered or perfunctory
knowledge across a larger
range.
20% – 39% There should be
substantial deficiencies, or no
answers, across large parts of
the topics set, but with a little
relevant and correct material in
places.

0% – 19% Very little or
nothing that is correct and
relevant.

Learning in
laboratories

30 7,14 85% – 100% An outstanding
piece of work, superbly
organised and presented,
excellent achievement of the
objectives, evidence of original
thought.

70% – 84% Students will
show a thorough understanding
and appreciation of the
material, producing work
without significant error or
omission. Objectives achieved
well. Excellent organisation
and presentation.

60% – 69% Students will
show a clear understanding of
the issues involved and the
work should be well written
and well organised. Good work
towards the objectives.

The exercise should show

Appendix A. Curriculum

204

evidence that the student has
thought about the topic and has
not simply reproduced standard
solutions or arguments.

50% – 59% The work
should show evidence that the
student has a reasonable
understanding of the basic
material. There may be some
signs of weakness, but overall
the grasp of the topic should be
sound. The presentation and
organisation should be
reasonably clear, and the
objectives should at least be
partially achieved.
45% – 49% Students will show
some appreciation of the issues
involved. The exercise will
indicate a basic understanding
of the topic, but will not have
gone beyond this, and there
may well be signs of confusion
about more complex material.
There should be fair work
towards the laboratory work
objectives.
40% – 44% There should be
some work towards the
laboratory work objectives, but
significant issues are likely to
be neglected, and there will be
little or no appreciation of the
complexity of the problem.
20% – 39% The work may
contain some correct and
relevant material, but most
issues are neglected or are
covered incorrectly. There
should be some signs of
appreciation of the laboratory

Appendix A. Curriculum

205

work requirements.
0% – 19% Very little or
nothing that is correct and
relevant and no real
appreciation of the laboratory
work requirements.

Module
Evaluation Quest

60 8,16 The score corresponds to the
percentage of correct answers
to the test questions

Author Year

of
issue

Title No
of
periodic
al or
volume

Place of
printing. Printing
house or intrenet
link

Compulsory literature
Dr. Hubert
Garavel

2013 Formal Methods
for Safe and
Secure Computers
Systems

 Federal Office for
Information
Security

P. Popov, O.
Netkachov, K.
Salako

2014 Model-based
evaluation of the
resilience of
critical
infrastructures
under cyber
attacks

№1. – р.
231-243

International
Conference on
Critical
Information
Infrastructures
Security

Vain J. 2007 Formal
Techniques for
Networked and
Distributed
Systems

№4574.
– p. 364-
373.

FORTE 2007:
27th IFIP WG 6.1
International
Conference,
Tallinn, Estonia,
June 27-29, 2007,
Proceedings,
Springer Science
& Business Media

J. Vain, E.
Halling, G.
Kanter, A.
Anier, D. Pal

2016 Model-Based
Testing of Real-
Time Distributed
Systems

№2. – p.
272-286.

International
Baltic Conference
on Databases and
Information

Appendix A. Curriculum

206

Systems
T. Tagarev, H.
Bucur-Marcu, P.
Flur

2009 Defence
Management: An
Introduction

212 p. Geneva : DCAF,
Geneva Centre,

S. Russo, G.
Carrozza, R.
Pietrantuono

2014 Defect analysis in
mission-critical
software systems:
a detailed
investigation

№1699.
– р. 22-
49.

Software:
Evolution and
Process

S. Russo, D.
Cotroneo, R.
Pietrantuono

2015 RELAI testing: a
technique to assess
and improve
software reliability

№42. –
р. 452-
475

IEEE Transaction
on Software
Enginering.

V. Kharchenko,
A. Tarasyuk, A.
Gorbenko

2015 Principles of
Formal Methods
Integration for
Development
Fault-Tolerant
Systems: Event-B
and FME (C)

№3. – р.
423-429.

Journal of
Computing

 Kharchenko, B.
Volochiy, O.
Mulyak, L.
Ozirkovskyi

2016 Automation of
Quantitative
Requirements
Determination to
Software
Reliability of
Safety Critical
NPP I&C systems

№6. – p.
337-346

Second
International
Symposium on
Stochastic Models
in Reliability

O. Tarasyiuk, A.
Gorbenko

2009 Formal method for
the development of
the critical
software

 Kharkiv: Nationa
Aerospace univ
«Kharkiv Aviation
Institure»

Romanovsky A.

2012 Deployment of
Formal Methods in
Industry: the
Legacy of the FP7
ICT DEPLOY
Integrated
Project”,

 Newcastle
University,
Computing
Science Newcastle
upon Tyne

Laprie, J-C. 2008 From
dependability to

 38th Annual
IEEE/IFIP

Appendix A. Curriculum

207

resilience International
Conference on
Dependable
Systems and
networks

Reder, L., Day,
J., Ingham, M.,
Murray, R., and
Williams, B.

2012 Engineering
Resilient Space
Systems
Introduction to
Short Course

Enn Tyugu 2011 Artificial
Intelligence in
Cyber Defense

3rd International
Conference on
Cyber Conflict
(Tallinn, Estonia)

Lirong Dai and
Kendra Cooper

2007 A Survey of
Modelling and
Analysis
Approaches for
Architecting
Secure Software
Systems

International
Journal of
Network Security

Constance L.
Heitmeyer, Myla
M. Archer,
Elizabeth I.
Leonard and
John D. McLean

2008 Applying Formal
Methods to a
Certifiably Secure
Software System

SOFTWARE
ENGINEERING

Pedro Miguel
dos Santos Alves
Madeira Adão

2006 Formal Methods
for the Analysis of
Security Protocols

PhD diss.,
INSTITUTO
SUPERIOR
TĖCNICO

Bruno Blanchet 2011 Using Horn
Clauses for
Analyzing
Security Protocols

Formal Models
and Techniques
for Analyzing
Security Protocols

Oksana
Pomorova, Oleg
Savenko, Sergii
Lysenko, Andrii
Kryshchuk

2013 Multi-Agent Based
Approach for
Botnet Detection
in a Corporate
Area Network
Using Fuzzy Logic

Vol 37 Computer
Networks
Communications
in Computer and
Information
Science

Appendix A. Curriculum

208

Lysenko S.,
Savenko O., A.
Kryshchuk, Y.
Klyots

2013 Botnet detection
technique for
corporate area
network

Proceedings of the
2013 IEEE 7th
International
Conference on
Intelligent Data
Acquisition and
Advanced
Computing
Systems, Berlin,
DE, IEEE

Inna Pereverzeva 2015 Formal
Development of
Resilient
Distributed
Systems

PhD diss., Turku
Centre for
Computer Science,
Abo Akademi
University,
Faculty of Science
and Engineering,
Joukahaisenkatu,
Turku, Finland

Inna
Pereverzeva,
Elena
Troubitsyna,
Linas Laibinis,
Mats Brorsson,
Luis Miguel
Pinho

2012 Formal Goal-
Oriented
Development of
Resilient MAS in
Event-B,

Proceedings of
17th International
Conference on
Reliable Software
Technologies
(Ada-Europe),
Springer-Verlag
Berlin Heidelberg,
2012.

Almeida J.B.,
Frade M.J.,
Pinto, J.S., Melo
de Sousa S.

2011 Rigorous Software
Development. An
Introduction to
Program
Verification

Springer

Véronique
Cortier, Steve
Kremer

2011 Formal Models
and Techniques for

Analyzing
Security Protocols

Vol.5 IOS Press

Riham Hassan
Abdel-Moneim
Mansour

2009 Formal Analysis
and Design for
Engineering
Security (FADES)

Blacksburg,
Virginia

Appendix A. Curriculum

209

Additional literature
Bruce
Christianson,
Bruno Crispo,
James
A.Malcolm,
Michael Roe

2006 Security Protocols
14th International
Workshop
Cambridge, UK,
March 27-29

 Springer Berlin
Heidelberg New
York
ISBN-13 978-3-
642-04903-3

J.-C. Laprie 2005 Resilience for the
Scalability of
Dependability,

Fourth IEEE
International
Symposium on
Network
Computing and
Applications.
IEEE,

Tarasyuk, Anton
and Troubitsyna,
Elena and
Laibinis, Linas,
In:,

2012 Formal Modelling
and Verification of
Service-Oriented
Systems in
Probabilistic
Event-B.

Lecture Notes in
Computer Science
Springer

Appendix A. Curriculum

210

Syllabus

MODULE1 Formal Analysis and Design for Security Engineering

1 TOPIC 1. Introduction to FormalMethods
1.1 What are Formal Methods?
1.2 The Nature of Formal Methods
1.3 Benefits in the use of Formal Methods

2 TOPIC 2. Formal Analysis and Design for Security Engineering
2.1 Knowledge Acquisition for Automated Specifications –

Goal-Oriented Requirements of the Security Engineering
2.2 Goal-Oriented Requirements of the Security Engineering
2.4 The B Method
2.3 Formal Analysis and Design for Security Engineering
3.3 FADES Tool Support

3 TOPIC 2. Formal methods for Architecting Secure Software
Systems

1.1. Systematical security engineering into software
applications

1.2 Semi-formal Security Modelling and Analysis Approaches
1.3 MAC-UML Framework. SecureUML
1.4 Separating Modelling of Application and Security Concerns
1.5 Formal Security Modelling and Analysis Approaches
1.6 Integrated Semi-formal and formal Modelling and Analysis

Approaches

LAB1 Formal Analysis and Design for Security Engineering.
Demonstration with Case Studies. The Spy Network Case Study

4.1.1 Case Study Preliminary Problem Statement
4.1.2 Elaborating Security Requirements with KAOS
4.1.2.1 Integrity Goals
4.1.2.2 Confidentiality Goals
4.1.2.3 Authentication Goals
4.1.2.4 Availability Goals
4.1.2.5 Access Control Goals
4.1.3 Analysis and Resolution of Obstacles and Conflicts for

Security Goals

Appendix A. Curriculum

211

4.1.3.1 Generating Obstacle to the Goal RevelationIntegrity
4.1.3.2 Resolving Obstacles to the Goal RevelationIntegrity
4.1.4 Transforming the Spy Network Security Goal Graph to B
4.1.5 Derivation of Design and Implementation
4.1.6 Acceptance Testing
4.1.7 Security Specifications Changes

LAB 2. Formal Methods for a Certifiable Secure Software System
2.1. Code verification process
2.2 Formal foundations for a certifiably secure software system
2.3 Applying formal Techniques to Other Security Properties

MODULE 2 . Formal Methods for the Analysis of Security
Protocols.

4 TOPIC 1. Formal Methods for Assuring Security of Computer
Networks

1.1 Formal Methods and Security of Computer Networks
1.2 Needham–Schroeder protocol
1.3 Tools for formal methods
1.4 Model–based software development
1.5 Principals of security.
1.6 Key security properties
1.7 Assessing security protocols
1.8. Needham–Schroeder public–key protocol.BAN logic

5 TOPIC 2. Formal Methods for the Analysis of Security
Protocols. Soundness of Formal Encryption

4.1 The Abadi-Rogaway Logics of Formal Encryption. Process
Algebras for Security. Quantum Security

4.2 The Abadi-Rogaway Soundness Theorem
4.3 Soundness in the Presence of Key-Cycles
4.4 Partial Leakage of Information
4.5 Information-Theoretic Interpretations: Soundness and

Completeness for One-Time Pad
4.6 General Treatment for Symmetric Encryption

6 TOPIC 3. Formal Methods for the Analysis of Security
Protocols. Process Algebras for Studying Security

3.1 Low-Level Target Model
3.2 A Distributed Calculus with Principals and Authentication

Appendix A. Curriculum

212

3.2.1 Syntax and Informal Semantics
3.2.2 Operational Semantics
3.2.3 An Abstract Machine for Local Reductions
3.3 High-Level Equivalences and Safety
3.4 Applications
3.4.1 Anonymous Forwarders
3.4.2 Electronic Payment Protocol
3.4.3 Initialisation
3.5 A Concrete Implementation
3.5.1 Implementation of Machines

7 TOPIC 3. A Process Algebra for Reasoning about Quantum
Security

4.1 Process Algebra
4.1.1 Quantum polynomial machines
4.1.2 Process algebra
4.1.3 Semantics
4.1.4 Observations and observational equivalence
4.2 Emulation and Composition Theorem
4.3 Quantum Zero-Knowledge Proofs

LAB 4. Using Horn Clauses for Analyzing Security Protocols
LAB 5 Validating Security Protocols under the General

Attacker
MODULE 3 Formal and Intellectual Methods for System Security

and Resilience

8 TOPIC 1. Intellectual methods for security
1.1 Artificial Intelligence Techniques Applied to Intrusion

Detection.
1.2 Multi-agent based approach of botnet detection in computer

systems
1.3 Technique for bots detection which use polymorphic code

9 TOPIC 2. Methods and Techniques for Formal Development and
Quantitative Assessment. Resilient systems

2.1 Resilience and Dependability: Basic Definitions. Goal-
Based Development

2.2 Development Methodologies
2.3 Event-B Method
2.4 Quantitative Assessment

Appendix A. Curriculum

213

2.5 PRISM model checker
2.6 Discrete-event simulation

10 TOPIC 3. Formal Development and Quantitative Assessment
of Resilient Distributed Systems

3.1 Resilience-Explicit Development Based on Functional
Decomposition

3.2 Modelling Component Interactions of the Resilient System
with Multi-Agent Framework

3.3 Goal-Oriented Modelling of Resilient Systems
3.4 Pattern-Based Formal Development of Resilient MAS
3.5 Formal Goal-Oriented Reasoning About Resilient

Reconfigurable MAS
3.6 Modelling and Assessment of Resilient Architectures

Seminar №1. Formal Goal-Oriented Development of Resilient
MAS in Event-B

Seminar№2. Formal Modelling of Resilient Data Storage in Cloud.

Oksana Pomorova,

 Sergii Lysenko,

Dmytro Medzatyi

Formal and Intellectual Methods for

System Security and Resilience

Practicum

Editor Kharchenko V.

Зв. план, 2017

Підписаний до друку 20.03.2017 Формат
60х84 1/16. Папір офс. №2. Офс. друк.

Умов. друк. арк. 21,89. Уч.-вид. л. 22,31. Наклад 100 прим.
Замовлення 2/2. Ціна вільна

Національний аерокосмічний університет ім. М. Є. Жуковського "Х

а р к і в с ь к и й а в і а ц і й н и й і н с т и т у т"
61070, Харків-70, вул. Чкалова, 17

http://www.khai.edu

http://www.khai.edu/

