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GLOSSARY 
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SSL - Secure Sockets Layer 
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INTRODUCTION 

This book contains the practical part of the materials (laboratory 
works ana seminars) of the discipline «Formal and Intellectual Methods 
for System Security and Resilience», prepared for the masters of the 
TEMPUS project "Modernization of Postgraduate Studies on Security 
and Resilience for Human and Industry Related Domains" (543968-
TEMPUS-1-2013-1-EE-TEMPUS-JPCR). Laboratory works are 
devoted to the development of formal and intellectual methods for 
system security and resilient systems. 

The manual contains descriptions of laboratory works, seminars, 
course curriculum. 

The first section is devoted to the module of the course "Formal 
analysis and design for security engineering" and contains theoretical 
material and a description of the implementation of the two labs. These 
laboratory works are focused on studying a formal analysis for security 
engineering in order to capture, organize, and elaborate on security 
requirements, and on gaining the knowledge and acquire skills in the 
verifying security down to the source code level. 

The second section is devoted to the module of the course "Formal 
methods for the analysis of security protocols" and contains theoretical 
material and a description of the a method for verifying security 
protocols based on an abstract representation of protocols by Horn 
clauses, as well as a description of the analysis the security protocols 
under the General Attacker threat model. 

The third section is devoted to the module of the course "Formal 
and intellectual methods for system security and resilience" and 
contains theoretical material and a description of the a formal goal-
oriented approach to development of resilient multi agent system and 
formalization of the industrial approach to implementing resilient cloud 
data storage.  

For convenience еhe figures, tables and formulas are numbered 
within each section. 

This practicum can be useful for post-graduate students studying in 
the areas of computer engineering, computer science, and can also be 
useful to lecturers, leading classes in the relevant disciplines. 

Practicum is prepared by Dr. Oksana Pomorova, the head of the 
system programming department of the Khmelnytskyi national 
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university, Sergii Lysenko, PhD, associate professor of the system 
programming department of the Khmelnytskyi national university, and 
Dmytro Medzatyi, PhD, associate professor of the system programming 
department of the Khmelnytskyi national university. 

The authors are greatly appreciate all partners of the TEMPUS 
SEREIN1 project consortium for the fruitful collaboration, exchange of 
experience. 

1 Этот проект финансируется при поддержке Европейской комиссии. 

Эта публикация (сообщение) отражает мнения только авторов, и Комиссия 

не может нести ответственность за любое использование содержащейся в 

нем информации. 

This project has been funded with support from the European Commission. 

This publication (communication) reflects the views only of the author, and the 

Commission cannot be held responsible for any use which may be made of the 

information contained therein. 
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1 FORMAL ANALYSIS AND DESIGN FOR SECURITY 
ENGINEERING 

1.1 Laboratory work №1. Formal Analysis and Design for 
Security Engineering. The Spy Network Case Study 

The aim and the task of the laboratory work 
The aim of this laboratory work is to consider a formal analysis and 

design for security engineering, a semi-formal requirements approach, to 
capture, organize, and elaborate on security requirements. Also it shoud 
demonstrate, that such formal analysis provides an advantage over a fully 
formal approach as its goal-directed nature allows enough flexibility 
while managing to characterize and preserve key security properties that 
can then be transformed into a proven B representations for further 
elaboration and refinement at the design and implementation levels. 

Task of the work: 
- to outline the security requirements of eploying case study, which 

should demonstrates how these requirements are modeled with 
Knowledge Acquisition for automated Specifications (KAOS) and 
transformed to B for further refinement to derive implementation 
specifications in B.  

- to consider thef the application of formal analysis and design for 
security engineering to the spy network system.  

Preparation for laboratory work 
- to clarify the aims and objectives; 
- to study theoretical material given in the description. 

Theoretical material

Introduction 

While there are a number of technical approaches on security patterns 
[1-3], there are few canonical examples from which to formulate a 
reasonable comparator. According to Fontaine, the security literature 
does not provide security requirements benchmarks [4]. Rather it has 
some small examples, which are associated to security models. Unlike 
many case studies in the security literature, the spy network case study is 
of a reasonable size; small enough to be manageable and large enough to 
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be convincing. The spy network case study has been derived from two 
real case studies: 

- The British National Health Service (NHS). The main goal of the 
system is to protect medical records from illegitimate access to a 
centralized database. 

- The eBay on-line auction web site. It is an example of a typical e-
business application with a range of constrains about distributed user 
behaviors. 

The spy network system represents a sample of the category of 
communication systems that share a common set of security 
requirements. This assists in verifying the applicability of Formal 
Analysis and Design for Security Engineering to communication systems 
that exhibit high security demands. 

Case Study Preliminary Problem Statement 

The spy network application is aimed at broadcasting secret 
revelations into a network of spies around the world. Spies are 
collaborating in teams that achieve a mission each. Each team has a boss. 
The big boss supervises all missions, allocates spies to missions, and 
appoints bosses to teams. Spies collect revelations about the enemy and 
target them to other members of the team working on the mission. The 
spy who collects a revelation is its author. A spy can be reallocated on 
another mission, meaning that he goes to another team. Team members 
should be provided with an uncorrupted copy of the revelation within a 
certain timeframe. Only spies who are currently allocated to a mission 
are allowed to know revelations about that mission. Some spies may be 
malicious spies. Therefore, we need to be sure of the author of a 
revelation. Workload balancing should be achieved between different 
spies in the system. 

Each spy subscribes to his local service provider for a mailbox in 
which all his incoming email arrives. Therefore, each spy has a different 
mail server. Mailboxes are identified by their address. Spy mailbox 
addresses are very confidential and should not be written down in an 
insecure location. For security reasons, spies change their mailbox every 
month. Some spies are old friends and often write to each other outside 
of the missions duties. Therefore, they memorize others spies’ mailbox 
addresses without having to write them down. Only the owner of a 
mailbox should be able to access it. 
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Each spy has at least a few spy friends. Friendship is assumed to last 
forever. Friends can be in different teams. The author of a revelation is 
not necessarily the team boss. Revelations are contained in messages that 
are sent through the email transfer system (asynchronous messages). The 
email transfer system cannot attack actively, although it could fail to 
deliver messages or be subject to passive eavesdropping. A revelation is 
written by an author and read by one or several recipients. A message is 
sent by a sender and received by a receiver. A message containing a 
revelation is not necessarily sent directly to the recipients. It could be 
sent to an intermediate receiver who will send another message 
containing the same revelation to the recipient, or to another intermediate 
spy. Revelations are persistent objects, whereas messages are temporary 
objects that cease to exist upon reception, after their content has been 
processed. We could think of messages as envelops and of revelations as 
their content. When a spy collects a new revelation, he sends a message 
to the team relay. The relay then sends messages to all other members of 
the team. This assumes that the team relay does know every team  
member’s identity. The team boss appoints the team relay. There is one 
single relay in each team at a time and every spy knows that fact. 

Elaborating Security Requirements with KAOS 

Let us outline the elaboration of security requirements for the spy 
network system with KAOS. The security goals resulting from the 
elaboration of security requirements are global in the sense that a 
particular agent cannot enforce them; instead, they apply to the whole 
system. We will elaborate generic security requirements that are typical 
in the security domain. This means that they are applicable by analogy to 
other security domain case studies. 

 
This high level security goal is refined using the traditional 

classification [5, 6]. 



Formal analysis and design for security engineering 

9 

 

 
Figure 1.1. Refinement of security goals 

This refinement is not complete in that all offspring goals do not 
necessarily imply the father goal because security properties of a system 
are of multiple natures. These five subgoals have been chosen because 
they are known to be the most frequent aspects of a secure system. In 
order to formally express these security goals, we need to specify a 
security model for the system, which can be either generic or specific. 
The literature on security defines generic security models that have to be 
instantiated to particular systems such as the Bell-LaPadula or Biba 
models [4]. In order to apply a generic security model to a system, the 
security requirements of this system need to fit into the model. The Bell-
LaPadula or Biba models are appropriate for hierarchical systems like 
military systems. In these systems, uses at the same level of the hierarchy 
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have the same rights, which means that privileges are granted to a user 
class rather than specific users. Many distributed systems do not 
necessarily fit into this model. 

In the context of the spy network case study, a generic security model 
won’t be used, but instead instantiate security goals with domain specific 
patterns related to the domain will be. All security goals are expressed in 
terms of the stakeholder’s language. For instance, the concept of a 
Message, which is specific to a particular design is not used. This reflects 
the fact that these are high level goals and are applicable to any 
alternative design chosen for the system. In other words, by expressing 
these security goals, the system is not constrained to fit into a particular 
security model. 

Integrity Goals 

The generic pattern for integrity goals can be formalized: 

The following heuristic is proposed to instantiate this goal: 
For every object copy in the system, the ObjectCopyAccuracy goal 

should be instantiated. This requires finding out which agent owns the 
master copy of the object. All other instances of the object will be 
considered as copies from this master object. In the context of the spy 
network case study, integrity means that every copy of a revelation 
should be identical to the original revelation written by the author. 

The goal RevelationIntegrity is too ideal and cannot be assigned to 
any agent because the author does not know which revelation content is 
actually received by the recipient, and conversely the recipient does not 
know which revelation content the author has sent. Fortunately, this goal 
is a non-functional one, which means that it is not supposed to be 
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assigned to a particular agent, and it is global in the system. Maintaining 
this goal is achieved through the introduction of new functional goals 
that enforce such non-functional goal. 

If every agent assigned to a goal successfully achieves his goal, the 
integrity of revelations is guaranteed since integrity is implicitly stated in 
the functional goals. However, stating an explicit goal like 
InformationIntegrity allows for covering a wider range of agent 
behaviors in case an agent fails to achieve his goal. We are then able to 
elaborate strategies that will be refined into strengthened design. This 
leads to the achievement of system goals even in case of agent failures, 
which means more robust design. For instance, we could use digital 
signatures, in which case the recipient is able to verify whether the 
revelation is intact and is from the purported author. In this 
operationalization scheme, additional goals are needed to notify the 
author in case a recipient has received a corrupted copy of a revelation. 

Confidentiality Goals 

The generic pattern for confidentiality goal can be formalized as 
follows: 

 
The following heuristic is proposed to instantiate this goal: 
For every attribute of an object, express what necessary condition for 

an agent to know such attribute is. For attributes that do not have such 
condition, no confidentiality goal is necessary. These conditions depend 
on domain knowledge. In the context of the spy network case study, 
confidentiality is refined into two subgoals: 

Confidentiality of revelations means that a revelation may be known 
only by spies working in the mission. Therefore, the generic goal can be 
instantiated as follows: 
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This goal is non-functional goal that can neither be assigned to the 

recipient nor the sender. The recipient might want to know the revelation 
although he should refrain himself from doing so and the sender is not 
able to control that a wrong target intercepts the message. Therefore, this 
goal needs to be enforces by further functional goals. Secret keys allows 
for expressing who is authorized to know a revelation. 

Confidentiality of mailboxes means that a spy mailbox address 
should known only by a friend who can memorize it. 

 
This goal is too ideal because friendship cannot be controlled by any 

single agent. It can only controlled by both parties involved. So, we are 
likely to weaken this goal in different designs. 

Authentication Goals 

The generic pattern for authentication goals can be formalized as 
follows: 

 
The following heuristic is proposed to instantiate this goal: for every 

object, agents should be able to verify its author.  
In the context of the spy network case study, authentication means 

that every revelation is attributable to an author and that the purported 
author of the revelation is correct. The generic goal can be instantiated as 
follows: 
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The relationship AuthorOf is equivalent to the relationship 
Collecting. The spy who collects the revelation is the author. The author 
mentioned on a revelation can be a forged name, so we will need to 
verify that the purported author is the real author. 

Availability Goals 

The generic pattern for availability goals can be formalized as 
follows: 

The following heuristic is proposed to instantiate this goal: 
For every Achieve goal, determine which resource(s) needs to be 

available for the goal achievement. In the context of the spy network case 
study, availability means that revelations are known within a certain 
timeframe by all other team members. The generic goal can be 
instantiated as follows: 

This goal is a quantitative one in which the critical aspect is the 
timeframe. In this formulation, it is assumed that revelations can be 
owned within 2 hours. The constant 2 is used as a parameter representing 
the expected mean time for a revelation transmission 

Access Control Goals 

The generic pattern for access control goals can be formalized as 
follows: 
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The following heuristic is proposed to instantiate this goal: 
For every object, express what the necessary condition for an agent to 

access it is. For objects that do not have such condition, no access control 
goal is necessary. These conditions depend on domain knowledge. In the 
context of the spy network case study, access control means that a 
mailbox should be accessed only by its subscribed spy  

 
Analysis and Resolution of Obstacles and Conflicts for Security 
Goals 

In this subsection, the security goals elaborated in the previous 
section are refined and analyzed by finding conflicts and obstacles to 
security, that is, potential attacks. This subsection focuses on finding 
obstacles to security goals only taking obstacles to the Resolution 
strategies to potential security attacks are proposed. 

Generating Obstacle to the Goal RevelationIntegrity  

The goal RevelationForwardedFromRelay is assigned to the relay. In 
case the relay agent fails to achieve 

this goal and modifies the revelation content (maliciously or not), the 
goal RevelationIntegrity becomes violated as well.  

Negating the goal RevelationIntegrity gives the following: 
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The following object model increment is required: 

 
Regressing through the domain properties, we get: 

 
Because of the third domain property, we know that the revelation 

has been corrupted by sp2 (the relay) rather than by sp1 (the author). If 
the relay changes the content of the revelation, the RevelationIntegrity 
goal is violated. A strong mitigation would be achieved through the 
following goal: 

 
This goal refined as follows: 
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The goal AuthorResendWhenKnowsCorrupted needs to be refined 
the same way as the goal WholeTeamInformed. In this case, the 
revelation author could send the revelation again hoping that it was only 
a temporary error and that the revelation will not get corrupted this time. 
The goal CorruptedRevelationKnownByAuthor needs to be refined as 
follows: 
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The goal AuthorKnowsCorruptedWhenReceiverKnows will be 

refined using notifications in a similar way as the goal 
WholeTeamInformed as shown below. 

Resolving Obstacles to the Goal RevelationIntegrity 

Van Lamsweerde defined some patterns to resolve obstacles early in 
requirements and accommodate these solutions in the requirements 
model [7]. In the security context, obstacles represent security threats to 
the system that need to be resolved using security patterns [8]. For 
example, data integrity is normally preserved using digital signatures, so 
a way to resolve the obstacles to the RevelationIntegrity goal is to 
employ digital signatures in the goal operationalization of the 
RevelationIntegrity goal. The early accommodation of this solution 
during requirements analysis allows for reflecting the impact of this 
solution on the rest of the requirements that have dependency on this 
RevelationIntegrity goal. 

The RevelationIntegrity goal is operationalized such that each 
revelation has a signature that depends on the revelation text and the 
author’s identity. With a public key scheme, there are different keys for 
signing (private key) and verifying (public key). Verification allows the 
receiver to check whether the message is intact. Each spy can have a list 
of public keys of every other spy including those not in his team. 

When he receives a revelation from a spy, he can verify that the 
revelation is from the purported author if the key is accurately associated 
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with the author. If a spy has several public/private keys, they need to be 
identified. For simplicity, let’s assume in the coming illustration that 
each spy has only one key pair. The signature of the message could be 
used to deduce that the revelation is not corrupted with respect to the 
public key used to verify it as defined in the goal 
RevelationVerifiedWhenReceived. In case the verification indicates that 
the revelation is corrupted, it could also be the case that it is actually the 
signature that is corrupted and the revelation is correct. The goal 
CorruptedRevelationKnownByReceiver can be refined into the goals 
RevelationSignedWhenSent and RevelationVerifiedWhenReceived that 
mandate the signing of the revelation at the sender side and the 
verification of that signature at the receiver end as follows: 

 
The goals RevelationSignedWhenSent and 

RevelationVerifiedWhenReceived are assigned to the sender and the 
receiver agents respectively. The operations SignRevelation and 
VerifyRevelation operationalize the two goals as indicated below. The 
goal graph showing the refinement of the resolution of the 
RevelationIntegrity obstacles is illustrated in Figure 1.2. 
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Figure 1.2. Refinement of the Integrity obstacle resolution 

The above two goals introduced to resolve the obstacles of the 
RevelationIntegrity goal yield some increments in the object model in 
order to accommodate the digital signature solution. Assuming that 
public key infrastructure is employed to carry out digital signatures, the 
entities of a PrivateKey, PublicKey and KeyPair are needed as well as 
entities modeling the signature itself and the relationships Signed and 
Verified. The object model increments are defined as follows: 
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In the goal CorruptedRevelationKnownByReceiver, it is stated that 
the author’s public key is owned by the receivers of the revelation. It 
means that keys have to be distributed like revelations with the difference 
that public keys last for the entire life of a spy. The key distribution will 
also yield a goal for their broadcasting similar to the goal 
WholeTeamInformed: 

A new type of message is introduced, PublicKeyNotif to be sent by a 
spy to inform other people of his public key. 

Because a private key identifies a spy, it needs to be owned only by 
its creator: 

The above object model increment has propagated the impact of 
introducing digital signature as a solution to the obstacles of the 
RevelationIntegrity goal. The rest of the security goals that relate to 
RevelationIntegrity feel the impact of the digital signature solution 
through the update of the object model that mediates the interaction 
among goals. A graphical summary of all security goals after applying 
obstacle analysis is illustrated in Figure 1.3. 
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Figure 1.4 shows the part of the object model involved in security 
goals. 

 
Figure 1.4. Partial object model involved in security goals 

Requirements at the very bottom of the goal graph need to be 
operationalized in order to complete the KAOS model. KAOS operations 
are means for agents in the software-to-be to achieve their assigned 
requirements. The goal graph of the security requirements for the spy 
network system in Figure 1.3 is big and complicated, so we have 
summarized the security operations along with the fundamental security 
goals in Figure 1.5. 
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Figure 1.5 shows six security operations. The SignRevelation and 
VerifyRevelation operations realize the revelation integrity goals. The 
EncryptRevelation and DecryptRevelation goals realize the revelation 
confidentiality goals. The CertifySpy operation realizes the revelation 
authentication goals and the AccessMailbox realizes the mailbox access 
control goals. The following formal definition of each operation shows 
the operation name (highlighted), the input parameters (Input), the output 
parameters (Output), the precondition (DomPre) that must be true prior 
to the operation execution, the post condition (DomPost) that must be 
true after the operation finishes execution, and the goals that this 
operation are prerequisite to their achievement (ReqPreFor). The 
SignRevelation operation is responsible for achieving the goal 
RevelationIntegrity and its subgoals. This operation is called when a spy 
sends a revelation to another spy in order to protect the integrity of the 
revelation against malicious acts. The operation takes the spy signing the 
revelation, the revelation to be signed and the private key with which the 
revelation is signed as input parameters and returns the digital signature 
as an output. 

 
Operation SignRevelation 
Input Spy{arg sp}, Revelation{arg rev}, Privatekey {arg pk} 
Output Signature {res sig} 
DomPre  (  rev1:Revelation) Signed(rev1, sig, pk) 
DomPost (  rev2:Revelation) Signed(rev2, sig, pk) 
ReqPreFor RevelationSignedWhenSent 
CreatorOf(sp, pk) 
 
The VerifyRevelation operation is responsible for achieving the goal 

RevelationIntegrity and its subgoals. This operation is called when a spy 
receives a revelation from another spy in order to verify that the received 
revelation is not tampered with while in transit. The operation takes the 
spy verifying the revelation, the revelation to be verified and the public 
key with which the revelation is verified as input parameters and returns 
a boolean as an output to indicate whether the revelation is verified 
correct or not. 

 
Operation VerifyRevelation 
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Input Spy{arg sp}, Revelation{arg rev}, Publickey {arg pk}, 
Signature {arg sig} 

Output Boolean {res verified} 
DomPre  (  rev1:Revelation) Verified(rev1, sig,Pk) 
DomPost (  rev2:Revelation) Verified(rev2, sig, pk) 
ReqPreFor RevelationVerifiedWhenReceived 
Knows(sp, pk) 
ReqPreFor RevelationDecryptedWhenReceived 
(  msg:Message, prk: PrivateKey) 
Decrypted(msg, prk) ^ CreatorOf(sp, prk) 
 
The EncryptRevelation operation is responsible for achieving the 

goal RevelationConfidentiality and its subgoals. This operation is called 
when a spy sends a revelation to another spy in order to protect the 
confidentiality of the revelation against malicious acts. The operation 
takes the spy encrypting the revelation, the revelation to be encrypted and 
the public key with which the revelation is encrypted as input parameters 
and returns the encrypted revelation as an output. 

 
Operation EncryptRevelation 
Input Spy{arg sp}, Revelation{arg rev}, Publickey {arg pk} 
Output Message {res msg} 
DomPre  (  rev1:Revelation) Encrypted(rev1, pk) 
DomPost (  rev2:Revelation) Encrypted(rev2, pk) 
ReqPreFor RevelationEncryptedWhenSent 
Knows(sp, pk) 
ReqPreFor RevelationSignedWhenSent 
(  prk: PrivateKey, sig:Signature) 
Signed(rev, sig, prk) ^ CreatorOf(sp, prk) 
ReqPostFor RevelationEncyptedWhenSent 
About(msg, rev) 
 
The DecryptRevelation operation is responsible for achieving the 

goal RevelationConfidentiality and its subgoals. This operation is called 
when a spy receives a revelation to another spy in order to get the content 
of the encrypted revelation. The operation takes the spy receiving the 
revelation, the encrypted revelation to be decrypted and the private key 
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with which the revelation is decrypted as input parameters and returns 
the revelation content as an output. 

 
Operation DecryptRevelation 
Input Spy{arg sp}, Message{arg msg}, Privatekey {arg pk} 
Output Revelation {res rev} 
DomPre  (  msg1:Message) Decrypted(msg1, pk) 
DomPost (  msg2:Message) Decrypted(msg2, pk) 
ReqPreFor RevelationDecryptedWhenReceived 
CreaterOf(sp, pk) 
ReqPostFor RevelationDecryptedWhenReceived 
Knows(sp, rev.Content) 
 
The CertifySpy operation is responsible for achieving the goal 

RevelationAuthentication and its subgoals. This operation is called when 
a spy receives a revelation from another spy in order to authenticate the 
sender of the revelation. The operation takes the spy sending the 
revelation, and the public key of the sender and returns a boolean as an 
output indicating whether the revelation comes from a certified spy or 
not. 

 
Operation CertifySpy 
Input Spy{arg sp}, Publickey{arg pk} 
Output Boolean {res Authenticated} 
DomPre Certified(sp, pk) 
DomPost Certified(sp, pk) 
ReqPreFor RevelationVerifiedWhenReceived 
 (  rev:Revelation,, sig:Signature) 
Verified(rev, sig, pk) ^ CreatorOf(sp, pk) 
 
The AccessMailbox operation is responsible for achieving the goal 

MailboxAccessControl and its subgoals. This operation is called when a 
spy tries to access the mailbox in which he/she is subscribed. The 
operation takes the spy trying to access his/her mailbox, the mailbox 
being accessed, and the password of the mailbox and returns a boolean as 
an output indicating whether access to the mailbox is allowed or denied 
based on the provided password. 
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Operation AccessMailbox 
Input Spy{arg sp}, Mailbox{arg ma}, Password {arg pa} 
Output Boolean {res accessed} 
DomPre   Accessed(ma, sp) 
DomPost Accessed(ma, sp) 
ReqPreFor MailboxAccessControl 
Subscribed(ma, sp) 
ReqPreFor MailboxAccessedWithPassword 
pa = ma.Password 
 
The above operations are transformed to B in the coming subsection 

to construct the initial B machine that is further refined inside B using the 
B refinement mechanism to derive design specifications and generate 
implementation. The rational for transforming KAOS operations to B 
while not transforming the rest of the goal graph is that operations sums 
up all the behaviors that agents need to have to fulfill their requirements, 
which are the leaf goals in the goal graph. The mechanism for 
constructing the goal graph shows that high level goals are refined using 
AND/OR refinement steps until leaf goals are derived meaning that the 
fulfillment of leaf goals implies the fulfillment of the higher level goals 
in the goal graph. Therefore, it is safe to only transform KAOS 
operations used to express behaviors of agents that perform them to 
fulfill the leaf goals in the goal graph without compromising the 
completeness and consistency properties of the requirements model. 

Transforming the Spy Network Security Goal Graph to B 

Modeling the security requirements of the spy network system with 
KAOS has defined the goals, the agents responsible for achieving these 
goals and the means to achieve these goals in the form of the KAOS 
operations. In order to go further with the security-specific elements from 
the requirements phase to the design phase, the KAOS requirements 
model need to be transformed to a design elaboration language, which is 
the B language in FADSE [1], The transformation focuses on both the 
KAOS security operations and the entities of the partial object model 
involved in security goals. The transformation scheme provides a means 
to bridge the gap between security requirements and their realization in 
formal design. The value of the transformation scheme is in stepping 
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further from the relaxed formality of the KAOS requirements model in 
which requirements are wellorganized and reasoned about to more rigid 
formality in the initial B model that is further refined for design. This 
means that without the transformation scheme, the variance of formality 
between requirements and design would not have been possible. This is 
evidenced in the formal security engineering literature in which rigid 
formality applies to all the phases of development starting for specifying 
requirements to deriving implementation like employing the Z or the 
VDM formal languages for manipulating security concerns. Applying 
formal languages to requirements specifications has the disadvantages of 
increasing the cost and complexity of development, using formal 
languages that are very specific to model requirements that usually have 
lots of unknowns that cannot be specified formally, and lacking built-in 
constructs for threat analysis and mitigation. The Goal Graph Analyzer 
tool that automates the transformation from KAOS to B parses the XML 
model produced by the Objectiver tool and representing the KAOS 
security requirements model for the spy in order to construct the initial B 
abstract model equivalent to the KAOS model. The initial B model is 
manipulated using the B-Toolkit, which is one of the two most famous 
commercial tools for B development as a tool to develop B model and 
refine it to derive design specifications and implementation. The abstract 
B machine for the spy network system is illustrated in the below code. 
The spy network system is represented as an abstract machine called 
SpyNetwork parameterized with the maximum number of spies allowed 
in the system. The machine represents the spies as a set in the Variables 
section that model the system state as highlighted in the below code. The 
Spies’ attributes are also modeled as part of the Variables section with 
the Invariant stating the types of each attribute. The machine invariant 
states the constraints on the machine state variables. The SpyNetwork 
machine represents each of the six KAOS operations illustrated in Figure 
1.5 as a B operation as highlighted below. KAOS operations 
preconditions are directly mapped to preconditions of their corresponding 
B operations since both are defined in first-order predicate logic. The 
KAOS definition of operations provides the interface of the operation 
with which its clients (callers) will call it and that is the task of the 
requirement analysis phase. The abstract definition of each operation 
behavior is the responsibility of the early design phase. This means that 
the generated B abstract machine from the Goal Graph Analyzer needs to 
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be augmented with the abstract specifications for each operation as 
shown below. The abstraction specification of each operation is further 
refined using the B refinement mechanism to make the definition more 
concrete through adding more details and removing the non-determinism 
in the abstract definition. 

 
MACHINE SpyNetwork (maxSpies) 
CONSTRAINTS maxSpies : 1..10000 
SEES StrTokenType, Bool_Type 
DEFINITIONS SPY== 1.. maxSpies 
 
 
VARIABLES 
spies, spyId,spyName, spyMailboxPassword, spyPublicKey, spyPrivateKey, 
key, signature –-used as a placeholder for use in local variables 
 
 
INVARIANT 
spies <:SPY & 
spyId : spies >-> NATURAL1 & 
spyName : spies --> STRTOKEN & 
spyMailboxPassword : spies >-> STRTOKEN & 
spyPublicKey : spies >-> STRTOKEN & 
spyPrivateKey : spies >-> (STRTOKEN - spyPublicKey) & 
spyId >< spyName>< spyMailboxPassword ><spyPublicKey><spyPrivateKey: 
spies >-> (NATURAL1 >< STRTOKEN >< STRTOKEN >< STRTOKEN >< 
STRTOKEN) & 
key : STRTOKEN & signature : STRTOKEN 
 
OPERATIONS 
 
NewSpy(identity, name, mailboxPassword, publicKey, privateKey) = 

PRE  
 

identity: NATURAL1 & name: STRTOKEN & mailboxPassword: STRTOKEN 
& 

publicKey: STRTOKEN & privateKey: STRTOKEN & 
(identity, name, mailboxPassword, publicKey, privateKey)/: 
ran(spyId >< spyName >< spyMailboxPassword >< spyPublicKey >< 

spyPrivateKey) & 
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spies /= SPY 
 

THEN 
 
ANY newSpy WHERE newSpy : SPY – spies THEN 

spies := spies \/ {newSpy} || spyId(newSpy) := identity || 
spyName(newSpy) := name || 

spyMailboxPassword(newSpy) := mailboxPassword || 
spyPublicKey(newSpy) := publicKey || 
spyPrivateKey(newSpy) := privateKey 

END 
END; 

 
 

found, spyDetails <-- getSpy(identity) = 
PRE identity : NATURAL1 THEN 
IF (identity) : ran(spyId) THEN 

spyDetails := (spyId >< spyName >< spyMailboxPassword >< 
spyPublicKey >< spyPrivateKey)~ (identity) || 

found := TRUE 
ELSE 

spyDetails : SPY || 
found := FALSE 

END 
END; 

 
full <-- spyNetworkFull = 
BEGIN 

full := bool(spies = SPY) 
END; 
 
encyptedRevelation <-- encryptRevelation(revelation, identity) = 

PRE revelation : STRTOKEN & identity : NATURAL1 THEN 
IF (identity) : ran(spyId) THEN 

key := spyPublicKey(identity) || 
signature := signRevelation(revelation, identity); 
encyptedRevelation : (signature; key) >-> STRTOKEN 

ELSE 
encyptedRevelation :: STRTOKEN 

END 
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END; 
 
revelation <-- decryptRevelation(ecryptedRevelation, identity) = 

PRE ecryptedRevelation : STRTOKEN & identity : NATURAL1 THEN 
IF (identity) : ran(spyId) THEN 

key := spyPrivateKey(identity) || 
revelation : ecryptedRevelation >-> STRTOKEN 

ELSE 
revelation :: STRTOKEN 

END 
END; 

 
signature <-- signRevelation(revelation, identity) = 

PRE revelation : STRTOKEN & identity : NATURAL1 THEN 
IF (identity : ran(spyId)) THEN 

key := spyPrivateKey(identity) || 
signature : revelation >-> STRTOKEN 

ELSE 
signature :: STRTOKEN 

END 
END; 

 
verified <-- verifyRevelation(revelation, identity, signature) = 

 
PRE 

revelation : STRTOKEN & identity : NATURAL1 & signature : STRTOKEN 
THEN 
IF (identity) : ran(spyId) THEN 

key := spyPublicKey(identity) || 
IF (signature == revelation(key)) THEN -- how to indicate the application of key to 

revelation 
verified := TRUE 

ELSE 
verified := FALSE 

END 
ELSE 

verified := FALSE 
END 

END; 
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authenticated <-- certifySpy(identity, publicKey) = 
PRE identity : NATURAL1 & publicKey : STRTOKEN THEN 
authenticated := bool(spyPublicKey(identity) = publicKey) 

END; 
 

accessAllowed <-- accessMailbox(identity, password) = 
PRE identity : NATURAL1 & password : STRTOKEN THEN 

IF (identity : ran(spyId)) THEN 
IF (password == spyMailboxPassword(identity)) THEN 

accessAllowed := TRUE 
ELSE 

accessAllowed := FALSE 
END 

ELSE 
accessAllowed := FALSE 

END 
END; 

 
To illustrate the idea of the abstract definition of operation behavior 

that augments the generated B machine from the Goal Graph Analyzer 
Tool, let’s describe the definition of the encryptRevelation operation as 
an example. The definition first checks on whether the spy whose 
identity is used to encrypt the message belongs to the set of spies in the 
network. If the spy identity is verified, the public key of the spy is 
retrieved from the set of public keys stored in the variables section using 
the spy identity. The revelation is signed before encrypted by calling the 
signRevelation operation and finally the encrypted revelation is 
abstractly defined as another string value calculated from the original 
revelation. The abstract definition of the encrypted revelation allows for 
multiple concrete definitions of how to encrypt the original revelation 
depending on the design decision made in the coming refinement steps 
on which encryption algorithm is used. 

Derivation of Design and Implementation 

The initial B machine is refined using the B refinement mechanism to 
enforce design decisions. The first refinement step is classified as data 
refinement concerned with refining the representation of the machine 
variables that reflect the system state. The first refinement step represents 
the pool of spies as an array of spies and it will be shown how the 
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security operations are refined accordingly. From the traceability 
perspective, the data refinement step does not directly address the 
realization of a specific security requirement in the system. It rather 
concentrates on building a concrete data structure representing the 
internal system state in a form realizable by programming languages 
while implementation is generated. The first refinement is by convention 
named with the same name of the machine it refines with an R appended 
to the machine name. The invariant of the refining machine should be 
linked to the variables of the refined machine by means of linking 
invariant that describes the relationship between the state spaces of the 
two machines [10]. The linking invariant is used to generate proof 
obligations that specify which proofs need to be discharged in order to 
prove that the refining machine does not violate any of the constraints of 
the refined machine; therefore, proves correctness of development and 
preservation of security properties. The linking invariant in the first 
refinement step of the spy network system is dom(spiesr) = spies 
meaning that the set spies is precisely the domain of the function spiesr 
since this gives the index of the set of elements that appear in the array. 
The elements in the spiesr array are the Ids of all the spies in the system. 
The rest of the spy’s attributes are linked to each spy through his/her Id. 
The operations are defined on the variable spiesr. Operations are required 
to work only within their preconditions given in the abstract machine, so 
those preconditions are assumed to hold for the refined operations. 
Therefore, the type information of the input variables and the other 
requirements on them do not need to be repeated in the refinement 
machine. The highlighted parts of the first refinement machine reflects 
the implication of the data refinement on the abstract definition of the 
operations. 

 
REFINEMENT SpyNetworkR 
REFINES SpyNetwork 
SEES StrTokenType, Bool_TYPE 
 
VARIABLES 
spiesr, spyNamer, spyMailboxPasswordr, spyPrivatekeyr, spyPublickeyr 
 

 
INVARIANT 
spiesr : 1.. maxSpies >-> spyId & dom(spiesr) = spies & 
spyNamer : spiesr >-> STRTOKEN & ran(spyNamer) = spyName & 
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spyMailboxPasswordr : spiesr >-> STRTOKEN & 
ran(spyMailboxPasswordr) = spyMailboxPassword & 
spyPrivatekeyr : spiesr >-> (STRTOKEN – spyPublickey) & 
ran(spyPrivatekeyr) = spyPrivatekey & 
spyPublickeyr : spiesr >-> (STRTOKEN- spyPrivatekey) & 
ran(spyPublickeyr) = spyPublickey 
INITIALIZATION Spiesr := (1..maxSpies) >< {0} -- all spies ids are initialized to 0 
 
OPERATIONS 
 
encyptedRevelation <-- encryptRevelation(revelation, identity) = 

VAR key IN THEN 
IF (spiesr~(identity): dom(spiesr)) THEN 

key := spyPublickeyr(identity) || 
signature := signRevelation(revelation, identity); 
encyptedRevelation : (signature; key) >-> STRTOKEN 

ELSE 
encyptedRevelation :: STRTOKEN 

END 
END; 
 
revelation <-- decryptRevelation(ecryptedRevelation, identity) = 

VAR key IN 
IF (spiesr~(identity): dom(spiesr)) THEN 

key := spyPrivatekeyr(identity) || 
revelation : ecryptedRevelation >-> STRTOKEN 

ELSE 
revelation :: STRTOKEN 

END 
END; 

 
signature <-- signRevelation(revelation, identity) = 

VAR pk IN 
IF (spiesr~(identity): dom(spiesr)) THEN 

pk := spyPrivatekeyr(identity); 
signature : revelation >-> STRTOKEN 

ELSE 
signature:= EmptyStringToken; 

END 
END; 
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verified <-- verifyRevelation(revelation, identity, signature) = 
VAR key IN 
IF (spiesr~(identity) : dom(spiesr)) THEN 

key := spyPublickeyr(identity) || 
IF (signRevelation(revelation, identity) == signature) THEN 

verified := TRUE 
ELSE 

verified := FALSE 
END 

ELSE 
verified := FALSE 

END 
END; 

 
authenticated <-- certifySpy(identity, publicKey) = 

VAR key IN 
authenticated := bool(spyPublickeyr(identity) = publicKey) 

END; 
 
accessAllowed <-- accessMailbox(identity, password) = 

IF (spiesr~(identity) : dom(spiesr)) THEN 
IF (password == spyMailboxPasswordr(identity)) THEN 

accessAllowed := TRUE 
ELSE 

accessAllowed:= FALSE 
END 

ELSE 
accessAllowed:= FALSE 

END 
END; 
 

The above B code that represents the first refinement step maintains 
the abstract definition of the machine operations and reflects the new 
data representation of machine variables through using the arrays spiesr, 
spyNamer, spyMailboxPasswordr, spyPrivatekeyr, spyPublickeyr instead 
of the abstract sets. The second refinement step is a procedural 
refinement that makes design decisions about the security algorithms 
used for preserving the revelation integrity and confidentiality. The 
refining machine does not modify the state representation (machine 
variables) of the refined machine to remove the non-determinism of the 
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precise procedures to protect the revelation integrity and confidentiality. 
The design decision to employ the DSA (Digital Signature Algorithm) as 
the signature algorithm has been made to achieve the revelation integrity 
requirements since the DSA is a standard algorithm proposed by the 
National Institute of Standards and Technology (NIST) in 1991. For the 
revelation confidentiality, it was decided to employ DES (Data 
Encryption Standard) since the DES algorithm is has been developed and 
endorsed by the U.S. government as an official encryption standard in 
1977. For the mailbox access control, each spy is assigned a password for 
the mailbox in which he/she is subscripted. The refinement mechanism in 
B allows for documenting design decisions at each refinement step and 
this links these design decisions to the relevant requirements. For 
example, the employment of the DSA algorithm for digital signature 
links to the requirements of revelation integrity through the operations 
signRevelation and verifyRevelation that carry out the algorithm. The 
KAOS goal graph provides traceability links between operations carried 
out in design and the requirements they achieve. 

The design decisions made in the second refinement step are 
highlighted in the following B code: 

 
REFINEMENT SpyNetworkRR 
REFINES SpyNetworkR 
SEES StrTokenType, Bool_TYPE, SpyNetworkUtilities 
 
OPERATIONS 
 
encyptedRevelation <-- encryptRevelation(revelation, identity) = 

VAR publicKey IN 
IF (spiesr~(identity): dom(spiesr)) THEN 

publicKey := spyPublicKeyr(identity); 
encyptedRevelation := SpyNetworkUtilities.DESencrypt (revelation, publicKey); 

ELSE 
encyptedRevelation := EmptyStringToken; 

END 
END; 
 
revelation <-- decryptRevelation(ecryptedRevelation, identity) = 

VAR privateKey IN 
IF (spiesr~(identity): dom(spiesr)) THEN 
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privateKey := spyPrivateKeyr(identity); 
revelation := SpyNetworkUtilities.DESdecrypt (revelation, privateKey); 

ELSE 
revelation := EmptyStringToken; 

END 
END; 
 
signature <-- signRevelation(revelation, identity) = 
VAR privateKey, publicKey IN 
IF (spiesr~(identity) : dom(spiesr)) THEN 

privateKey := spyPrivateKeyr(identity); 
publicKey := spyPublicKeyr(identity); 
signature := SpyNetworkUtilities.DSAsign 

(revelation, privateKey, publicKey) ; 
ELSE 
signature:= EmptyStringToken; 

END 
END; 

 
verified <-- verifyRevelation(revelation, identity, signature) = 

VAR privateKey, publicKey IN 
IF (spiesr~(identity) : dom(spiesr)) THEN 

privateKey := spyPrivateKeyr(identity); 
publicKey := spyPublicKeyr(identity); 

verified := SpyNetworkUtilities.DSAverify 
(revelation, privateKey, publicKey, signature) ; 

ELSE 
verified := FALSE; 

END 
END;  
 
authenticated <-- certifySpy(identity, publicKey) = 

VAR key IN 
authenticated := bool(spyPublicKey(identity) = publicKey) 

END; 
 

accessAllowed <-- accessMailbox(identity, password) = 
IF (spiesr~(identity) : dom(spiesr)) THEN 
IF (password == spyMailboxPasswordr(identity)) THEN 

accessAllowed := TRUE 
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ELSE accessAllowed:= FALSE 
END 
ELSE accessAllowed:= FALSE 
END 

END; 
The security algorithms used in the second refinement step are 

encapsulated in another machine SpyNetworkUtilities that encapsulates 
generic security utilities. This makes the design more modular by 
dividing the tasks among multiple machines, each of which provides 
interfaces for its operations to be used by other machines. For example, 
the second refinement uses the DESencrypt, DESdecrypt, DSAsign and 
DSAverify from the SpyNetworkUtilities machine. Separating these 
operations in separate machine allows for changing the security 
algorithms used for encryption/decryption and digital signatures 
seamlessly as far as the spy network machine itself is concerned since the 
change will be localized only in the SpyNetworkUtilities machine. The 
spy network machine will not be affected by the change since it remains 
using the same operations with the same interface while the 
SpyNetworkUtilities machine changes the implementation. The last 
refinement step derives implementation specifications for the security 
requirements of the spy network system. The implementation step can be 
done only once for each development with some constraints such as that 
the implementation machine has no state and cannot use abstract 
substitutions like non-determinism choice and parallel composition. The 
implementation machine imports the SpyNetworkUtilities, 
privateKeyArray, publicKeyArray, and spyMailboxArray machines that 
are then considered under the control of the implementation machine. 
Further, the implementation machine has to instantiate the parameters of 
the imported machines. The implementation machine has no variables 
section meaning that it has no state itself; rather it maintains the state of 
the imported machines. The invariant section of the implementation 
machine contains liking invariants between the imported state variables 
namely spiesArray, privateKeyArray, publicKeyArray, 
spyMailboxPasswordArray, and spyMailboxArray and the variables of 
the SpyNetworkR1 that this implementation refines. Operations in the 
implementation machine need to convert mathematical specifications to a 
format that could be translated to a programming language. For example, 
all the operations in the implementation machine use a loop to locate the 
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spy whose identity is specified in the operation parameters in the array of 
spies. This search in the array using a loop could be directly translated to 
equivalent constructs in the generated C code. The B code for the 
implementation specifications is as follows: 

 
IMPLEMENTATION SpyNetworkI 
REFINES SpyNetworkR1 
USES StrTokenType, Bool_TYPE 
IMPORTS 
SpyNetworkUtilities, privateKeyArray(maxSpies), publicKeyArray(maxSpies), 
spyMailboxArray(maxSpies) 
INVARIANT 
spiesArray = spiesr & privateKeyArray = spyPrivateKeyr & 
publicKeyArray = spyPublicKeyr & spyMailboxPasswordArray = 

spyMailboxPasswordr & 
spyMailboxArray = spyMailboxPasswordr 
 
OPERATIONS 
 
encyptedRevelation <-- encryptRevelation(revelation, identity) = 
VAR ii, publicKey IN 
ii := 0; 
WHILE ii <= maxSpies 
DO ii := ii + 1; 
IF (spiesArray(ii) == identity) THEN 

publicKey := publicKeyArray(ii); 
encyptedRevelation := SpyNetworkUtilities.DESencrypt (revelation, 

publicKey); 
ELSE 

encyptedRevelation:= EmptyStringToken; 
END 
INVARIANT 

ii : NATURAL1 & ii <= maxSpies & spiesArray = spiesr & publicKeyArray = 
spyPublicKeyr 

VARIANT 
maxSpies - ii 

END 
END; 
 
revelation <-- decryptRevelation(ecryptedRevelation, identity) = 
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VAR ii, privateKey IN 
ii := 0; 
WHILE ii <= maxSpies 
DO ii := ii + 1; 
IF (spiesArray(ii) == identity) THEN 

privateKey := privateKeyArray(ii); 
revelation := SpyNetworkUtilities.DESdecrypt (revelation, privateKey); 

ELSE 
revelation := EmptyStringToken; 

END 
INVARIANT 

ii : NATURAL1 & ii <= maxSpies & spiesArray = spiesr & 
privateKeyArray = spyPrivateKeyr 

VARIANT 
maxSpies - ii 

END 
END; 
 
signature <-- signRevelation(revelation, identity) = 
VAR ii, privateKey, publicKey IN 
ii := 0; 
WHILE ii <= maxSpies 
DO ii := ii + 1; 
IF (spiesArray(ii) == identity) THEN 

privateKey := privateKeyArray(ii); 
publicKey := publicKeyArray(ii); 
signature := SpyNetworkUtilities.DSAsign 

(revelation, privateKey, publicKey); 
ELSE 

signature:= EmptyStringToken; 
END 
INVARIANT 
ii : NATURAL1 & ii <= maxSpies & spiesArray = spiesr & 
privateKeyArray = spyPrivateKeyr & publicKeyArray = spyPublicKeyr 

 
VARIANT 
maxSpies - ii 

END 
END; 
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verified <-- verifyRevelation(revelation, identity, signature) = 
VAR ii, privateKey, publicKey IN 
ii := 0; 
WHILE ii <= maxSpies 
DO ii := ii + 1; 
IF (spiesArray(ii) == identity) THEN 

privateKey := privateKeyArray(ii); 
publicKey := publicKeyArray(ii); 
verified := SpyNetworkUtilities.DSAverify 

(revelation, privateKey, publicKey, signature); 
ELSE 

verified := FALSE; 
END 
INVARIANT 
ii : NATURAL1 & ii <= maxSpies & spiesArray = spiesr & 
privateKeyArray = spyPrivateKeyr & publicKeyArray = spyPublicKeyr 

VARIANT 
maxSpies - ii 

END 
END; 
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The final stage is to generate C code from the implementation 

machine. The programming language choice is based on the 
programming languages available in the B tool being used. Almost all the 
commercial B tools generate code in C and very few of them generate 
ADA. The security properties should be maintained by the design 
decisions and the semantics of the B machines rather than by specific 
security construct in the programming language to which the 
implementation machine is translated. 

Acceptance Testing 

The Goal Graph Analyzer tool generates a suite of acceptance test 
cases derived directly from the KAOS goal graph. The tool parses the 
graph using a DFS algorithm with backtracking facility in order to 
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generate scenarios with a sequence of operation calls from the goal 
graph. The derived B implementation specifications are then verified 
against the acceptance test cases to check for compliance between the 
requirements model and the derived implementation and to ensure the 
preservation of the security properties specified in the requirement 
model. Test results can be used to identify areas of inconsistencies and 
errors either in the requirements model itself or in the B refinement steps. 
The acceptance test cases are considered as substantial contribution of 
FADSE since it strengthens the approach with extra verification of 
development correctness and compliance between the software and its 
requirements from the security standpoint. The implication of this 
contribution is that it increases confidence of the software security 
developed with FADSE. The generated test cases might be augmented 
with some messages and assertions for better usability of the test results. 
The Goal Graph Analyzer has generated the following test cases for the 
spy network security requirements:  

 
public static boolean testSendRevelation(String revelation, String senderld, String 

recepientld)   { 
  String encryptedRevelation : = 
 SpyNetwork.encryptRevelation(revelation, senlderld); 
  String signedRevelation : =  
SpyNetwork.signRevelation(encryptedRevelation, Senderld); 
  SpyNetwork.sendRevelation(signedRevelation, recepientld) 
  return true;  
public static boolean testReceiveRevelation(String revelation, String senderId, 
  (String recepientld) { 
     String pk : = SpyNetwork.getPublicKey(Senderld); 
   boolean certified : = SpyNework.certifySpy(senderld, pk);  
   if (certified) { 
    boolean verified : =  
SpyNetwork.verifyRevelationfrevelation, senderldji; 
  if (verified) { 
   String decryptedRevelation : = 
    SpyNetwork.decryptRevelation(revelation, recepientld); 
      return true;       }    } 
return false;  

public static boolean accessMailbox(String spyld, String password)  
{ return SpyNetwork.accessMailbox(spyld, password); } 

 
 In the above generated test cases, each test case describes the 

sequence of calls to the security operations in order to secure the 
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communication of revelations. The first test case outlines the scenario for 
the sending operation in which the encryptRevelation and signRevelation 
operations are called before sending the revelation. The second test case 
handles the scenario for the receiving operation in which the certifySpy 
is called to authenticate the sender spy followed by a verification of the 
revelation signature through calling verifyRevelation and at the end the 
revelation is decrypted by calling the decrptRevelation operation. The 
third test case tests the eligibility of access to a mailbox that could be 
used when spies login to their mailboxes and it calls the accessMailBox 
opreation. It can be observed that all the security operations have been 
called in the generated test cases using the main scenarios in which these 
operations are called. This raises the probability of error-detection when 
the derived implementation is verified against the acceptance test cases 
increasing the confidence in the security properties of the final product. 
Further, the coverage of the acceptance test cases provides a means to the 
customer to verify that the final product meets his security requirements. 

Security Specifications Changes 

Maintenance activities are classified into four categories according to 
[1, 11]: adaptive (changes in the software environment), perfective (new 
user requirements), corrective (fixing errors), and preventive (prevent 
future problems). An example of a corrective change has been chosen 
since corrective changes consume 21% of change requests [11]. A 
defective scenario threatening revelation confidentiality is as follows: A 
spy leaves his team and gets reallocated to another team after a message 
has been sent. This scenario is not handled by the current 
encryption/decryption solution used to protect the confidentiality of 
revelations since the leaving spy would receive a revelation that he is no 
longer eligible to receive. To correct this defect, the KAOS framework 
provides a conflict construct that allows the expression of situations that 
contradict with system requirements. Let us consider the following 
conflict to the RevelationConfidentiality goal. 
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This conflict could be resolved using one of the patterns for conflict 

resolution [4] by introducing a new goal to anticipate the conflict: 

 

 
This goal could be assigned to a reliable agent such as the big boss. 

Analyzing the impact of introducing the new goal shows that the 
RevelationConfidentiality requirement would be affected by this change. 
The traceability information provided by the hierarchical structure of the 
goal graph and the KAOS refinement mechanism direct the change 
impact analysis to revisit the AND refinement of the 
RevelationConfidentiality goal. The new goal needs to be added as a 
subgoal to the refinement of the RevelationConfidentiality goal. The goal 
graph for the RevelationConfidentiality goal would be modified as in 
Figure 1.6 to add the new goal: 

 
Figure 1.6. Accommodating the new goal 

Since the new goal is a leaf goal, it will be operationalized using the 
following operation: 

Operation NotifyRelayWithReallocation 
Input Spy{arg relay}, Spy{arg leavingSpy} 
DomPre  (  relay, leavingSpy:Spy) Notified(relay, leavingSpy) 
DomPost( relay, leavingSpy:Spy) Notified(relay, leavingSpy) 
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ReqPreFor (  team1, team2:Team) Member(relay, team1) ^ 
Member(leavingSpy, team1) ^ Member(leavingSpy, team2) 

This operation needs to be transformed to B in order to propagate this 
corrective change to the derived design and implementation. According 
to the change impact analysis performed with respect to the 
transformation of the new operation to B, we discovered that the state 
representation (Variables) of the SpyNetwork machine needs to be 
complemented with the following variables: team, relaySpies, 
authorizedReceiversFrom, authorizedSendersTo. These variables 
represent the set of assigned relays of all teams as well as the set of spies 
authorized to send to or receive from relays. Constraints on these 
variables need to be added to the invariant of the machine as follows: 

team : spies-->STRTOKEN & 
relaySpies <: spyId & 
authorizedReceiversFrom : relaySpies >+> spies & 
authorizedSendersTo : spies +> relaySpies 
The definition of the operation notifyRelayWithReallocation is given 

below and it should be refined for design and implementation like the 
rest of the operations. 

 
 
Tasks for laboratory work №1. 
1. Each student choose different type of software. 
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2. According to chosen software elaborate the security requirements 
to specified system (Integrity Goals, Confidentiality Goals, 
Authentication Goals, Availability Goals, Access Control Goals); 

3. Make the analysis and resolution of obstacles and conflicts for 
specified security goals. 

4. Construct model of the system with KAOS. 
5. Transform built model into B. 
6. Make the refinement to derive implementation specifications in 

B. 
Requirements to the report 

The report should consists of: 
- title sheet; 
- the aim and the task of the laboratory work; 
- defined security requirements to the system; 
- graphical model of the system; 
- presentation oh the built model in B; 
- presentation of the refinement to derive implementation 

specifications in B; 
- results and conclusions. 
 

Advancement questions 

1. Why does some refinements are not complete? 
2. What we should do to formally express these security goals? 
3. What we need to do for applying the generic security model to a 

system? 
4. In what language do we are able to expressed security goals? 
5. What does the confidentiality of revelations means? 
6. What does the Confidentiality of mailboxes means? 
7. What authentication means in the context of the spy network 

case study? 
8. Is it possible to elaborate the security requirements to Access 

Control Goals, and how? 
9. How to make the analysis and resolution of obstacles and 

conflicts for specified security goals? 
10. How to construct model of the system with KAOS? How to 

transform built model into B? 
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What we should do to get the refinement to derive 
implementation specifications in B? 

 

1.2 Laboratory work 2. Applying formal methods to a 
certifiably secure software system 

 
The aim and the task of the laboratory work 
The aim of this laboratory work is to gain knowledge and acquire 

skills in the verifying security down to the source code level. 
Task of the work:  
- build a well-defined security property; 
- build the minimal state machine model needed to prove that the 

model satisfies the property; 
- using a mechanical verifier, prove that the security model satisfies 

the property; 
- annotate the code with preconditions and postconditions and  

partition it into Event, Trusted, and Other Code; 
-  demonstrate conformance of the Event Code and the code 

preconditions and postconditions with the internal events and 
preconditions and postconditions of the TLS ; 

-  show that the Trusted Code and the Other Code are benign; 
-  develop tools for validating and constructing preconditions and 

postconditions from the source code, including the C code, 
-  develop tools for automatically generating test cases that check C 

code annotations; 
- develop tools for showing conformance of annotated code with a 

TLS, and automatically constructing efficient provably correct code from 
specifications. 

Preparation for laboratory work  
- to clarify the aims and objectives; 
- to study theoretical material given in the description. 

 
Theoretical material 
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Introduction 

A challenging problem therefore is how to make the verification of 
security-critical code affordable. Let us consider an practical approach to 
verifying the security of software that significantly reduces the cost of 
verification. This approach is formulated to support a Common Criteria 
evaluation of the security of a software- based embedded device called 
ED (Embedded Device). Satisfying the Common Criteria required a 
formal proof of correspondence between a formal specification of ED's 
security functions and its required security properties and a 
demonstration that ED's implementation satisfied the formal 
specification. ED, which processes data stored in different partitions of 
its memory, must enforce a critical security property called data 

separation to ensure, for example, that data in one memory partition 
neither influences nor is influenced by data in another partition. To 
guarantee that data separation is not violated (or, if it is violated, an 
exception occurs), ED relies on a separation kernel [12,13], a tamper-
proof nonbypassable program mediating every access to memory. 

The main is to provide evidence to the certifying authority that the 
ED separation kernel enforces data separation. The kernel code, which 
contains on the order of 3,000 lines of C and assembly code, is annotated 
with preconditions and postconditions in the style of Hoare and Floyd. 
To provide evidence that ED enforces data separation, a Top-Level 
Specification (TLS) of the separation-relevant behavior of the kernel, a 
formal statement of data separation, and a mechanized formal proof that 
the TLS satisfies data separation are produced. Then, the annotated code 
is partitioned into three categories, each requiring a different proof 
strategy. Finally, the formal correspondence between the annotated code 
and the TLS was established. Five artifacts—the TLS, the formal 
statement of data separation, proofs that the TLS satisfies data separation, 
the organization of the annotated code into the three categories, and the 
documents showing correspondence of the code to the TLS— were 
presented, along with the annotated code, as evidence supporting the 
certification of ED. 

Let us consider the process that produces the evidence for the 
Common Criteria evaluation, and describes the artifacts developed 
during the process, and presents the formal argument justifying the 
approach to establishing conformance of the code with the TLS. Also, 
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subsection describes a technique for partitioning the code into three 
different categories and for reasoning about the security of each category, 
which  reduces the cost of verification. Also, it describes an method for 
demonstrating the security of code. Although the method combines a 
number of well-known techniques for specifying and reasoning about 
security (for example, a state machine model, an access control matrix 
[14], mechanized reasoning using PVS [15], and a demonstration of 
correspondence between the TLS and the annotated code). Described 
techniques for partitioning the code and the method for proving the 
security of the code is able to prove cost-effective efforts to verify the 
security of software. 
Background Separation Kernel 

A separation kernel [13] mimics the separation of a system into a set 
of independent virtual machines by dividing the memory into partitions 
and restricting the information flow between those partitions. Separation 
kernels are being developed by commercial companies such as Wind 
River Systems, Green Hills Software, and LynuxWorks for military 
applications requiring Multiple Independent Levels of Security (MILS). 

In a MILS environment, a separation kernel acts as a reference 
monitor [16]: it is nonbypassable, evaluatable, always invoked, and 
tamper-proof. 
Common Criteria 

A number of international organizations established the Common 
Criteria to provide a single basis for evaluating the security of 
information technology products [16]. Associated with the Common 
Criteria are seven Evaluation Assurance Levels. EAL7, the highest 
assurance level, requires a formal specification of a product's security 
functions and its security model and formal proof of correspondence 
between the two. 
Embedded Device 

The device of interest, ED, processes data in an embedded system 
whose memory has been divided into nonoverlapping partitions. 
Although, at any given time, the data stored and processed by ED in one 
memory partition is classified at a single security level, ED may later 
reconfigure that partition to store and process data at a different security 
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level. Because it stores and processes data classified at different security 
levels, security violations by ED could cause significant damage. To 
prevent violations of data separation, for example, the “leaking" of data 
from one memory partition to another, the ED design uses a separation 
kernel to mediate access to memory. By mediating every access, the 
kernel ensures that every memory access is authorized and that every 
transfer of data from one ED memory location to another is authorized. 
Any attempted memory access by ED that is unauthorized will cause an 
exception. 
Code Verification Process 

Given 1) source code annotated with Floyd-Hoare preconditions and 
postconditions and 2) a security property of interest, the problem is how 
to establish that the code satisfies the property. Let us consider a five-step 
process for establishing the property, each step producing one of the five 
artifacts. The five steps of the process are listed as follows: 

- Formulate a TLS of the code as a state machine model. 
- Formally express the security property as a property of the state 

machine model. Confirm that the property is preserved under refinement. 
-  Translate the TLS and the property into the language of a 

mechanical prover and prove formally that the TLS satisfies the property. 
- Given source code annotated with preconditions and 

postconditions, partition the code into three categories—Event, Other, 
and Trusted Code—based on some criterion determined by the property 
of interest. 

-  To demonstrate that the Event Code does not violate the property 
of interest, construct a) a mapping from the Event Code to the TLS 
events and from the code states to the states in the TLS and b) a mapping 
from the preconditions and postconditions of the TLS events to the 
preconditions and postconditions that annotate the corresponding Event 
Code. Demonstrate separately that Trusted Code and Other Code are 
benign. Based on these results, conclude that the code refines the TLS. 

Top Level Specification 

Major goals of the TLS are to provide a precise yet understandable 
description of the allowed security-relevant external behavior of ED's 
separation kernel and to make the assumptions on which the TLS is 
based explicit. To achieve this, the TLS of the kernel behavior is 
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represented in precise natural language as a state machine model by 
using the style of the Military Message System (MMS) security model. 
The advantage of precise natural language is that it enables stakeholders 
with differing backgrounds and objectives, that is, the project manager, 
software developers, evaluators, and the formal methods team, to 
communicate precisely about the required kernel behavior and helps 
ensure, early in the verification process, that misunderstandings are 
weeded out and issues are resolved. Another goal of the TLS is to 
provide a formal context and precise vocabulary for defining data 
separation. 

Like the secure MMS model, the state machine representing the 
kernel behavior is defined in terms of an input alphabet, a set of states, an 
initial state, and a transform relation describing the allowed state 
transitions. The input alphabet contains internal and external events, 
where an internal event can cause the kernel to invoke some process, and 
an external event is performed by an external host. The transform (also 
called the next-state relation) is defined on triples consisting of an event 
in the input alphabet, the current state, and the new state. Let us consider 
the excerpts from the TLS. To provide intuition about the observable 
kernel behavior of ED, it also describes the five internal events and the 
single external event (the last event), listed in the leftmost column of 
Table 2.1. 

 
Table 2.1. Excerps from the Nonull Portion of Access Control Matrix 

for Partition i, 1 ≤ i ≤ n 
Event e 

in H 
Memory Areas in M 

𝐵𝑖
1 𝐷𝑖

1 𝐷𝑖
2 … G 

Begin_Partition_i 
Copy_B1In_D1In_i 

Clear_D1_i 
End_Partition_i 

Other_NonPartProc 
… 

ExtEv_B1In_i 

- 
R 
- 
- 
- 

… 
RW 

- 
W 
W 
- 
- 

… 
- 

- 
- 
- 
- 
- 

… 
- 

- 
- 
- 
- 
- 

… 
- 

- 
- 
- 
- 

RW 
… 
- 

 
Partitions, state variables, events, and states. We assume the 

existence of n > 1 dedicated memory partitions and a single shared 
memory area. We also assume the existence of the following sets: 
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- V is a union of types, where each type is a nonempty set of values. 
-  R is a set of state variable names. For all r in R, TY(r) ⊆ V is the 

set of possible values of state variable r. 
-  M is a union of N nonoverlapping memory areas, each 

represented by a state variable. 
-  H = P U E is a set of M events, where each event is either an 

internal event in P or an external event in E. 
A system state is a function mapping each state variable name r in R 

to a value. Formally, for all r ∈ R, s(r) ∈ TY(r). Given state s and state 
variable r, we abbreviate s(r) by rs. 

Memory areas. The N memory areas contain N — 1 MAIs, where N 
— 1 = mn and m is the number of MAIs per partition. Informally, a MAI 
is a memory area containing data whose leakage would violate data 
separation. The m MAIs for a partition i, 1 ≤ i ≤ n, include partition i's 
input and output buffers and k data areas where data in partition i are 
stored and processed. The Nth memory area, called G, is the single 
shared memory area and contains all programs and data not residing in 
any MAI. The set M of all memory areas is defined as the union A 
U{G}, where A = {Ai,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m} contains the mn MAIs. 
For all i, 1 ≤ i ≤ n, Ai = {Ai,j | 1 ≤ j ≤ m} is the set of memory areas for 
partition i. To ensure that they are nonoverlapping, the memory areas of 
M are required to be pairwise disjoint. 

State variables. The set of state variables contained in R are 
-  a partition id c, 
-  the N memory areas in M, and 
-  a set of n sanitization vectors W[1],..., W[n], each vector 

containing k elements.  
The partition id c is 0 if no data processing in any partition is in 

progress and it is i, 1 ≤ i ≤ n, if data processing is in progress in partition 
i. (Data processing can occur in only one partition at a time.) For 1 ≤ j ≤ 
k, the Boolean value of the jth element Wj [i] of the sanitization vector 
for partition i is true initially and if the j-th memory area of the ith 
partition has been sanitized since it was last written, and otherwise false. 
A sanitized memory area is modeled as having the value 0. 

Events.  The set of internal events P ⊂ H is the union of n sets, P1,, 
Pn, of partition events, one set for each partition i, and a singleton set Q. 
Thus, P is defined by P =  [U𝑖=1𝑛 P𝑖] ∪  Q. Processing occurs on partition 
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i when a sequence of events from Pi is processed. The first four events 
listed in Table 1 are partition events in some Pi. The first event, 
Begin_Partition_i, initiates data processing in partition i. The next two 
events process data stored in i's memory areas: Event Copy_B1In_D1_i 
copies data from Bl, which is an input buffer assigned to i, into a memory 
area Dl of i and event Clear_D1_i sanitizes memory area Dl. The event 
End_Partition_i concludes data processing in partition i. Q's sole member 
is Other_NonPartProc, which is the fifth event listed in Table 1, an 
abstract event representing all internal events that invoke data processing 
in the shared memory area G. An example is the event that copies a 
shared algorithm, written by some external host into a shared input 
buffer, to some other part of G. 

The set of external events E ⊂ H is defined by E =  EIn  ∪  EOut  ∪
{Ext_Ev_Other}, where 𝐸𝐼𝑛  =  𝑈𝑖=1𝑛 𝐸𝑖

𝐼𝑛 𝑎𝑛𝑑 𝐸𝑂𝑢𝑡  =  𝑈𝑖=1
𝑛 𝐸𝑖

𝑂𝑢𝑡. 𝐸𝑖𝐼𝑛  is 
the set of external events writing into or clearing the input buffers of 
partition i and 𝐸𝑖𝑂𝑢𝑡 is the set of external events reading from or clearing 
the output buffers of partition i. The event Ext_Ev_Other represents all 
other external events. ExtEv_B1In_i, the last event listed in Table 1, is an 
example of an external event in EIn which occurs when an external host 
writes data (to be processed in partition i) into the input buffer 𝐵𝑗1.  

Partition and nonpartition functions. Operations on data in partition i, 
for example, an operation copying data from one MAI in partition i to 
another MAI in i, are called partition functions. For all i, 1 ≤ i ≤ n, and, 
for each internal event e in Pi, there exists a partition function re 
associated with e. For all e ∈ Pi, Гe has the signature Гe : TY(a1) → 
TY(a2), where a1 and a2 are MAIs in Ai. Thus, each function Гe, where 
e is an internal event in Pi, takes a single argument, that is, the value 
stored in some MAI a1 and uses that argument to compute a value to be 
stored in MAI a2 as the result of event e. A nonpartition function Гe has 
access to data in G only. 

Access control matrix. Associated with the M events and N memory 
areas is an M by N access control matrix AM, which indicates the access 
privileges that each internal event e in P (and its associated process) and 
each external event e in H has for each memory area a in M. The access 
privileges are either null for no access, R for read access, W for write 
access, or RW for both read and write access. Table 1 shows excerpts 
from the access control matrix AM. The leftmost column of Table 1 lists 
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the events in H and the headings of the remaining columns list memory 
areas in M. The rightmost column heading contains G, the only non- 
MAI, while the remaining column headings contain all MAIs for 
partition i. For all i, 1 ≤  i ≤ n, AM shows the access privileges that each 
internal and external event has for each of i's memory areas and for 
memory area G. In Table 2.1, “-“ denotes null access. For all i,j, 1 ≤  i, 
j ≤  n, i = j, the access privilege that an event associated with i has to a 
memory area associated with j (not shown in Table 2.1) is null . 
Similarly, the access privilege that an event associated with j (not shown 
in Table 2.1) has to a memory area associated with i is also null. 

To illustrate how AM limits access to the memory areas in M, we 
consider the event in the second row of Table 2.1, that is, 
e=Copy_B1In_D1In_i. Table 1 shows that a process invoked by e has 
read access to 𝐵𝑖1, one of i's input buffers, and write access to 𝐷𝑖1, one of 
i's data areas, and null access to all other memory areas in M. Thus, for 
event e, AM[e, 𝐵𝑖1] = R, AM[e, 𝐷𝑖1] = W, and AM[e, a] = null for all a, a 
∈ M, a ∉ {𝐵𝑖1, 𝐷𝑖1}. Similarly, the event Clear_D1_i can only write to D1 
and the abstract event Other_NonPartProc only has read and write access 
to G. The events that begin and end data processing on i, 
Begin_Partition_i and End_Partition_i, cannot write to any memory area. 
Finally, the external event ExtEv_B1In_i invokes a process that can only 
read and write into the input buffer 𝐵𝑖1. 

System. A system is a state machine whose transitions from one state 
to the next are triggered by events. Formally, a system Σ is a 4-tuple Σ = 
(H, S, so, T), where 

-  H is the set of events, 
-  S is the set of states, 
-  so is the initial state,  
-  T is the system transform, a partial function from H x S into S. T 

is partial because not all events are "enabled" to be executed in the 
current state. 

Initial state. In the initial state so, the partition id c is 0; for all i, 1 ≤ i 
≤ n, the MAIs in Aj are 0; and each element of the sanitization vectors 
W[1]... W[n] is true. Hence, in the initial state, no processing in any 
partition is authorized, only a nonpartition process is authorized to 
execute, all MAIs are zero, and all data areas are known to be sanitized. 
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System transform. The transform T is defined in terms of a set R of 
transform rules R = {Re | e ∈ H}, where each transform rule Re describes 
how an event e transforms a current state into a new state. The number of 
rules is M, one rule for each of the M events in H. No rule requires 
access privileges other than those defined by the access control matrix 
AM. The notation s and s' represents the current state and the new state, 
respectively. When an internal or external event e does not affect the 
value of any state variable r, when the precondition is not satisfied, or 
when the event e is not enabled, the value of r does not change from state 
s to state s' and the state variable r retains its current value, that is, rs = rs' 
. 

To denote that no state variable changes, except those explicitly 
named, we write 𝑁𝑂𝐶�̂�(NO Change, except to variables in �̂�), where �̂� 
⊂ R. This notation also covers the case where the ith element of a 
sanitization vector changes, but no other vector elements change. For 
example, the postcondition rs' = x ∧ 𝑁𝑂𝐶{𝑟} where x ∈ TY(r), is 
equivalent to rs' = x ∧ ∀r̂ ∈ R, r̂= r: r̂s′= r̂s. 

Suppose that s is a state in S, e is an event in H, and R is the set of 
state variables. Let pree be a state predicate associated with e such that 
pree evaluates to true if e has the potential to occur in state s and false 
otherwise. In addition, let poste be a predicate associated with e such that 
poste(s, s') holds whenever e occurs in state s and s' is a possible poststate 
of s when event e occurs in state s. Formally, the transform rule Re in R 
is defined by 

Re : pree(s) ⇒ poste(s; s'). 
Whenever the result state of every event e is deterministic (which is 

true in the TLS for ED), the assertion poste(s, s')  
defines the poststate s' = T(e, s). To make T total on H x S, the 

complete definition of T is written as 

𝑇(𝑒, 𝑠) = {
𝑠′, 𝑖𝑓 𝑝𝑟𝑒𝑒(𝑠),𝑤ℎ𝑒𝑟𝑒 𝑝𝑜𝑠𝑡𝑒(𝑠, 𝑠

′); 
𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  

In the above definition, pree (s) is not satisfied implies that e has no 
effect, that is, essentially e does not occur. Abstractly, this models raising 
an exception and halting. 

Examples of transform rules. For all i, 1 ≤ i ≤ n, the transform rule 
for e = Begin_Partition_i, which begins data processing on i, is denoted 
RBegin_partiti0n_i. A precondition for event e is that the partition id is 0 
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(that is, the system is not currently processing data on any partition) and 
the postcondition for e is that the partition id is i. For all i, 1 ≤ i ≤ n, and, 
for all states s and s', the rule Re for e = Begin_Partition_i is defined by  
𝑅𝐵𝑒𝑔𝑜𝑛_𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_1: 𝑐𝑠 = 0 ⇒ 𝑐𝑠′ = 𝑖 ∧ 𝑁𝑃𝐶{𝑐}. 
The notation NOC{c} means that no state variable other than the 

partition id c can change. Similarly, for all i, 1 ≤ i ≤ n, the rule Re for e 
= End_Partition_i, which ends data processing on i, is defined by  
𝑅𝐸𝑛𝑑_𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖: 𝑐𝑠 = 𝑖 ∧ ∀ 1 ≤ 𝑗 ≤ 𝑘,𝑊𝑠

𝑗 [𝑖] = 𝑡𝑟𝑢𝑒 ⇒ 𝑐𝑠′ = 0 ∧ 𝑁𝑂𝐶{𝑐} 

The expression "∀ 1 ≤ j ≤ k, 𝑊𝑠
𝑗[i] - true" in the above rule means 

that each element of the sanitization vector for i must be true for data 
processing on i to end. This can be achieved by invoking clear events 
such as Clear_Dl_i prior to invoking End_Partition_i. The purpose of this 
precondition is to ensure that all data areas of partition i are sanitized 
prior to processing on G, on partition j, j - i, or on a new configuration of 
i. The transform rules RBegin_Partition_i and REnd_Partition_i are the 
only rules that change the value of the partition id c. Together, these rules 
constrain the partition id c to change from 0 to nonzero or from nonzero 
to 0. 

Processing on a partition i can include copying data from an input 
buffer of partition i to a data area of partition i. Consider again the 
internal event e = Copy_BlIn_DlIn_i, whose transform rule is denoted 
RCopy_BlIn_DlIn_i . The preconditions for e are: 

- The partition id c is equal to i. 
- The invoked process must have read access R for partition i's Input 

Buffer 1 and write access W for Data Area 1 in partition i. 
- Postconditions for e are: 
- The element for Data Area 1 in partition i's sanitization vector 

becomes false (because the event stores the value of Buffer 1 in Data 
Area 1). 

- A function of the value in partition i's Input Buffer 1 is written into 
partition i's Data Area 1. 

- No other state variable changes. 
For all i, the rule Re for event e = Copy_BlIn_DlIn_i is defined by 
𝑅𝐶𝑜𝑝𝑦_𝐵1𝐼𝑛_𝐷1𝐼𝑛𝑖: 𝑐𝑠 = 𝑖 ⋀                      (1) 
𝐴𝑀[𝑒, 𝐵𝑗

𝑖] = 𝑅 ∧ 𝐴𝑀[𝑒, 𝐷𝑗
𝑖] = 𝑊        (2) 

⇒ 𝑊𝑠′
1[𝑖] = 𝑓𝑎𝑠𝑙𝑒 ∧                             (3) 
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𝐷𝑖,𝑠′
𝑖 = Г𝑒(𝐵𝑖,𝑠

1 ) ∧                                   (4) 
𝑁𝑂𝐶{𝑊1[𝑖],𝐷𝑖

1}.                                         (5) 
As the fourth and final example of a transform rule, consider the rule 

for the internal event e = Other_NonPartProc, which represents all 
nonpartition processing events. The precondition is that the partition id c 
is 0 (that is, the system is not currently processing data on any partition). 
The effect is that some part of memory area G may change. The rule Re 
for e = Other_NonPartProc is defined by 

𝑅𝑂𝑡ℎ𝑒𝑟_𝑁𝑜𝑛𝑃𝑎𝑟𝑡𝑃𝑟𝑜𝑐 ∶  𝑐𝑠 = 0 ∧ 𝐴𝑀[𝑒, 𝐺] = 𝑅𝑊 
⇒ 𝐺𝑠′ = Г𝑒(𝐺𝑠) ∧ 

∀ 𝑟 ∈ 𝑅, 𝑟 ≠ 𝐺: 𝑟𝑠′ = 𝑟𝑠. 

Security Property: Data Separation 

To operate securely, ED must enforce data separation, that is, it must 
prevent insecure data flows. Informally, this means that ED must prevent 
data in a partition i from influencing or being influenced by 1) data in a 
partition j, where i ≠ j; 2) data in an earlier configuration of partition i; or 
3) data stored in G. To demonstrate that the TLS enforces data 
separation, it is proved that it satisfies five subproperties, namely, No-
Exfiltration, No-Infiltration, Temporal Separation, Separation of Control, 
and Kernel Integrity. 

No-ExfUtration Property 

The No-Exfiltration Property states that data processing in any 
partition j cannot influence data stored outside the partition. This 
property is defined in terms of the set Aj (the MAIs of partition j); the 
entire memory M; the internal events in Pj, which invoke data processing 
in j; and the external events in 𝐸𝑗𝐼𝑛 ∪ 𝐸𝑗𝑂𝑢𝑡, which affect data in j's input 
and output buffers. 

Property 2.1 (No-Exfiltration). Suppose that states s and s' are in 
state set S, event e is in H, memory area a is in M, and j is a partition, 1 ≤ 

j ≤ n. Suppose further that s' = T(e, s). If e is an event in 𝑃𝑗 ∪ 𝐸𝑗
𝐼𝑛 ∪ 𝐸𝑗

𝑂𝑢𝑡 

and as ≠ as', then a is in Aj. 
2.2.2 No-Infiltration Property 
The No-Infiltration Property states that data processing in any 

partition i is not influenced by data outside that partition. It is defined in 
terms of the set Ai, which contains the MAIs of partition i. 
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Property 2.2 (No-Infiltration). Suppose that states 𝑠1, 𝑠2, 𝑠1′ , and 𝑠2′  
are in S, event e is in H, and i is a partition, 1 ≤ i ≤ n. Suppose further 
that 𝑠1′  = T (e, s1) and 𝑠2′  = T (e, s2). If, for all a in Ai, as1 = as2, then, for 
all a in Ai, 𝑎𝑠1′=𝑎𝑠2′ . 

Temporal Separation Property 

This property ensures that no data (for example, Top Secret data) 
stored in the ith partition during one configuration of the partition can 
remain in any memory area of a later configuration (for example, 
processing Unclassified data) of that same partition i. The property is 
guaranteed if the k data areas in any partition i are clear when the system 
is not processing data in that partition, for example, from the end of a 
processing thread in one partition to the start of a new processing thread 
in the same or a different partition. The set of states in which the system 
is not processing data stored in a partition is exactly the set of states in 
which the partition id c is 0. This fact is used in stating the property. 

Property 2.3 (Temporal Separation). For all states s in S, for all i, 1 
≤ i ≤ n, if the partition id cs is 0, then the k data areas of partition i are 
clear, that is, 𝐷𝑖,𝑠1  = 0, …, 𝐷𝑖,𝑠𝑘  = 0. 

Separation of Control Property  

This property states that, when data processing is in progress on 
partition i, no data is being processed on partition j, j ≠ i, until processing 
on partition i terminates. The property is defined in terms of the partition 
id c and the set Di   of k data areas in partition i, Di =  {D𝑖

𝑗
 | 1 ≤  j ≤

 k}. 
Property 2.4 (Separation of Control). Suppose that states s and s' 

are in S, event e is in H, data area a is in M, and j, where 1 ≤ j ≤ n, is a 
partition id. Suppose further that s' = T(e ,s). If neither cs nor cs’ is j, then 
as = as’ for all a ∈ Dj. 

Kernel Integrity Property 

The Kernel Integrity Property states that, when data processing is in 
progress on partition i, the data stored on memory area G does not 
change. This property is defined in terms of G and the set Pi of events for 
partition i. 
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Property 2.5 (Kernel Integrity). Suppose that states s and s' are in 
state set S, event e is in H, and i is a partition, 1 ≤ i ≤ n. Suppose further 
that s' = T (e, s). If e is a partition event in Pi, then Gs' = Gs.  

Formal Verification 

To formally verify that the TLS enforces data separation, the natural 
language formulation of the TLS was translated into TAME (Timed 
Automata Modeling Environment) [18], a front end to the mechanical 
prover PVS [19] which helps a user specify and reason formally about 
automata models. This translation requires the completion of a template 
to define the initial states, state transitions, events, and other attributes of 
the state machine E. The TAME specification provides a machine 
version of the TLS that can be shown mechanically to satisfy the defined 
properties. After constructing the TAME specification of the TLS, we 
formulated two sets of TLS properties in TAME —invariant 
properties and other properties—which together formalize the five 
subproperties. Then, for each set of properties, we interactively 
constructed (TAME) proofs showing that the TAME specification 
satisfies each property. The scripts of these proofs, which are saved by 
PVS, can be rerun easily by the evaluators and serve as the formal proofs 
of data separation. One benefit of TAME is that the saved PVS proof 
scripts can be largely understood without rerunning them in PVS. 

Partitioning the Code 

To show formally that the separation kernel enforces data separation, 
we must prove that the kernel is a secure partial instantiation of the state 
machine ∑ defined by the TLS. The formal verification establishes 
formally that a strict instantiation of the TLS enforces data separation. A 
partial instantiation of the TLS is an implementation that contains fine-
grained details which do not correspond to the state machine ∑ defined in 
the TLS. A secure partial instantiation of the TLS is a partial instantiation 
of the TLS in which the fine-grained details that do not correspond to the 
TLS are benign. Let us consider how the formal foundation for the proof 
that the code is a secure partial instantiation of the TLS. 

The proof that the code for the ED kernel is a secure partial 
instantiation of the TLS is based on a demonstration that all kernel code 
falls into three major categories and one subcategory, with proofs that the 



Formal analysis and design for security engineering 

63 

code in each category satisfies certain properties. The categories are 
given as follows: 

Event Code is kernel code that implements a TLS internal event e in 
P and touches one or more MAIs. For each segment of Event Code, it is 
checked that 

-  the concrete translation of the precondition in the TLS for the 
corresponding event e is satisfied at the point in the kernel code where 
the execution of the event code is initiated, and 

-  the concrete translation of the postcondition in the TLS for the 
corresponding event e is satisfied at the conclusion of Event Code 
execution. 

Trusted Code is kernel code that touches MAIs but is not Event 
Code. This code does not correspond to behavior defined by the TLS and 
may have read and write access both to MAIs and to memory areas 
outside the MAIs. It is validated either by a proof that the code does not 
permit any nonsecure information flows or, in rare instances, by external 
certification. The TLS makes explicit any assumptions used in 
connection with the Trusted Code and its behavior. The proofs for a 
given segment of the Trusted Code characterize the entire functional 
behavior of that Trusted Code by using Floyd-Hoare style assertions at 
the code level and show that no nonsecure information flows can result 
from that code. 

Other Code is the kernel code that is neither Event Code nor Trusted 
Code. More specifically, Other Code is kernel code which does not 
correspond to any behavior defined by the TLS and has no access to any 
MAI. 

A subset of the Other Code, called Validated Code, is code with no 
access to MAIs which is still security relevant because it performs 
functions necessary for the kernel to enforce data separation. These 
functions include setting up the MMU, establishing preconditions for the 
Event Code, etc. Floyd-Hoare style assertions at the code level are used 
to prove that Validated Code correctly implements the required 
functions. 

The kernel code was manually partitioned into Event, Trusted, and 
Other Code. A first pass through the code showed that only a small 
number of functions could reset the MMU (that is, change the access 
permissions to memory areas). Apple's Xcode development tool [20] was 
used to search the kernel code for all calls to these functions. Each such 
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call was inspected to determine the memory areas to which access was 
granted. By analyzing the access granted to code segments categorized as 
Other Code, one can verify that functions called in these code segments 
have no access to any MAI. 

Partitioning the code in this manner dramatically reduces the cost of 
code verification since only the Event Code, a small part of the code, 
needs to be checked for conformance to the TLS. In ED, Event Code and 
Trusted Code comprised less than 10 percent of the code. The remaining 
90 percent was Other Code. 

Demonstrating Code Conformance 

Demonstrating that the kernel code conforms to the TLS requires the 
definition of two mappings. To establish correspondence between 
concrete states in the code and abstract states in the TLS, a function a is 
defined which relates concrete states to abstract states by relating 
concrete entities (such as memory areas, code variables, and logical 
variables) to abstract state variables in the TLS (such as MAIs and the 
partition id) and mapping the value space of each concrete entity to that 
of its corresponding abstract state variable. For example, a maps the 
actual physical addresses of the MAIs to their corresponding abstract 
state variables in the TLS. In the ED kernel code, a maps a global 
variable partitioned, corresponding to the partition id, to the TLS 
partition id variable c. The TLS sanitization vectors have no analogs in 
the code. Instead, a predicate can be inferred from the code to indicate 
whether a memory area is sanitized. To represent sanitization in the 
concrete machine, new logical variables (for example, 
part_data1_sanitized_i) are introduced, and a maps these variables to 
elements of the sanitization vectors in the TLS. The map a also maps the 
Event Code to events in the TLS. Another map Φ relates assertions at the 
abstract TLS level to equivalent assertions at the code level derived from 
the abstract assertions and the map a. 

Using Φ to relate preconditions and postconditions for an event in the 
TLS to the derived preconditions and postconditions for the 
corresponding Event Code, we next determine, for each piece of Event 
Code, sets of code-level preconditions and postconditions that match the 
derived preconditions and postconditions as closely as possible. Fig. 1 
shows the Event Code corresponding to the internal event 
Copy_B1In_D1In_i in the TLS and the code-level preconditions and 
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postconditions for this Event Code. Although the Event Code for 
Copy_B1In_D1In_i consists of only a single function call, generally, 
Event Code may consist of any block of code. In Fig. 2.1, the top box 
contains the preconditions, then the indented Event Code is listed, and, 
finally, the bottom box contains the postconditions. Each precondition 
and postcondition has the form {Assertion_Name : Assertion}. 
Generally, the match between assertions in the TLS and derived code-
level assertions is not exact because auxiliary assertions are added (see 
Fig. 2.1) to express the correspondence between variables in the code and 
physical memory areas4 (for example, CopyDIn_local_datain), 2) to save 
values in memory areas as the values of logical variables (for example, 
CopyDIn_value_data), and 3) to express error conditions (for example, 
CopyDIn_copy_size_datain) that the TLS abstracts away via type 
correctness.  

 
Fig. 2.1. Event Code and eent-level assertions for the event 

Copy_B1ln_D1ln_1 
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The derivation of the necessary code-level assertions is also 
complicated by the code itself. For example, although there is a global 
variable partitioned in the code, in many of the routines implementing 
Event Code, the partition id used in the routine is an argument that is 
passed into the routine. This results in a code-level precondition asserting 
that the local variable for the partition id is equal to the global variable 
partitioned (for example, CopyDIn_partitioned in Fig. 2.1). 

Table 2.2. Mapping Preconditions in the Code to Preconditions in the 
TLS 

Precondition 
Ф(pree)(sc) Desired 

in the Code 

Assertion in 
Annotated 

Code 

Precondition 
pree(s) in the 

TLS 

Ref. 
No. Description 

CopyDIn_partition
_id §8.4,P5 cs = i (1) Partition id is i 

CopyDIn_priv §8.4,TLS1* AM(e, 𝐵𝑖1) = R 
AM(e, 𝐷𝑖1) = W (2) 

R access for 
Input Buffer 1, 
W access for 
Data Area 1 

CopyDIn_value_da
ta 

 
CopyDIn_def_valu

e_rest 

§8.4, P4* 
 

§8.4,TLS4 

𝐵𝑖,𝑠
1  

 
𝐷𝑖,𝑠
1  

- 
 
- 

Value of data in 
Input Buffer 1 
Value of Data 

Area 1 

CopyDIn_local_inb
uffer 

 
CopyDIn_local_dat

ain 

§8.4, TLS3* 
 

§8.4,TLS2* 

- 
 
- 

- 
 
- 

Local variable 
for Input Buffer 

1 
Local variable 

for Data Area 1 
 

Table 2.3. Mapping Postconditions in the Code to Postconditions in the 
TLS 

Postcondition 
Ф(poste)(sc, s'c) 
Desired in the 

Code 

Assertion 
in 

Annotated 
Code 

Postcondition 
poste(s,s’) in the 

TLS 

Ref 
No. 

Description 

CopyDIn_copy_siz
e_datain 

CopyDIn_copy_siz
e_inbuffer 

§8.4, R2* 
 

§8.4, R3* 

- 
 
- 

- 
 
- 

Wrong size —> 
Error return 

Wrong size —> 
Error return 
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CopyDIn_gamma_
copy 

CopyDIn_gamma_
rest 

§8.4, R7* 
 

§8.4,TLS6 

𝐷𝑖,𝑠
1 =Г(𝐵𝑖,𝑠1 ) 

 
- 

(4) Copy to Data 
Area 1 

Rem Data Area 
1 unchged 

CopyDIn_sanitize §8.4,TLS5
* 

𝑊𝑠′
1[𝑖] = 𝑓𝑎𝑙𝑠𝑒 

 
(3) Data Area 1 not 

sanitized 

CopyDIn_NOC 
By 

inspection 
𝑁𝑂𝐶{𝑊1[𝑖],𝐷𝑖

1} (5) No other change 

After defining the desired sets of code-level preconditions and 
postconditions, we check whether these assertions are among the 
assertions already proven in the annotated C code. The annotated C code 
often refers to memory areas by indexing into arrays that define memory 
maps in the code, whereas the mapping a refers to memory areas by their 
actual physical addresses. Thus, to be equivalent to the desired 
assertions, the assertions in the annotated code frequently need 
dereferencing. For example, the annotated C code assertion, TLS2 (see 
Table 2.2) is defined by 

part_data_start= (unsigned char* )  
ker_rtime_mmu_map[partition].part_data_start, 
which sets the variable part_data_start to the starting address of the 

data area in the partition by indexing into the real-time memory map in 
the code and selecting the part_data_start member of the structure 
corresponding to that array element. Dereferencing the index into the 
array and pointer into the structure yields the memory area 
KER_PAR_DATA_STORAGEe_partition_START, the actual physical 
address of the partition data area, which stores the value used in the code-
level precondition CopyDIneocal_datain (see the last line of the top box 
in Fig. 2.1). 

In the initial attempt to match a precondition and postcondition in the 
annotated C code with each desired precondition and postcondition, 
either 

-  the desired assertion exactly matched an assertion in the annotated 
code, 

-  the desired assertion exactly matched an assertion in the annotated 
code, except dereferencing was required, 

-  the desired assertion was a close but not exact match of an 
assertion in the annotated code, or 
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-  no code assertion exactly or approximately matched the desired 
assertion. 

Let us consider the annotated C-code to ensure that assertions 
corresponding to all of the desired preconditions and postconditions were 
added to and verified on the code. (In general, it is sufficient to include 
strongest postconditions implying the derived assertions.) For example, 
assertions about a predicate SANITIZED on memory areas were added to 
the annotated code to provide correspondence to the necessary code-level 
assertions about the sanitization of memory areas. To show 
correspondence between the preconditions and postconditions in the code 
and the TLS, two tables were created for each TLS event. Tables 2.2 and 
2.3 are the correspondence tables for the preconditions and 
postconditions of the transform rule for the TLS event Copy_B1In_D1In. 
In the tables, s and s' = T(e, s) represent the abstract prestate and 
poststate, sc and s'c represent the concrete prestate and poststate, and $ 
maps abstract predicates to corresponding concrete predicates. 

In Tables 2.2 and 2.3, the first column contains the label of a desired 
code-level precondition or postcondition from Fig. 2.1, the second 
column gives the location (the section number and assertion label) of the 
corresponding assertion in the annotated C code, the third column 
contains the corresponding precondition or postcondition (if any) in the 
TLS, the fourth column gives the reference number of the corresponding 
assertion in the transform rule, and the fifth column briefly describes the 
assertion. In cases where no corresponding assertion exists in the TLS, " 
appears in both the third and fourth columns. An asterisk in the second 
column indicates that, for equivalence between the assertion in the 
annotated code and the desired code assertion to hold, the assertion in the 
annotated code requires dereferencing. 

Tables 2.2 and 2.3 show that, for every precondition and 
postcondition of CopyB1In_D1In_i, there is an equivalent precondition 
or postcondition in the annotated code. Therefore, we have shown that, 
for CopyB1In_D1In_i, the full code-level preconditions and 
postconditions imply the TLS preconditions and postconditions. Using 
the same techniques, we have also demonstrated the analogous result for 
the remaining events. The Event Code implementing the separation 
kernel is a refinement of the TLS. 
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Fig. 2.2. Relations to establish between concrete and abstract transitions 

and preconditions and postconditions. 

Formal Foundations 

Let us consider the classical theory of refinement [21], a technique 
for proving that a concrete state machine model conforms to (that is, is a 
refinement of) an abstract state machine model, into a form that we can 
use to show that the behavior of the kernel code conforms to the behavior 
captured in the TLS. Also this subsection covers the formal foundation 
for the method of proving refinement and describes how have been 
applied it to verify that the kernel code correctly implements the TLS. 
The refinement proof technique that we use is closed under iteration. 

Adapting the Classical Theory of Refinement 

To begin, a function α is defined which maps each concrete state at 
the code level to a corresponding abstract state in the TLS state machine 
Σ by relating variables at the concrete code level to variables at the 
abstract TLS level. Variables at the concrete level include variables in the 
code, predicates defined on the code, logical history variables, and 
memory areas. Among the most important memory areas treated as 
concrete state variables are the data areas and the input and output 
buffers assigned to each partition, all of which are central to reasoning 
about possible information flows. Provided each possible value of a 
concrete state variable can be represented by some possible value of the 
corresponding abstract state variable (as is true for ED), the map a from 
concrete to abstract state variables induces a map α : Sc  →  Sa from 
concrete to abstract states in the obvious way.6 Once α is defined at the 
level of states in terms of state variables and their values, the set Ec of 
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Event Code segments is identified, and a is extended to map each code 
segment ec in Ec to a corresponding internal event ea = α (ec) in the 
TLS.7 

The map a from concrete states to abstract states provides a means of 
taking any predicate Pa : Sa → Bool on abstract states and deriving a 
corresponding predicate Ф(Pa) : Sc → Bool on concrete states as follows: 

Ф(𝑃𝑎 )(𝑆𝑐  )  ≜  𝑃𝑎  (𝛼 (Sc)), 
where sc is any state in Sc. Analogously, α can be used to derive a 

predicate Ф(Pa) : Sc x Sc → Bool on pairs of concrete states from a 
predicate on pairs of abstract states as follows:  

Ф(𝑃𝑎)(𝑠𝑐
1 , 𝑠𝑐

2)  ≜  𝑃𝑎 (𝛼 (𝑠𝑐
1), 𝛼 (𝑠𝑐

2)),   
where 𝑠𝑐1 and 𝑠𝑐2 are any states in Sc. The map Ф is used to relate 

preconditions and postconditions in the code to preconditions and 
postconditions in the TLS (see Fig. 2.2). Note that preconditions (at both 
levels) apply only to one state. To capture the fact that an event changes 
only certain state variables (indicated at the abstract level by the notation 
NOC), the postconditions are represented at both levels as predicates on 
two states. 

In Fig. 2.2, we follow the convention of representing α (sc) by sa. 
Note that, although the preconditions and postconditions on the concrete 
and abstract transitions in Fig. 2.2 are denoted analogously, their required 
relationships to their corresponding transitions differ. In particular, the 
precondition Preea (sa) is a guard that, when false, prevents ea from 
firing, while the precondition Preec (sc) is simply an assertion known to 
hold before ec fires. Moreover, the postcondition Postea (sa,ea(sa)) is 
intended to capture the effect of the action ea on the state sa, while the 
postcondition Postec (sc,ec (sc)) is simply an assertion known to hold for 
the states before and after ec fires. Hence, the requirements for the 
abstract preconditions and postconditions fulfill the requirements for 
concrete preconditions and postconditions (but not vice versa). Thus, in 
the refinement proof method below, an abstract TLS can play a role 
analogous to concrete code with respect to a still more abstract TLS. 

To establish equivalence between the behavior of the kernel code and 
a subset of the behavior modeled in the TLS, it is sufficient to prove, in 
the simplest case, that, for every ec in Ec, the following conditions hold: 

-  Whenever the concrete code segment ec is ready to execute in 
state sc, some concrete precondition Preec holds, where Preec implies 
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Ф(Preea), the concrete precondition derived from the abstract 
precondition 

- for ea = a(ec). 
-  Whenever the concrete precondition Preec holds for the current 

program state sc, some concrete postcondition Postec holds for the pair 
of program states (sc, ec(sc)) immediately before and immediately after 
the execution of ec, where Postec implies Ф(Postea), the concrete 
postcondition derived from the abstract postcondition for ea. 

-  The diagram in Fig. 2.2 commutes whenever Preec (sc) holds. 
- Although this method requires the proof of conditions 1, 2, and 3, 

it is essentially condition 3 that is needed for a to be a refinement 
mapping. To prove condition 3, it is normally sufficient to prove 
conditions 1 and 2. 

Theorem 2.1. Provided ∀𝑠, 𝑠′ ∈ 𝑆𝑎: 𝑃𝑟𝑒𝑒𝑎(𝑠) ⇒ [𝑃𝑜𝑠𝑡𝑒𝑎(𝑠, 𝑠
′) ≡

(𝑠′ = 𝑒𝑎(𝑠))] conditions 1 and 2 imply condition 3. 
Proof. Be hypothesis, we know that 

∀𝑠, 𝑠′ ∈ 𝑆𝑎: 𝑃𝑟𝑒𝑒𝑎(𝑠) ⇒ [𝑃𝑜𝑠𝑡𝑒𝑎(𝑠, 𝑠
′) ≡ (𝑠′ = 𝑒𝑎(𝑠))] 

And may assume that conditions 1 and 2 hold. Further, by the 
hypothesis of condition 3, we may also assume that 
𝑃𝑟𝑒𝑒𝑐(𝑠). 
By condition 1, it follows from (ii) that Ф(𝑃𝑟𝑒𝑒𝑎)(𝑠с), which means, 

by the definition of Ф, that 
𝑃𝑟𝑒𝑒𝑎(α(𝑠с)). 

Furthermore, by condition 2, we have 
𝑃𝑟𝑒𝑒𝑐(𝑠𝑐) ⇒ 𝑃𝑜𝑠𝑡𝑒𝑐(𝑠𝑐, 𝑒𝑐(𝑠𝑐)), 
and 

𝑃𝑜𝑠𝑡𝑒𝑐(𝑠𝑐 , 𝑒𝑐(𝑠𝑐)) ⇒ Ф𝑃𝑜𝑠𝑡𝑒𝑎(𝑠𝑐, 𝑒𝑐(𝑠𝑐)). 
Thus, 
𝑃𝑟𝑒𝑒𝑐(𝑠𝑐)         (by (ii)) 
⇒ 𝑃𝑜𝑠𝑡𝑒𝑐(𝑠𝑐, 𝑒𝑐(𝑠𝑐))     (by (iv)) 
⇒ Ф𝑃𝑜𝑠𝑡𝑒𝑎(𝑠𝑐 , 𝑒𝑐(𝑠𝑐))     (by (v)) 
⇔ 𝑃𝑜𝑠𝑡𝑒𝑎(α(𝑠𝑐), α(𝑒𝑐(𝑠𝑐))    (by the definition of Ф) 
⇔ α(𝑒𝑐(𝑠𝑐) = 𝑒𝑎(α(𝑠с))    (by (i) and (iii)). 
But, the last assertion means that the diagram in Fig. 2.2 commutes, 

which is the conclusion of condition 3. 
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The hypothesis of Theorem 2.1 does not truly limit its use, provided 
that the abstract postcondition exactly captures all possible effects of the 
abstract transition. In particular, suppose that the definition of the 
abstract transition allows nondeterminism, and that one has established, 
based on conditions 1 and 2 and the hypothesis of condition 3, that 
Postea(a(sc), a(ec(sc))), that is, that Postea(sa, a(ec(sc))). Then, to fulfill the 
hypothesis of Theorem 4.1, one can simply replace ea by its deterministic 
instance for which the abstract poststate ea(sa) is a(ec(sc)). 

Establishing conditions 1-3 guarantees that, whenever the code 
segment ec executes in the code, there is an enabled event ea in the TLS 
that causes a transition from the abstract image sa under a of the concrete 
prestate sc at the code level into an abstract state ea(sa) that is the abstract 
image under a of the concrete poststate ec(sc) at the code level. More 
concisely, conditions 1, 2, and 3 imply that there exists an abstract 
transition that models the concrete transition. 

The relation of Event Code segments to abstract events can be 
slightly more complex than shown in Fig. 2.2. For example, in some 
cases, ec may implement more than one event. However, these more 
complex cases can usually be handled similarly. When a concrete event 
implements n abstract events, for example, one looks for a partition 
𝑃𝑟𝑒𝑐  =  𝑃𝑟𝑒𝑐

1 ⨁ . . . ⨁ 𝑃𝑟𝑒𝑐
𝑛 of the concrete precondition Prec such that, 

when the ith part Prei
c holds, the code ec implements the ith abstract 

event. Then, one establishes, for each i, a commutative diagram 
analogous to the diagram in Fig. 2.2. 

The argument that the kernel code of ED ensures data separation is 
based on relating executions of the code to executions in the TLS. To 
begin, we observe that a maps ED's initial state via a to an allowed initial 
state in the TLS. To support the remainder of the argument, the Event 
Code set Ec and the code-level map a are extended to cover the Other 
Code. Most Event Code segments consist of a single program statement. 
In contrast, Other Code contains many lengthy code segments which 
simply manipulate local variables inside a function or procedure and do 
not map to any abstract event. Such segments typically occur prior to an 
Event Code segment. We model these Other Code segments at the 
abstract level by a no-op ("do nothing") event implicitly included in the 
TLS. It is possible to map the effect of a segment of the Other Code to a 
no-op in the TLS because, unlike Event and Trusted Code, the Other 
Code has no access to MAIs. Because every code segment in the Event 
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or Other Code is modeled either by an abstract TLS event with concrete 
and abstract transitions related as in Fig. 2.2 or by a no-op in the TLS, it 
follows that every execution of this part of the code corresponds to an 
execution in the TLS. 

Trusted Code in the ED kernel can be related to the TLS as follows: 
First, it is established that no segment of the Trusted Code causes 
insecure data flows. Some segments of the Trusted Code have been 
verified, and the remaining segments have been certified externally to 
cause no insecure information flows. The state change caused by each 
Trusted Code segment is then shown to map to the result of either a no-
op in the TLS or some sequence of events in the TLS. In the overall 
argument that an execution of concrete code always maps to a possible 
execution in the TLS, each Trusted Code segment is treated as an 
indivisible unit. In ED, this is possible because each Trusted Code 
segment executes within a single partition and executions within a 
partition are never interrupted. 

Combining this reasoning with the additional assurance that a relates 
concrete data and buffer memory areas to abstract ones and thus models 
all information flows involving MAIs, it follows that all kernel behavior 
relevant to data separation at the concrete level is modeled at the abstract 
level. Thus, the Data Separation Property proven at the abstract level also 
holds at the concrete level. 

Uses and Proof Methods for Refinement 

Although some details of how they are applied may vary, 
commutative diagrams are widely used to describe the required 
relationships between transitions at the concrete and abstract levels in a 
refinement relation (sometimes referred to as an abstraction relation). 

When model checking is used to verify systems, a typical approach is 
to generate an abstract model automatically using data abstraction or data 
type reduction in a way that guarantees that the original system is a 
refinement of the model. Thus, any properties verified of the abstract 
model that are preserved under refinement will also hold for the system. 
In this approach, refinement is a given and need not be proved. For us, it 
is not feasible to use model checking to produce an abstract model. Due 
to the state explosion problem, model checking for verification has 
mostly been applied to hardware systems. Although, to some extent, 
methods such as abstraction refinement have made it more feasible to 
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apply model checking to software systems, model checking is better for 
detecting software bugs than for verifying software. 

The concept of refinement also arises in the context of proving an 
implementation relation from a more concrete system model to a more 
abstract one. For example, the decision procedures can be used, or PVS 
to verify that concrete models implement specifications by proving that a 
set of diagrams commute, where the diagram for each transition captures 
the correlation between sequences of instructions at the concrete and 
abstract levels can be used. In order to avoid use of commutative 
diagrams the compositional model checking for proving implementation, 
in particular by model checking individual transitions separately and then 
proving that the results compose can be used. In the context of 
hierarchical verification, a diagram that relates concrete states to abstract 
states and concrete programs (or program fragments) to abstract 
transitions in which the poststate is mathematically defined in terms of 
the prestate can be used.  

Fig. 2.2 shows required relationships, along with the commutative 
diagram. We also make explicit that 1) at the state variable level, the 
"state variables" mapped by the mapping function can be derived 
variables or logical variables that, for example, capture history and 2) 
postconditions are actually predicates on two states.  

Applying Techniques to Other Security Properties 

Two important classes of security properties are safety and liveness. 
Any property p can be expressed as the intersection of a safety property 
and a liveness property. Informally, a safety property states that nothing 
"bad" happens during execution and a liveness property states that 
something "good" happens during execution. A set of executions is called 
a property if membership in the set is determined by each execution 
alone, without reference to other executions in the set.  

A security property p must be preserved under refinement. It is well 
known that safety properties are preserved under refinement but that 
liveness properties are not [12]. Hence, techniques can be used to 
guarantee security properties that are safety properties. It is easy to show 
that four of the security properties No-Exfiltration, Temporal Separation, 
Separation of Control, and Kernel Integrity—are safety properties. 
Therefore, all four properties are preserved by refinement. The fifth 
property, No-Infiltration, is not a safety property because it is not a 
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property of executions but a property of sets of executions. However, it is 
easily shown to be preserved under refinement. 

Such approach may be applied to many applications that, like ED, 
enforce access control. Applications that enforce access control restrict 
the operations that subjects (for example, users) can perform on objects 
(for example, data). As long as the access control policy can be 
represented as a safety property, the approach applies. A second 
important class of applications to which the approach applies are those 
described by Schneider, which use Execution Monitoring (EM) to 
enforce security. Examples of EM mechanisms are reference monitors, 
firewalls, and other operating system and hardware-based enforcement 
mechanisms described in the literature. Excluded from this class are 
applications that use more information than would be available from 
observing only the states of a single system execution. 

Schneider shows that the security properties enforced by EM 
mechanisms are safety properties. 

Applying Method to Additional Kernel Properties 

In ED's certification, the task is to develop a TLS of ED's kernel 
code, to verify that the TLS satisfies data separation, and, finally, to 
demonstrate conformance of the kernel code to the TLS. An important 
aspect of the approach is that, if required, we can construct a refinement 
of the TLS by adding new variables and events to the TLS to capture 
some behavior of (that is, events in) the Other Code. If the security 
properties that we wish to prove about this additional behavior are 
preserved by refinement, then we can formally state and prove the new 
security properties for the refinement of the TLS and show 
correspondence between the related portion of the Other Code and the 
new behavior. Because the proof method can be iterated through a series 
of refinements, the proof of data separation remains valid under such a 
refinement of the TLS. 

Lessons learned. Software Design Decisions 

Three software design decisions were critical in making code 
verification feasible. One major decision was to use a separation kernel, a 
single software module to mediate all memory accesses. A design that 
distributed the checking of memory accesses would have made the task 
of proving data separation much more difficult. A second critical 
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decision was to keep the software simple. For example, once initiated, 
data processing in a partition was run to completion unless an exception 
occurred. In addition, ED's services were limited to the essential ones: 
The temptation to add new services late in the development was resisted. 
The third critical decision was enforcing "least privilege." For example, 
if a process only requires read access to a memory area, the kernel only 
grants read, not read and write, access. 

Top-Level Specification 

One significant challenge was to understand the externally visible 
security-relevant behavior of the separation kernel. Both scenarios and 
the SCR (Software Cost Reduction) tools [26] were useful in extending 
understanding of the kernel behavior. To begin, we formulated several 
scenarios, that is, sequences of events, and specified the kernel response 
to those events. After specifying a state machine model of the kernel in 
SCR, we ran the scenarios through the SCR simulator. As expected, 
formulating the scenarios and running them through the simulator 
exposed gaps in the understanding. Both the scenarios and the questions 
raised are valuable in eliciting details of the security-relevant kernel 
behavior from ED's development team. 

Once the kernel's required behavior was understood, approximately 
2.5 weeks were needed to formulate the TLS and the data separation 
property. The complete statement of the TLS, including the assumptions, 
is only 15 pages long. Keeping the size of the TLS small was critical for 
many reasons. It simplified communication with the other stakeholders, 
changing the specification when the kernel behavior changed, translating 
the specification into TAME, and proving that the TLS enforced data 
separation. 

During the certification process, the natural language representation 
of the TLS enabled stakeholders with differing backgrounds and 
objectives—for example, the project manager and the evaluators—to 
communicate easily with the formal methods team about the kernel's 
required behavior. Discussion among the various stakeholders helped 
ensure that misunderstandings were avoided and issues were resolved 
early in the certification process. This natural language representation of 
the TLS for ED contrasts with the representations used in many other 
formal specifications of secure systems, which are often expressed in 
specialized languages such as ACL2. Moreover, any ambiguity inherent 
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in the natural language representation was removed by translating the 
TLS into TAME since the state machine semantics underlying TAME is 
expressed as a PVS theory. One component of the TLS in particular, the 
access control matrix, facilitated communication between the formal 
methods team and other stakeholders. Although the matrix was largely 
redundant of other parts of the TLS, stakeholders could easily understand 
the matrix and thus validate constraints on the access privileges of 
processes invoked by each event. The matrix was also useful in 
identifying the events and MAIs to be included in the TLS. 

Mechanized Verification 

TAME's specification and proof support significantly simplified the 
verification effort and can require a total of about 3.5 weeks. 
Approximately 1.5 weeks can be required to produce the final TAME 
model of the TLS and to document the correspondence between the 
TAME model and the TLS. Some of this time was required to choose 
appropriate data structures for representing the state variables and the 
parameters of actions in TAME. The higher order nature of PVS made it 
feasible to handle the unspecified number of memory areas in the TLS by 
representing the overall memory content in TAME as a function from a 
set of memory areas to storable values and, in general, to produce a very 
compact TAME specification (368 lines long). Once the data 
representations is chosen, translating the TLS and the five subproperties 
into TAME can require at about three days. Adjusting the TAME 
specification to reflect later changes in the TLS can require only a few 
hours. To illustrate the TAME representation. 

About two weeks can be needed to formally verify that the TLS 
enforces data separation. Most of this time can be spent formulating an 
efficient proof approach and then developing a new TAME strategy to 
implement the approach. The new PVS strategy, designed to simplify the 
proof guidance in the presence of the data structures used in the TAME 
specification, is used in the proofs of all subproperties and is 
subsequently proven useful in other TAME applications. Once the 
strategy is developed, the time required to develop the proof scripts 
interactively in TAME can be one day. Adding and proving a new 
subproperty suggested by an evaluator can require under one hour. The 
proof script of each subproperty can be executed in two minutes or less. 
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Iterating the Refinement Method 
 
Fig.2.3 illustrates the mappings, predicates, and relationships 

between assertions connected with the proof of successive refinements 
from an automaton at level c through an automaton at level b to an 
automaton at level a. We wish to prove that if the analogs of conditions 
1, 2, and 3 from Section 4.1 hold for the c-to-b and b-to-a relations, then 
conditions 1, 2, and 3 hold fort he composed c-to-a relation in which  
𝛼 ≜ 𝛼1  ∘  𝛼2  and Φ ≜ Φ1 ∘  Φ2 . Let us use 𝑠𝑏 to denote 𝛼2 (𝑠𝑐), 𝑠𝑎 to 
denote 𝛼1 (𝑠𝑏), and 𝑆𝑎, 𝑆𝑏′, and 𝑆𝑐 to denote the sets of states at levels a, 
b, and c. Wefirstneed a lemma. 

 
Fig. 2.3. Relationships in successive refinements 

Lemma A.1 Let 𝛼: 𝑆𝑐 → 𝑆𝑎 and let 𝛷 be the map from predicates on 
𝑆𝑎 to predicates on  𝑆𝑐 incluced by 𝛼, that is such that, for any predicate 
𝑃𝑎 and any element 𝑠𝑐  ∈  𝑆𝑐,  𝛷(𝑃𝑎)(𝑠𝑐) ≜ 𝑃𝑎(𝛼(𝑠𝑐)). If 𝑃𝑎 and 𝑄𝑎 are 
predicates on 𝑆𝑎 such that 𝑃𝑎 ⇒ 𝑄𝑎, then 𝛷(𝑃𝑎) ⇒ 𝛷(𝑄𝑎). 

Proof. Suppose that 𝑃𝑎 and 𝑄𝑎 are two predicates on 𝑆𝑎, 𝑓𝑜𝑟  which 
𝑃𝑎 ⇒ 𝑄𝑎. This means that, ∀𝑠𝑎  ∈  𝑆𝑎, 𝑃𝑎(𝑠𝑎) ⇒ 𝑄𝑎(𝑠𝑎). Let 𝑠𝑐 be any 
element of 𝑆𝑐. Then, 
Φ(𝑃𝑎)(𝑠𝑐) =  𝑃𝑎(𝛼(𝑠𝑐))  (by the definition of Φ) 
    ⇒ 𝑄𝑎(𝛼(𝑠𝑐))  (since 𝑃𝑎 ⇒ 𝑄𝑎) 
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    = Φ(Qa)(sc)  (by the definition of Φ) . 
Next, we define the notion of an annotated transition. 
Definition A.1. Let S be a set of states and let E ⊂ S × S be a set of 

transitions on S. An annotated transition is a transition e ∈ E 
accompanied by a one-state predicate Pree on S and a two-state 

predicate Poste on S. 
Now, we can state the theorem formally:  
Theorem A.2. Let A,B and C be automata with state spaces  𝑆𝑏′  𝑆𝑏′ 

and 𝑆𝑐 and sets of annotated transitions 𝐸𝑎′ 𝐸𝑏′ and 𝐸𝑐′ respenctively. Let 
𝛼2: 𝑆𝑐 → 𝑆𝑏 and   𝐸𝑐 → 𝐸𝑏 and 𝛼1: 𝑆𝑏 → 𝑆𝑎 and 𝐸𝑏 → 𝐸𝑎 be refinement 
mappings,that is, mappings that, together with their induced mappings 
𝛷2 and  𝛷1 on predicates and the transition annotations, satisfy the 
appropriate analogs of conditions 1,2 and 3. For convenience, we refer to 
those conditions as conditions 1𝑏,𝑐, 2𝑏,𝑐 and 3𝑏,𝑐  and conditions 1𝑎,𝑏, 
2𝑎,𝑏 and  3𝑎,𝑏. Then if 𝛼 ≜ 𝛼1  ∘  𝛼2 and 𝛷 ≜ 𝛷2 ∘  𝛷1, the mappings 𝛼 
and 𝛷 satisfy conditions 1,2 and 3, and hence, 𝛼: 𝑆𝑐 → 𝑆𝑎, and 𝐸𝑏 → 𝐸𝑎 
is a refinement mapping.   

Proof. Suppose that the hypotheses of Theorem A.2 hold. Then, we 
need to establish that conditions 1,2, and 3 hold. For condition 1, we can 
argue as follows: 

(i) 𝑃𝑟𝑒𝑒𝑐 =˃ Ф2 (𝑃𝑟𝑒𝑒𝑏) (by condition 1b,c) 

(ii) 𝑃𝑟𝑒𝑒𝑏  =˃ Ф1(𝑃𝑟𝑒𝑒𝑎))(by condition 1a,b) 

(iii) Ф2(𝑃𝑟𝑒𝑒𝑏) =˃ Ф2(Ф1(𝑃𝑟𝑒𝑒𝑎)) (by (ii) and Lemma A.1) and, 

therefore, 

(iv) 𝑃𝑟𝑒𝑒𝑐) => Ф2(Ф1 (𝑃𝑟𝑒𝑒𝑎)) (by (i) and (iii)) 

(v) 𝑃𝑟𝑒𝑒𝑐  => Ф(𝑃𝑟𝑒𝑒𝑎) (by the definition of Ф) 

For condition 2, first note that the first part of condition 2, which 
relates 𝑃𝑟𝑒𝑒𝑐  to 𝑃𝑜𝑠𝑡𝑒𝑐, follows from the first part of condition 2b,c. The 
remainder of the argument, which relates 𝑃𝑜𝑠𝑡𝑒𝑐  to 𝑃𝑜𝑠𝑡𝑒𝑎, is totally 
analogous to that for condition 1. 

To prove condition 3, we note that if 𝑃𝑟𝑒𝑒𝑐 (sc) holds, then by 
condition 3b,c, the lower square in Fig. 3 commutes. Furthermore, we 
have 

      Preec(sc) 
=˃ Ф2 (𝑃𝑟𝑒𝑒𝑏)(sc) (by condition 1b,c) 
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≡    𝑃𝑟𝑒𝑒𝑏 (sb) (by definition of Ф2, since sc = a2(sb)) 
And hence 𝑃𝑟𝑒𝑒𝑏 (sb) holds. By condition 3a,b, this implies that the 

upper square commutes. Therefore, the diagram as a whole commutes 
and we have 

          eₐ  ͦ  α1  ͦ  α2  =  α1  ͦ  α2  ͦ  ec 
By the definition of a, this means that 
         eₐ  ͦ  α = α  ͦ  ec 
And we are done. 
 
TAME Representation of Separation 
 
To provide some details of the TAME representation of ED, we show 

how three of the five subproperties of the separation property verified for 
ED, Temporal Separation, No-Exfiltration, and No-Infiltration, are 
represented in TAME. For each subproperty, we first repeat its natural 
language representation and then show and explain its TAME 
representation. 

B.1 Temporal Separation 
Natural language version 
(Temporal Separation) For all states s in S, for all i, 1 ≤ 𝑖 ≤ 𝑛, if the 

partition id cs is 0, then the k data areas of partition i are clear, that is, 
𝐷𝑖,𝑠
1 = 0,… , 𝐷𝑖,𝑠

𝑘 = 0.        
TAME version 
Inv_ClearPart(s:states):bool = 
    (FORALL (i:PartIndex): (NONE? (PartId(s)) => 
         (FORALL (n:DataAreaIndex): 
              Clear? (MemContent(DataArea(i,n),s))))); 
 
lemma_ClearPart: LEMMA (FORALL (s:states): 
      reachable(s) => Inv_ClearPart(s)); 
 
The TAME representation of the Temporal Separation property is the 

state-invariant lemma lemma_ClearPart, which states that the invariant 
Inv_ClearPart holds for every reachable state s. In the invariant 
Inv_ClearPart, PartIndex and DataAreaIndex are the types of 
partition indices and data area indices, defined simply to be nonempty, 
uninterpreted types. Thus, there can be an arbitrary nonzero number of 
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partitions, each with the same but arbitrary nonzero number of data areas. 
PartId(s) represents cs, the current partition id in the current state. 
NONE?(PartId(s)) is true when cs is 0, that is, exactly when no partition 
processing is taking place. MemContent is a function that maps a 
memory area and a state to the memory content of that memory area in 
that state. Finally, the predicate Clear? is true of the memory content of 
a data area when that data area is clear. 

B.2 No-Exfiltration 
Natural language version 
(No-Exfiltration) Suppose that states s and s' are in state set S, event e 

is in H, memory area a is in M, and j is a partition, 1 ≤ 𝑗 ≤ 𝑛. Suppose 
further that          s'=T(e, s). If e is an event in 𝑃𝑗 ∪ 𝐸𝑗𝐼𝑛 ∪ 𝐸𝑗𝑂𝑢𝑡 𝑎𝑛𝑑 𝑎𝑠 ≠
𝑎𝑠′ , 𝑡ℎ𝑒𝑛 𝑎 𝑖𝑠 𝑖𝑛 𝐴𝑗 

 
TAME version 
No_Exfiltration: LEMMA 
    (FORALL (E:actions, s:states, m:MemAreas, j:PartIndex): 
         (enabled (E,s) & Isin(m,PartMemAreas(j)) & 
           (NONE? (PartId(s)) OR 
              (Part? (PartId(s)) & NOT(Id(PartId(s))=j)))) 
       => ((InBuff? (E) & InBuff_Index(E) =j) OR 
             (OutBuff? (E) & OutBuff_Index(E)=j) OR 
           MemContent(m,s)=MemContent (m,trans(E,s)))); 
 
The TAME version No_Exfiltration of the No-Exfiltration property 

corresponds to the contrapositive of the natural language version. In the 
TAME representation, the event e is represented by an action E. The state 
s is represented by s and the state s' is represented by trans(E , s), that is, 
the result of a transition due to action E in state s. For the current 
partition id PartId(s) in state s, either NONE? holds, that is, no partition 
processing is occurring, or Part? holds, in which case, partition 
processing is occurring in partition id(PartId(s)). The assertion 
enabled(E , s) means that the precondition of action E holds in state s. 
When E is an internal action, this precondition ensures that E is an 
internal action for Partition PartId(s). The condition 
InBuff?(E)&InBuff _Index(E) - j is true when E fills the input buffer of 
Partition j . The analogous condition with Out in place of In is true when 
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E empties the output buffer of Partition j . These parts of the conclusion 
of property No_Exfiltration cover the cases when action E is an external 
event for Partition j . Thus, property No_Exfiltration says that, if m is a 
memory area in Partition j and E either is an external action or is an 
internal action in some partition other than Partition j , then either E is an 
external action for Partition j or E does not change the content of m. 

B.3 No-Infiltration 
Natural language version 
(No-Infiltration) Suppose that states 𝑠1, 𝑠2, 𝑠1′ , and 𝑠2′  are in S, event 

e is in H, and i is a partition, 1 ≤ 𝑖 ≤ 𝑛. Suppose further that 𝑠1′ =
𝑇(𝑒, 𝑠1) and 𝑠2′ = 𝑇(𝑒, 𝑠2). If, for all a in 𝐴𝑖 ,  𝑎𝑠1 = 𝑎𝑠2, then, for all a in 
𝐴𝑖 ,  𝑎𝑠1′ =  𝑎𝑠2′ . 

TAME version 
 No_Infiltration: LEMMA 
   ( FORALL (E:actions, s1, s2:states, m:MemAreas, i:PartIndex): 
                  enabled(E,s1) & enabled(E,s2) & 
                  Part? (PartId(s1)) & Id(PartId(s1))=i & 
                  Part? (PartId(s2)) & Id(PartId(s2))=i & 
                  Isin(m, PartMemAreas (i)) & 
                  (FORALL (m1:MemAreas):Isin(m1,PartMemAreas(i)) 
                       => MemContent (m1,s1)=MemContent (m1, s2)) 
           =>MemContent(m,trans(E,s1))=MemContent(m,trans(E,s2))); 
 
The preceding explanation of the notation in lemma_ClearPart and 

No_Exfiltration should make it clear that the TAME version 
No_Infiltration of the No-Infiltration Property is equivalent to the natural 
language version. 

 
Tasks for laboratory work №2. 
1. Each student choose different type of software. 
2. Make the procedure of the code annotation with preconditions 

and postconditions. 
3. Partition the code into the concepts of Event, Trusted, and Other 

Code. Finally. 
4. Demonstrate the conformance of the Event Code and the code 

preconditions and postconditions with the internal events, 
preconditions, and postconditions of the TLS. 
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5. Prove, that the Trusted Code and the Other Code are benign. 
6. use model checkers and theorem provers for verifying that a 

formal specification satisfies a security property of interest. 
7. Automatically generate test cases that check source code 

annotations; automatically construct efficient provably correct 
code from specifications. 

 
 
Requirements to the report 

The report should consists of: 
- title sheet; 
- the aim and the task of the laboratory work; 
- partitioned code into the concepts of Event, Trusted, and Other 

Code. Finally; 
- demonstration of the conformance of the Event Code and the code 

preconditions and postconditions with the internal events, preconditions, 
and postconditions of the TLS; 

- Prove, that the Trusted Code and the Other Code are benign; 
- results of the verifying that a formal specification satisfies the 

security property of interest by the usage of the model checkers; 
- generated test cases and constructed efficient provably correct 

code from specifications; 
- conclusions. 

Advancement questions 

1. How to build a well-defined security property? 
2. What we should do to build the minimal state machine model? 
3. How we can prove that the security model satisfies the property 

using a mechanical verifier? 
4. What should we do to annotate the code with preconditions and 

postconditions and  partition it into Event, Trusted, and Other 
Code? 

5. How to demonstrate conformance of the Event Code and the 
code preconditions and postconditions with the internal events 
and preconditions and postconditions of the TLS? 

6. What we should do to show that the Trusted Code and the Other 
Code are benign? 
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7. How to develop tools for validating and constructing 
preconditions and postconditions from the source code, including 
the C code? 

8. What we should do to develop tools for automatically generating 
test cases that check C code annotations? 

9. How to develop tools for showing conformance of annotated 
code with a TLS, and automatically constructing efficient 
provably correct code from specifications? 

10. What does number of international organizations establish to 
provide a single basis for evaluating the security of information 
technology products? 

11. What are the five steps of the code verification process? 
12. What are the main goals of the Top-Level Specification? 
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2 FORMAL METHODS FOR THE ANALYSIS OF SECURITY 
PROTOCOLS 

 

2.1 Laboratory work №3. Using Horn Clauses for Analyzing 
Security Protocols 

Theaim and the task of the laboratory work 
The aim of this laboratory work is to get acquainted with a method 

for verifying security protocols based on an abstract representation of 
protocols by Horn clauses. 

Task of the work:  
- use the protocol verifier ProVerif.  
- define cryptographic primitives defined via rewrite rules or 

equations. 
-  prove security properties, including authentication and process 

equivalences. 
- prove security properties of protocols for an unboundednumber 

of sessions, in a fully automatic way.  
Preparation for laboratory work  
- to clarify the aims and objectives; 
- to study theoretical material given in the description. 

 
Theoretical material 

Introduction 

Security protocols can be verified by an approach based on Horn 
clauses; the main goal of this approach is to prove security properties of 
protocols in the Dolev-Yao model in a fully automatic way without 
bounding the number of sessions or the message space of the protocol 
[27]. In contrast to the case of a bounded number of sessions in which 
decidability results could be obtained, the case of an unbounded 
number of sessions is undecidable for a reasonable model of protocols 
[28]. Possible solutions to this problem are relying on user interaction, 
allowing non-termination, and performing sound approximations (in 
which case the technique is incomplete: correct security properties 
cannot always be proved). Theorem proving [29] and rely on user 
interaction or on manual proofs. Typing generally relies on lightweight 
user annotations and is incomplete. Strand spaces and rank functions 
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also provide techniques that can handle an unbounded number of 
sessions at the cost of incompleteness. 

Many methods rely on sound abstractions: they overestimate the 
possibilities of attacks, most of the time by computing an 
overapproximation of the attacker knowledge.  

They make it possible to obtain fully automatic, but incomplete, 
systems. The Horn clause approach is one such method. It was first 
introduced by Weidenbach [30]. Let us consider a variant of this 
method and extensions that are at the basis of the automatic protocol 
verifier ProVerif. 

In this method, messages are represented by terms; the fact 
attacker() means that the attacker may have the message; Horn clauses 
(i.e. logic programming rules) give implications between these facts.  

An efficient resolution algorithm determines whether a fact is 
derivable from the clauses, which can be used for proving security 
properties. In particular, when attacker() is not derivable from the 
clauses, the attacker cannot have , that is, is secret. This method is 
incomplete since it ignores the number of repetitions of each action in 
the protocol. (Horn clauses can be applied any number of times.) This 
abstraction is key to avoid bounding the number of runs of the protocol. 
It is sound, in the sense that if the verifier does not find a flaw in the 
protocol, then there is no flaw. The verifier therefore provides real 
security guarantees. In contrast, it may give a false attack against the 
proto-col. However, false attacks are rare in practice, as experiments 
demonstrate. Termination is not guaranteed in general, but it is 
guaranteed on certain subclasses of protocols and can be obtained in all 
cases by an additional approximation. 

Without this additional approximation, even if it does not always 
terminate and is in-complete, this method provides a good balance in 
practice: it terminates in the vast majority of cases and is very efficient 
and precise. It can handle a wide variety of cryptographic primitives 
defined by rewrite rules or by equations, including shared-key and 
public-key cryptography (encryption and signatures), hash functions, 
and the Diffie-Hellman key agreement. It can prove various security 
properties (secrecy, authentication, and process equivalences). 

Other methods rely on abstractions: 
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- Bolignano [31] was a precursor of abstraction methods for 
security protocols. He merges keys, nonces, so that only a finite set 
remains and applies a decision procedure. 

- Monniaux [32] introduced a verification method based on an 
abstract representation of the attacker knowledge by tree automata. This 
method was extended by Goubault-Larrecq [33]. Genet and Klay [34] 
combine tree automata with rewriting. This method has lead to the 
implementation of the TA4SP verifier (Tree-Automata-based 

Automatic Approximations for the Analysis of Security Protocols) [35].  
- The main drawback of this approach is that, in contrast to Horn 

clauses, tree au-tomata cannot represent relational information on 
messages: when a variable ap-pears several times in a message, one 
forgets that it has the same value at all its occurrences, which limits the 
precision of the analysis. The Horn clause method can be understood as 
a generalization of the tree automata technique. (Tree automata can be 
encoded into Horn clauses.)  

- Control-flow analysis [36,37] computes the possible messages at 
each program point. It is also non-relational, and merges nonces created 
at the same program point in different sessions. These approximations 
make it possible to obtain a complexity at most cubic in the size of the 
protocol. It was first defined for secrecy for shared-key protocols, then 
extended to message authenticity and public-key protocols [38], with a 
polynomial complexity.  

- Most protocol verifiers compute the knowledge of the attacker. 
In contrast, Her-mès [39] computes the form of messages, for instance 
encryption under certain keys, that guarantee the preservation of 
secrecy. It handles shared-key and public-key encryption, but the 
method also applies to signatures and hash functions. 

- Backes et al. [40] prove secrecy and authentication by an 
abstract-interpretation-based analysis. This analysis builds a causal 
graph that captures the causality between events in the protocol. The 
security properties are proved by traversing this graph. This analysis 
always terminates but is incomplete. It assumes that messages are 
typed, so that names (which represent random numbers) can be 
distinguished from other messages.  
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M,N ::= Terms 
x  Variable 
a[  𝑀1, . . . , 𝑀𝑛   ] name 
f ( 𝑀1, . . . 𝑀𝑛) function application 

F ::=  p(𝑀1, . . . , 𝑀𝑛 ) fact 

R ::= 𝐹1∧ . . . ∧𝐹𝑛   ⇒𝐹 Horn clause 
Figure 3.1.  Syntax of protocol representation 

One of the first verification methods for security protocols, the 
Interrogator [41] is also related to the Horn clause approach: in this 
system, written in Prolog, the reachability of the state after a sequence 
of messages is represented by a predicate, and the program uses a 
backward search in order to determine whether a state is reachable or 
not. The main problem of this approach is non-termination, and it is 
partly solved by relying on user interaction to guide the search. In 
contrast, we provide a fully automatic approach by using a different 
resolution strategy that provides termination in most cases. 

The NRL protocol analyzer [42, 43] improves the technique of the 
Interrogator by using narrowing on rewriting systems. It does not make 
abstractions, so it is correct and complete but may not terminate. 

Abstract Representation of Protocols by Horn Clauses 

A protocol is represented by a set of Horn clauses; the syntax of 
these clauses is given in Figure 1. In this figure, ranges over variables, 
over names, over function symbols, and over predicate symbols. The 
terms represent messages that are exchanged between participants of 
the protocol. A variable can represent any term. Names represent 
atomic values, such as keys and nonces (random numbers). Each 
principal has the ability of creating new names: fresh names are created 
at each run of the protocol. Here, the created names are considered as 
functions of the messages previously received by the principal that 
creates the name. Thus, names are distinguished only when the pre-
ceding messages are different. As noticed by Martín Abadi (personal 
communication), this approximation is in fact similar to the 
approximation done in some type systems (such as [44]): the type of the 
new name depends on the types in the environment. It is enough to 
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handle many protocols, and can be enriched by adding other parameters 
to the name. In particular, by adding as parameter a session identifier 
that takes a different value in each run of the protocol, one can 
distinguish all names. This is necessary for proving authentication but 
not for secrecy, so we omit session identifiers here for simplicity. We 
refer the reader to [45, 46] for additional information. The function 
applications 𝑓(𝑀1, … ,𝑀𝑛) build terms: examples of functions are 
encryption and hash functions. A fact 𝐹 = 𝑝(𝑀1, … ,𝑀𝑛) expresses a 
property of the messages 𝑀1, … ,𝑀𝑛 . Several predicates can be used 
but, for a first example, we are going to use a single predicate attacker, 
such that the fact attacker( ) means “the attacker may have the message 
M”. A clause R = 𝐹1 ∧ . . . ∧𝐹𝑛 ⇒𝐹 means that, if all facts 𝐹1, … , 𝐹𝑛, are 
true, then 𝐹 is also true. A clause with no hypothesis ⇒𝐹 is written 
simply 𝐹. 

We use as a running example the naive handshake protocol: 
Message 1 𝐴 → 𝐵 ∶  {|[𝑘]𝑠𝑘𝐴|}𝑝𝑘𝐵

𝑎  
Message 1 𝐵 → 𝐴 ∶  {|𝑠|}𝑘𝑠  
We denote by 𝑠𝑘𝐴 the secret key of A, 𝑝𝑘𝐴 his public key, 𝑠𝑘𝐴 the 

secret key of B, 𝑝𝑘𝐵 his public key. 

Representation of Primitives 

Cryptographic primitives are represented by functions. For instance, 
we represent the public-key encryption by a function pencrypt(m , pk ), 
which takes two arguments: the message to encrypt and the public key 
pk. There is a function pk that builds the public key from the secret key. 
(We could also have two functions pk and sk to build respectively the 
public and secret keys from a secret.) The secret key is represented by a 
name that has no arguments (that is, there exists only one copy of this 
name) 𝑠𝑘𝐴 [ ] for A and 𝑠𝑘𝐵 [ ] for B. Then 𝑝𝑘𝐴  = pk(𝑠𝑘𝐴 [ ]) and 𝑝𝑘𝐵 
= pk(𝑠𝑘𝐵 [ ]). 

More generally, we consider two kinds of functions: constructors 
and destructors. The constructors are the functions that explicitly 
appear in the terms that represent messages. For instance, pencrypt and 
pk are constructors. Destructors manipulate terms. A destructor g is 
defined by a set def(g) of rewrite rules of the form g( 𝑀1, . . . , 𝑀𝑛 ) → 
where 𝑀1, . . . , 𝑀𝑛, are terms that contain only variables and 
constructors and the variables of M all occur in 𝑀1, . . . , 𝑀𝑛. For 
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instance, the decryption pdecrypt is a destructor, defined by 
pdecrypt(pencrypt(m , pk(sk)), sk) → m. This rewrite rule mod-els that, 
by decrypting a ciphertext with the corresponding secret key, one 
obtains the cleartext. Other functions are defined similarly: 

- For signatures, we use a constructor sign and write sign( m, sk) 
for the message m signed under the secret key sk. A destructor getmess 
defined by getmess(sign( m, sk)) → m returns the message without its 
signature, and checksign(sign( m, sk), pk(sk )) → m returns the 
message only if the signature is valid.  

- The shared-key encryption is a constructor sencrypt and the 
decryption is a destructor sdecrypt, defined by sdecrypt(sencrypt( m, k 
), k ) → m.  

- A one-way hash function is represented by a constructor h (and 
no destructor).  

- Tuples of arity n are represented by a constructor (_, . . . , _) and 
n destructors 𝑖th𝑛 defined by 𝑖th𝑛 (( 𝑥1, . . . , 𝑥𝑛 )) →𝑥𝑖, i ∈ {1, . . . , n 
}. Tuples can be used to represent various data structures in protocols.  

Rewrite rules offer a flexible method for defining many 
cryptographic primitives. It can be further extended by using equations. 

Representation of the Abilities of the Attacker 

We assume that the protocol is executed in the presence of an 
attacker that can intercept all messages, compute new messages from 
the messages it has received, and send any message it can build, 
following the so-called Dolev-Yao model [47]. We first present the 
encoding of the computation abilities of the attacker. 

During its computations, the attacker can apply all constructors and 
destructors. If f is a constructor of arity n, this leads to the clause: 

attacker(𝑥1) ∧ . . . ∧ attacker(𝑥𝑛) ⇒ attacker( f (𝑥1, . . . , 𝑥𝑛)). 
If g is a destructor, for each rewrite rule g(𝑀1, . . . , 𝑀𝑛) → M in 

def(g), we have the clause: 
attacker(𝑀1) ∧ . . . ∧ attacker(𝑀𝑛) ⇒ attacker(M). 
The destructors never appear in the clauses, they are coded by 

pattern-matching on their parameters (here 𝑀1, . . . , 𝑀𝑛 ) in the 
hypothesis of the clause and generating their result in the conclusion. In 
the particular case of public-key encryption, this yields: 

attacker(m) ∧ attacker(pk ) ⇒ attacker(pencrypt(m, pk)), 
attacker(sk) ⇒ attacker(pk(sk)), 
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attacker(pencrypt(m,pk(sk)))∧attacker(sk)⇒attacker(m),    (1) 
where the first two clauses correspond to the constructors pencrypt 

and pk, and the last clause corresponds to the destructor pdecrypt. 
When the attacker has an encrypted message pencrypt(m, pk ) and the 
decryption key sk, then it also has the cleartext m. (We assume that the 
cryptography is perfect, hence the attacker can obtain the cleartext from 
the encrypted message only if it has the key.) 

Clauses for signatures (sign, getmess, checksign) and for shared-
key encryption (sencrypt, sdecrypt) are given in Figure 3.2. 

The clauses above describe the computation abilities of the attacker. 
Moreover, the attacker initially has the public keys of the protocol 
participants. Therefore, we add the clauses attacker(pk(𝑠𝑘𝐴 [ ])) and 
attacker(pk(𝑠𝑘𝐵 [ ])). We also give a name to the attacker, that will 
represent all names it can generate: attacker(a[ ]). In particular, a[ ] can 
represent the secret key of any dishonest participant, his public key 
being pk(a[ ]), which the attacker can compute by the clause for 
constructor pk. 

Representation of the Protocol Itself 

Now, we describe how the protocol itself is represented. We 
consider that and are willing to talk to any principal, A, B but also 
malicious principals that are represented by the attacker. Therefore, the 
first message sent by A can be pencrypt(sign(k , 𝑠𝑘𝐴 [ ]), pk(x)) for any 
x. We leave to the attacker the task of start-ing the protocol with the 
principal it wants, that is, the attacker will send a preliminary message 
to , mentioning the public key of the principal with which should talk. 
This principal can be , or another principal represented by the attacker. 
Hence, if the attacker has some key pk(x), it can send pk(x) to A; A 
replies with his first message, which the attacker can intercept, so the 
attacker obtains pencrypt(sign(k, (𝑠𝑘𝐴 [ ]), pk(x)). Therefore, we have a 
clause of the form 

attacker(pk(x)) ⇒ attacker(pencrypt(sign( k, (𝑠𝑘𝐴 [ ]), pk(x))). 
Moreover, a new key k is created each time the protocol is run. 

Hence, if two different keys pk(x) are received by A, the generated 
keys k are certainly different: k depends on pk(x). The clause becomes:  

attacker(pk(x)) ⇒ attacker(pencrypt(sign(k[pk(x)], 𝑠𝑘𝐴[ ]), pk(x))). 
(2) 
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When B receives a message, he decrypts it with his secret key 𝑠𝑘𝐵, 
so B pects a message of the form pencrypt (x', pk(𝑠𝑘𝐵  [ ]). Next, B  
tests whether A signed x', that is, B  evaluates checksign(x', pk 𝑠𝑘𝐴), 
and this succeeds only when x' sign(y, 𝑠𝑘𝐴 [ ]). If so, he assumes that 
the key y is only known by A, and sends a secret s (a constant that the 
attacker does not have a priori) encrypted under y. We assume t that the 
attacker relays the message coming from A, and intercepts the message 
sent by . Hence the clause: 

attacker(pencrypt(sign(y,𝑠𝑘𝐴[]), pk(𝑠𝑘𝐵 [ ]))) ⇒ 
attacker(sencrypt(s,y)). 

Remark 3.1 With these clauses, cannot play the role of B and vice-
versa. In order to model a situation in which all principals play both 
roles, we can replace all occurrences of 𝑠𝑘𝐵 [ ] with 𝑠𝑘𝐴[ ] in the 
clauses above. Then A plays both roles, and is the only honest 
principal. 

More generally, a protocol that contains n messages is encoded by n 
sets of clauses. If a principal X sends the ith message, the ith set of 
clauses contains clauses that have as hypotheses the patterns of the 
messages previously received by X in the protocol, and as conclusion 
the pattern of the ith message. There may be several possible patterns 
for the previous messages as well as for the sent message, in particular 
when the principal X uses a function defined by several rewrite rules, 
such as the function exp. In this case, a clause must be generated for 
each combination of possible patterns. More-over, notice that the 
hypotheses of the clauses describe all messages previously received, 
not only the last one. This is important since in some protocols the fifth 
message for instance can contain elements received in the first message. 
The hypotheses summarize the history of the exchanged messages. 
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Computation abilities of the attacker: 
For each constructor f of arity  n: 
attacker( 𝑥1)∧ . . . ∧attacker( 𝑥𝑛)⇒attacker(f( 𝑥1, . . . , 𝑥𝑛)) 
For each destructor g, for each rewrite rule g( 𝑀1, . . . ,𝑀𝑛) → M in 

def(g): 
that is attacker( 𝑀1) ∧ . . . ∧ attacker( 𝑀𝑛) ⇒ attacker(M) 
pencrypt attacker(m) ∧ attacker(pk) ⇒ attacker(pencrypt(m, pk)) 
pk attacker(sk) ⇒ attacker(pk(sk)) 
   pdecrypt attacker(pencrypt(m, pk(sk))) ∧ attacker(sk) 

⇒attacker(m) 
sign attacker(m) ∧ attacker(sk) ⇒ attacker(sign(m, sk )) 
getmess attacker(sign(m, sk)) ⇒ attacker(m) 
checksign attacker(sign(m, sk)) ∧ attacker(pk(sk )) ⇒ attacker(m) 
sencrypt attacker(m) ∧ attacker(k) ⇒ attacker(sencrypt(m, k)) 
sdecrypt attacker(sencrypt(m, k)) ∧ attacker(k) ⇒ attacker(m) 
Name generation: 
attacker(a[ ]) 
Initial knowledge: attacker(pk(𝑠𝑘𝐴 [ ])),  attacker(pk(𝑠𝑘𝐵[ ])) 
The protocol:  
First message: attacker(pk(x)) 
Second message:  ⇒  
attacker(pencrypt(sign(k[pk(x)], 𝑠𝑘𝐴[ ]), pk(x)))  
 attacker(pencrypt(sign(y, 𝑠𝑘𝐴[ ]), pk(𝑠𝑘𝐵[ ])))  
 ⇒ attacker(sencrypt(s,y))  

Figure 3.2.Representation of the protocol  

Remark 3.2 When the protocol makes some communications on 
private channels, on which the attacker cannot a priori listen or send 
messages, a second predicate can be used: message(C,M) meaning “the 
message M can appear on channel C”. In this case, if the attacker 
manages to get the name of the channel C, it will be able to listen and 
send messages on this channel. Thus, two new clauses have to be added 
to describe the behavior of the attacker. The attacker can listen on all 
channels it has: message(x,y) ∧attacker(x) ⇒ attacker(y). It can send all 
messages it has on all channels it has: attacker(x) ∧ attacker(y) ⇒ 
message(x,y). 
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Summary 

To sum up, a protocol can be represented by three sets of Horn 
clauses, as detailed in Figure 3.2 for the protocol: 

- Clauses representing the computation abilities of the attacker: 
constructors, destructors, and name generation.  

- Facts corresponding to the initial knowledge of the attacker. In 
general, there are facts giving the public keys of the participants and/or 
their names to the attacker.  

- Clauses representing the messages of the protocol itself. There is 
one set of clauses for each message in the protocol. In the set 
corresponding to the ith message, sent by principal , the clauses are of 
the form attacker( 𝑀𝑗1 ) ∧ . . . ∧ attacker(𝑀𝑗𝑛) ⇒ attacker(𝑀𝑖 ) where 
𝑀𝑗1, … 𝑀𝑗𝑛 ,    are the patterns of the messages received by X before 
sending the ith message, and 𝑀𝑖 is the pattern of the ith message. 

Approximations 

Specifically, the number of repetitions of each action is ignored, 
since Horn clauses can be applied any number of times. So a step of the 
protocol can be completed several times, as long as the previous steps 
have been completed at least once between the same principals (even 
when future steps have already been completed). For instance, consider 
the following protocol (communicated by Véronique Cortier) 

 
First step:  A sends {|〈𝑁1, 𝑀〉|}𝑘𝑠      {|〈𝑁2,𝑀〉|}𝑘𝑠      
Second step: 
 If  receives {|〈𝑥,𝑀〉|}𝑘𝑠  , he replies with x  
Third step: If  receives  𝑁1, 𝑁2 he replies with s  
where 𝑁1, 𝑁2, and  are nonces. In an exact model,  never sends s, 

since {|〈𝑁1, 𝑀〉|}𝑘𝑠  or {|〈𝑁2,𝑀〉|}𝑘𝑠   can be decrypted, but not both. In 
the Horn clause model, even though the first step is executed once, the 
second step may be executed twice for the same (that is, the 
corresponding clause can be applied twice), so that both 
{|〈𝑁1,𝑀〉|}𝑘

𝑠  and {|〈𝑁2,𝑀〉|}𝑘𝑠   can be decrypted, and may send s. We 
have a false attack against the secrecy of s. 

However, the important point is that the approximationsare sound: 
if an attack exists in a more precise model, such as the applied pi 
calculus [48] or multiset rewriting [49]. This is shown for the applied pi 
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calculus in [50] and for multiset rewriting in [30]. In particular, it has 
shown formally that the only approximation with respect to the multiset 
rewriting model is that the number of repetitions of actions is ignored. 
Performing approximations enables us to build a much more efficient 
verifier, which will be able to handle larger and more complex 
protocols. Another advantage is that the verifier does not have to limit 
the number of runs of the protocol. The price to pay is that false attacks 
may be found by the verifier: sequences of clause applications that do 
not correspond to a protocol run, as illustrated above. False attacks 
appear in particular for protocols with temporary secrets: when some 
value first needs to be kept secret and is revealed later in the protocol, 
the Horn clause model considers that this value can be reused in the 
beginning of the protocol, thus breaking the protocol. When a false 
attack is found, we cannot know whether the protocol is secure or not: a 
real attack may also exist. A more precise analysis is required in this 
case. Fortunately, the representation is precise enough so that false 
attacks are rare. 

Secrecy Criterion 

Our goal is to determine secrecy properties: for instance, can the 
attacker get the secret s? That is, can the fact attacker(s) be derived 
from the clauses? If attacker(s) can be derived, the sequence of clauses 
applied to derive attacker(s) will lead to the description of an attack. 

The notion of secrecy is that a term M is secret if the attacker 
cannot get it by listening and sending messages, and performing 
computations. This notion of secrecy is weaker than non-interference, 
but it is adequate to deal with the secrecy of fresh names. Non-
interferenceis better at excluding implicit information flows or flows of 
parts of compound values. 

In example, attacker(s) is derivable from the clauses. The derivation 
is as follows. The attacker generates a fresh name a[ ] (considered as a 
secret key), it computes pk(a[ ]) by the clause for pk, obtains 
pencrypt(sign(k[pk(a[])], 𝑠𝑘𝐴[ ]), pk(a[ ])) by the clause for the first 
message. It decrypts this message using the clause for pdecrypt and its 
knowledge of a[ ], thus obtaining sign(k[pk(a[ ])], 𝑠𝑘𝐴[ ]). It reencrypts 
the sig-nature under pk(𝑠𝑘𝐵 [ ]) by the clause for pencrypt (using its 
initial knowledge of pk(𝑠𝑘𝐵 [ ])), thus obtaining pencrypt(sign(k[pk(a[ 
])], 𝑠𝑘𝐴[ ]), pk(𝑠𝑘𝐵[ ])). By the clause for the second message, it obtains 
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sencrypt(s, k[pk(a[ ])]). On the other hand, from sign(k[pk(a[ ])], 𝑠𝑘𝐴[ 
]), it obtains k[pk(a[ ])] by the clause for getmess, so it can de-crypt 
sencrypt(s, k[pk(a[ ])]) by the clause for sdecrypt, thus obtaining s. In 
other words, the attacker starts a session between A and a dishonest 
participant of secret key a[]. It gets the first message pencrypt(sign( k, 
𝑠𝑘𝐴 [ ]), pk( a[ ])), decrypts it, reencrypts it under pk(𝑠𝑘𝐵 [ ]), and sends 
it to B. For B, this message looks like the first message of a ses-sion 
between A and B, so B replies with sencrypt(s,k), which the attacker 
can decrypt since it obtains from the first message. Hence, the obtained 
derivation corresponds to the known attack against this protocol. In 
contrast, if we fix the protocol by adding the public key of B in the first 
message {|[〈𝑝𝑘𝐵, 𝑘〉]𝑠𝑘𝐴|}𝑝𝑘𝐵

𝑎 , attacker(s) is not derivable  from the 
clauses, so the fixed protocol preserves the secrecy of s. 

Next, we formally define when a given fact can be derived from a 
given set of clauses. Technically, the hypotheses 𝐹1, . . . , 𝐹𝑛 of a clause 
are considered as a multiset. This means that the order of the 
hypotheses is irrelevant, but the number of times a hypothesis is 
repeated is important. (This is not related to multiset rewriting models 
of protocols: the semantics of a clause does not depend on the number 
of repetitions of its hypotheses, but considering multisets is necessary 
in the proof of the resolution algorithm.) We use R for clauses (logic 
programming rules),H  for hypothesis, and C for conclusion. 

Definition 3.1 (Subsumption) We say that 𝑯𝟏 ⇒𝑪𝟏 subsumes 
𝑯𝟐⇒𝑪𝟐, and we write (𝑯𝟏 ⇒𝑪𝟏) ⊒ (𝑯𝟐⇒𝑪𝟐), if and only if there 
exists a substitution such that 𝝈𝑪𝟏= 𝑪𝟐 and 𝑯𝟏⊆𝑯𝟐 (multiset 
inclusion). 

We write 𝑹𝟏 ⊒ 𝑹𝟐  when 𝑹𝟐  can be obtained by adding hypotheses 
to a particular instance of 𝑹𝟏 . In this case, all facts that can be derived 
by 𝑹𝟐 can also be derived by 𝑹𝟐 . 

A derivation is defined as follows, as illustrated in Figure 3.3. 
Definition 3.2 (Derivability) Let F be a closed fact, that is, a fact 

without variable. Let R be a set of clauses. F is derivable from R if and 
only if there exists a derivation of F from R, that is, a finite tree defined 
as follows: 

- Its nodes (except the root) are labeled by clauses  R ∈R;  
- Its edges are labeled by closed facts;  
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- If the tree contains a node labeled by R with one incoming edge 
labeled by 𝐹0 and n outgoing edges labeled by 𝐹1, . . . ,𝐹𝑛, then R  
⊒ 𝐹1∧ . . . ∧𝐹𝑛 ⇒V 𝐹0 .  

- The root has one outgoing edge, labeled by F. The unique son of 
the root is named the subroot.  

 
Figure 3.3.  Derivation of  F 

In a derivation, if there is a node labeled by R with one incoming 
edge labeled by 𝐹0 and n outgoing edges labeled by 𝐹1, . . . , 𝐹𝑛 , then 
𝐹0 can be derived from 𝐹1, . . . 𝐹𝑛, by the clause R. Therefore, there 
exists a derivation of F from R if and only if F can be derived from 
clauses in R (in classical logic). 

Resolution Algorithm 

The representation is a set of Horn clauses, and our goal is to 
determine whether a given fact can be derived from these clauses or 
not. This is exactly the problem solved by usual Prolog systems. 
However, we cannot use such systems here, because they would not 
terminate. For instance, the clause: 

attacker(pencrypt(m, pk(sk))) ∧ attacker(sk) ⇒ attacker(m) 
leads to considering more and more complex terms, with an 

unbounded number of encryptions. We could of course limit arbitrarily 
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the depth of terms to solve the problem, but we can do much better than 
that. 

As detailed below, the main idea is to combine pairs of clauses by 
resolution, and to guide this resolution process by a selection function: 
our resolution algorithm is resolution with free selection [52]. This 
algorithm is similar to ordered resolution with selection but without the 
ordering constraints. 

Notice that, since a term is secret when a fact is not derivable from 
the clauses, soundness in terms of security (if the verifier claims that 
there is no attack, then there is no attack) corresponds to the 
completeness of the resolution algorithm in terms of logic programming 
(if the algorithm claims that a fact is not derivable, then it is not). The 
resolution algorithm that we use must therefore be complete. 

The Basic Algorithm 

Let us first define resolution: when the conclusion of a clause R 
unifies with a hypothesis of another (or the same) clause R ′, resolution 
infers a new clause that corresponds to applying R and R ′ one after the 
other. Formally, resolution is defined as follows: 

Definition 3.3 Let R and R ′ be two clauses, R = H ⇒ C, and R′ = 
H′ ⇒ C′. Assume that there exists 𝐹0  ∈ H′ such that C and 𝐹0 are 
unifiable and 𝜎 is the most general unifier of C and 𝐹0. In this case, we 
define R ∘f0 

 R '= 𝜎 (H∪(H′ ∖{𝐹0})) ⇒ 𝜎𝐶′. The clause R ∘f0 
 R ' is the 

result of resolving R'  with R upon 𝐹0. 
For example, if R is the clause (2), R' is the clause (1), and the fact 

𝐹0 is 𝐹0 = attacker(pencrypt( m, pk(sk))), then R ∘f0 
 
R ' is 

attacker(pk(x)) ∧ attacker(x) ⇒ attacker(sign(k[pk(x)], 𝑠𝑘 𝐴 [ ])) 
with the substitution 𝜎 = {sk  ↦ x, m ↦ sign(k[pk(x)], 𝑠𝑘 𝐴[ ])}.  
We guide the resolution by a selection function: 
Definition 3.4 A selection function sel is a function from clauses to 

sets of facts, such that sel( H ⇒ C) ⊆ H. If F ∈ sel(R), we say that F is 
selected in R. If sel( ) = ∅, we say that no hypothesis is selected in R, or 
that the conclusion R of is selected. 

The resolution algorithm is correct (sound and complete) with any 
selection function, as we show below. However, the choice of the 
selection function can change dramatically the behavior of the 
algorithm. The essential idea of the algorithm is to combine clauses by 
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resolution only when the facts unified in the resolution are selected. We 
will therefore choose the selection function to reduce the number of 
possible unifications between se-lected facts. Having several selected 
facts slows down the algorithm, because it has more choices of 
resolutions to perform, therefore we will select at most one fact in each 
clause. In the case of protocols, facts of the form attacker(x), with x 
variable, can be unified will all facts of the form attacker(M). 
Therefore, we should avoid selecting them. So a basic selection 
function is a function sel0 that satisfies the constraint 

 
The resolution algorithm works in two phases, described in Figure 

3.4. The first phase transforms the initial set of clauses into a new one 
that derives the same facts. The second phase uses a depth-first search 
to determine whether a fact can be derived or not from the clauses. 

The first phase, saturate(𝑅0), contains 3 steps. 
- The first step inserts in R the initial clauses representing the 

protocol and the attacker (clauses that are in 𝑅0), after elimination of 
subsumed clauses by elim: if R'  subsumes R, and R and R' are in R, 
then R is removed by elim(R).  

- The second step is a fixpoint iteration that adds clauses created 
by resolution. The resolution of clauses R and R' is added only if no 
hypothesis is selected in R and the hypothesis 𝐹0 of R' that we unify is 
selected. When a clause is created by resolution, it is added to the set of 
clauses R. Subsumed clauses are eliminated from R.  

- At last, the third step returns the set of clauses of R with no 
selected hypothesis.  

Basically, saturate preserves derivability (it is both sound and 
complete): 

First phase: saturation saturate(𝑅0) = 
R ← ∅.  
For each  R ∈𝑅0, R ← elim({R} ∪R).  
Repeat until a fixpoint is reached  
for each R ∈R such that sel(R) = ∅, 
for each  R' ∈R, for each  𝐹0 ∈ sel(R') such that  R ∘f0 

 
R ' is defined, 
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R ← elim( {𝑅 ∘ 𝑓0  𝑅 ′ } ∪R).  
Return {R ∈ R ∣ sel(R) =  ∅ }.  
Second phase: backward depth-first search 

 
Figure 3.4.  Resolution algorithm 

Lemma 3.1 (Correctness of saturate) Let F be a closed fact. F is 
derivable from 𝑅0 if and only if it is derivable from saturate(𝑅0). 

This result is proved by transforming a derivation of F from 𝑅0 into 
a derivation of F from saturate(𝑅0). Basically, when the derivation 
contains a clause R' with sel( R') ≠ ∅, we replace in this derivation two 
clauses R, with sel( R) ≠ ∅, and R' that have been combined by 
resolution during the execution of saturate with a single clause 𝑅 ∘
𝑓0  𝑅 ′. This replacement decreases the number of clauses in the 
derivation, so it terminates, and, upon termination, all clauses of the 
obtained derivation satisfy 𝑠𝑒𝑙(𝑅′) = ∅ so they are in saturate(𝑅0). 

Usually, resolution with selection is used for proofs by refutation. 
That is, the nega-tion of the goal is added to the clauses, under the form 
of a clause without conclusion: F ⇒. The goal F is derivable if and only 
if the empty clause “⇒” can be derived. Here, we would like to avoid 
repeating the whole resolution process for each goal, since in general 
we prove the secrecy of several values for the same protocol. For non-
closed goals, we also want to be able to know which instances of the 
goal can be derived. That is why we prove that the clauses in 
saturate(𝑅0) derive the same facts as the clauses in 𝑅0. The set of 
clauses saturate(𝑅0) can then be used to query several goals, using the 
second phase of the algorithm described next. 

The second phase searches the facts that can be derived from 𝑅1 = 
saturate(𝑅0). This is simply a backward depth-first search. The call 
derivable(F, 𝑅1) returns a set of clauses R = H ⇒C with no selected 
hypothesis, such that R can be obtained by resolution from 𝑅1, C is an 
instance of F, and all instances of F derivable from 𝑅1 can be derived 
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by using as last clause a clause of derivable( F, 𝑅1). (Formally, if F' is 
an instance of F derivable from 𝑅1, then there exist a clause H ⇒C∈ 
derivable(F, 𝑅1) and a substitution 𝜎 such that F' = 𝜎𝐶 and 𝜎𝐻 is 
derivable from 𝑅1.) 

The search itself is performed by deriv(R, R, 𝑅1). The function 
deriv starts with R = F ⇒ F and transforms the hypothesis of R by using 
a clause R' of 𝑅1 to derive an element  𝐹0 of the hypothesis of  R. So R  
is replaced with  𝑅 ∘ 𝑓0  𝑅 ′ (third case of the definition of deriv). The 
fact 𝐹0 is chosen using the selection function sel. (Hence deriv derives 
the hypothesis of R using a backward depth-first search. At each step, 
the clause R can be obtained by resolution from clauses of 𝑅1, and R 
concludes an instance of F.) The set R is the set of clauses that we have 
already seen during the search. Initially, R is empty, and the clause R is 
added to R in the third case of the definition of deriv. 

The transformation of R described above is repeated until one of the 
following two conditions is satisfied: 

- R is subsumed by a clause in R: we are in a cycle; we are looking 
for instances of facts that we have already looked for (first case of the 
definition of deriv);  

- sel(R) is empty: we have obtained a suitable clause R and we 
return it (second case of the definition of deriv).  

Intuitively, the correctness of derivable expresses that if F', instance 
of F, is derivable, then F' is derivable from 𝑅1 by a derivation in which 
the clause that concludes F' is in derivable(F, 𝑅1). 

Lemma 3.2 (Correctness of derivable) Let F'  be a closed instance 
of F. F' is derivable from 𝑅1. if and only if there exist a clause H ⇒C in 
derivable(F, 𝑅1) and a substitution 𝜎 such that 𝜎𝐶 = 𝐹′  and all 
elements of 𝜎 𝐻 are derivable from 𝑅1. 

Basically, this result is proved by transforming a derivation of F' 
from 𝑅1 into a derivation of F' whose last clause (the one that concludes 
F') is H ⇒C and whose other clauses are still in 𝑅1. The transformation 
relies on the replacement of clauses combined by resolution during the 
execution of derivable. 

It is important to apply saturate before derivable, so that all clauses 
in 𝑅1 have no selected hypothesis. Then the conclusion of these clauses 
is in general not attacker(x) (with the optimizations and a selection 
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function that satisfies (3), it is never attacker(x)), so that we avoid 
unifying with attacker(x). 

The following theorem gives the correctness of the whole 
algorithm. It shows that we can use algorithm to determine whether a 
fact is derivable or not from the initial clauses. The first part simply 
combines Lemmas 1 and 2. The second part mentions two easy and 
important particular cases. 

Theorem 3.1 (Correctness) Let F' be a closed instance of F. F' is 
derivable from 𝑅0 if and only if there exist a clause H ⇒C in 
derivable(F, saturate(𝑅0)) and a substitution 𝜎 such that 𝜎 C=F' and all 
elements of 𝜎𝐻 are derivable from saturate(𝑅0). 

In particular, if derivable(F, saturate(𝑅0)) ≠ ∅, then no instance of 
F is derivable from saturate(𝑅0). If the selection function satisfies (3) 
and F is closed, then F is derivable from 𝑅0 if and only if derivable(F, 
saturate(𝑅0))≠ ∅. 

Proof: 
The first part of the theorem is obvious from Lemmas 3.1 and 3.2. 

The first particular case is also an obvious consequence. For the second 
particular case, if F is derivable from 𝑅0, then derivable(F, 
saturate(𝑅0)) ≠ ∅ by the first particular case. For the converse, suppose 
that derivable(F, saturate(𝑅0)) ≠ ∅. Then derivable(F, saturate(𝑅0)) 
contains a clause H ⇒ C. By definition of derivable, C is an instance of 
F, so C = F , and sel(H ⇒C) ≠ ∅, so all elements of are of the form 
attacker( 𝑥𝑖) for some variable 𝑥𝑖. The attacker has at least one term M, 
for instance a[ ], so attacker( 𝜎𝑥𝑖) is derivable from 𝑅0, where 𝜎𝑥𝑖 = M. 
Hence all elements of 𝜎 𝐻 are derivable from 𝑅0, so from saturate(𝑅0), 
and 𝜎𝐶 = 𝐹. Therefore, F is derivable from 𝑅0.  
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Figure 3.5.  Merging of nodes of Lemma 3.3 

Proofs 

Let us consider the proofs of Lemmas 3.1 and 3.2. We first need to 
prove a few preliminary lemmas. The first one shows that two nodes in 
a derivation can be replaced by one when combining their clauses by 
resolution. 

Lemma 3.3 Consider a derivation containing a node η' , labeled R'. 
Let 𝐹0 be a hypothesis of R' . Then there exists a son η of η' , labeled R, 
such that the edge η' →η is labeled 

by an instance of 𝐹0, 𝑅 0𝐹0R' is defined, and one obtains a 
derivation of the same fact by replacing the nodes η and η' with a node 
η'' labeled R''= 𝑅 0𝐹0R'. 

Proof: 
This proof is illustrated in Figure 3.5. Let R' = H' ⇒ C',  𝐻1′  be the 

multiset of the labels of the outgoing edges of η', and 𝐶1′  the label of its 
incoming edge. We have R' ⊒ (𝐻1′ ⇒ 𝐶1′  ) 

so there exists a substitution 𝜎 such that 𝜎𝐻′⊆𝐻1′  and 𝜎𝐶′ = 𝐶1′. 
Since  𝐹0 ∈ 𝐻′, 𝜎𝐹0 ∈  𝐻1′ , so there is an outgoing edge of η' labeled 
𝜎𝐹0. Let η be the node at the end of this edge, let R = H ⇒ C be the 
label of η. We rename the variables of R so that they are distinct from 
the variables of R' . Let 𝐻1  be the multiset of the labels of the outgoing 
edges of η. So R⊒ (𝐻1⇒𝜎𝐹0). By the above choice of distinct variables, 
we can then extend 𝜎 so that 𝜎H ⊆𝐻1 and = 𝐶 = 𝜎𝐹0 . 
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The edge η' →η is labeled 𝜎𝐹0, instance of 𝐹0. Since = 𝜎𝐶 =  𝜎𝐹0, 
the facts C and 𝐹0 are unifiable, so 𝑅 ∘𝐹0 𝑅′ is defined. Let 𝜎′ be the 
most general unifier of C and 𝐹0, and 𝜎′′ such that 𝜎 = 𝜎′′𝜎′. We have 
𝑅 ∘𝐹0 𝑅

′ = 𝜎′(𝐻 ∪ (𝐻′\{𝐹0})) ⇒ σ
′C′. Moreover, 𝜎′′𝜎′𝐶′(𝐻 ∪

(𝐻′\{𝐹0})) ⊆ H1 ∪ (𝐻
′\{𝜎𝐹0}) and 𝜎′′𝜎′𝐶′ = 𝜎𝐶′ = 𝐶1

′. Hence 
𝑅′′ =  𝑅 ∘𝐹0 𝑅

′⊒(H1 ∪ (𝐻
′\{𝜎𝐹0}) ⇒ 𝐶1

′ . The multiset of labels of 
outgoing edges of η'' is precisely H1 ∪ (𝐻′\{𝜎𝐹0}) and the label of its 
incoming edge is 𝐶1′ , therefore we have obtained a correct derivation 
by replacing η and η'  with η''.  

Lemma 3.4 If a node η of a derivation D is labeled by R, then one 
obtains a derivation D'  of the same fact as D by relabeling η with a 
clause R' such that R' ⊒ R. 

Proof: 
Let H be the multiset of labels of outgoing edges of the considered 

node η, and C be the label of its incoming edge. We have R ⊒ H ⇒ C. 
By transitivity of ⊒, R'  ⊒ H ⇒ C. So we can relabel η with R'.  

Lemma 3.5 At the end of saturate, R satisfies the following 
properties: 

- For all R ∈ 𝑅0, R is subsumed by a clause in R;  
- Let R∈R and R' ∈R. Assume that sel(R) = ∅ and there exists 𝐹0∈ 

sel(R') such that 𝑅 ∘𝐹0 𝑅
′ is defined. In this case, 𝑅 ∘𝐹0 𝑅

′ is subsumed 
by a clause in R.  

Proof: 
To prove the first property, let R ∈𝑅0. We show that, after the 

addition of R to R, R is subsumed by a clause in R. 
In the first step of saturate, we execute the instruction R ← 

elim({R}∪R). After execution of this instruction, R is subsumed by a 
clause in R. 

Assume that we execute R ← elim({R′′}∪R) for some clause R'' and 
that, before this execution, R is subsumed by a clause 𝑅 in R, say R'. If 
R'  is removed by this instruction, there exists a clause 𝑅1′  in R that 
subsumes R', so by transitivity of subsumption, 𝑅1′  subsumes  R, hence 
R is subsumed by the clause 𝑅1′ ∈ 𝑅 after this instruction. If R' is not 
removed by this instruction, then R is subsumed by the clause 𝑅′ ∈ 𝑅 
after this instruction. 
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Hence, at the end of saturate, R is subsumed by a clause in R, which 
proves the first property. 

In order to prove the second property, we just need to notice that 
the fixpoint is reached at the end of saturate, so R = elim({𝑅 ∘𝐹0 𝑅

′ } 
∪R). Hence, 𝑅 ∘𝐹0 𝑅

′ is eliminated by elim, so it is subsumed by some 
clause in R. 

Proof of Lemma 3.1: 
Assume that F is derivable from 𝑅0 and consider a derivation of F 

from 𝑅0. We show that F is derivable from saturate(𝑅0). 
We consider the value of F the set of clauses R at the end of 

saturate. For each clause R in 𝑅0, R is subsumed by a clause in R 
(Lemma 3.5, Property 3.1). So, by Lemma 3.4, we can replace all 
clauses R in the considered derivation with a clause in R. Therefore, we 
obtain a derivation D of F from R. 

Next, we build a derivation of F from 𝑅1, where 𝑅1 = saturate(𝑅0). 
If D contains a node labeled by a clause not in 𝑅1, we can transform D 
as follows. Let η′ be a lowest node of D labeled by a clause not in 𝑅1. 
So all sons of  η′ are labeled by elements of R1. Let R' be the clause 
labeling η′. Since 𝑅′ ∉  𝑅1, sel(R')≠ ∅. Take 𝐹0 ∈ 𝑠𝑒𝑙(𝑅′) . By Lemma 
3.3, there exists a son of η of η'  labeled by R, such that 𝑅 ∘𝐹0 𝑅

′ is 
defined, and we can replace η and η' with a node η'' labeled by 𝑅 ∘𝐹0 𝑅

′. 
Since all sons of η'  are labeled by elements of 𝑅1,R ∈𝑅1. Hence sel(R) 
= ∅. So, by Lemma 3.5, Property 2, 𝑅 ∘𝐹0 𝑅

′ is subsumed by a clause 
R'' in R. By Lemma 3.4, we can relabel η'' with R''. The total number of 
nodes strictly decreases since η and η' are replaced with a single node 
η''. 

So we obtain a derivation D' of F from R, such that the total number 
of nodes strictly decreases. Hence, this replacement process terminates. 
Upon termination, all clauses are in 𝑅1. So we obtain a derivation of F 
from 𝑅1, which is the expected result. 

For the converse implication, notice that, if a fact is derivable from 
𝑅1, then it is derivable from R, and that all clauses added to R do not 
create new derivable facts: if a fact is derivable by applying the clause 
𝑅 ∘𝐹0 𝑅

′ then it is also derivable by applying R and R'. 
Proof of Lemma 3.2: 
Let us prove the direct implication. We show that, if F' is derivable 

from 𝑅1, then there exist a clause H ⇒C in derivable(F, 𝑅1) and a 
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substitution 𝜎 such that 𝜎C=F' and all elements of 𝜎H are derivable 
from 𝑅1. 

Let D be the set of derivations D' of F' such that, for some R, the 
clause R' at the subroot of D' satisfies deriv(R' , R, 𝑅1) ⊆ derivable(F, 
𝑅1) and  ∀R'' ∈R, R'' R' and the other clauses of D' are in 𝑅1. 

Let 𝐷0 be a derivation of F' from 𝑅1. Let 𝐷0′  be obtained from 𝐷0 by 
adding a node labeled by R' = F ⇒ F at the subroot of 𝐷0. By definition 
of derivable, deriv(R, ∅,𝑅1) ⊆ derivable(F, 𝑅1), and ∀R''∈ ∅,R'' R'. 
Hence 𝐷0′  is a derivation of F' in D, so D is non-empty. 

Now, consider a derivation 𝐷1 in D with the smallest number of 
nodes. The clause R' labeling the subroot η' of 𝐷1  satisfies deriv(R, 
R, 𝑅1) ⊆ derivable(F, 𝑅1), and ∀R''∈R, R''  R'. In order to obtain a 
contradiction, we assume that sel(R')≠ ∅. Let  𝐹0 ∈ 𝑠𝑒𝑙(𝑅′). By 
Lemma 3.3, there exists a son η of η', labeled by R, such that 𝑅 ∘𝐹0 𝑅

′  
is defined and we can replace η and η' with a node η''  labeled by 
𝑅0 = 𝑅 ∘𝐹0 𝑅

′, obtaining a derivation 𝐷2 of F' with fewer nodes than 
𝐷1. The subroot of 𝐷2 is the node η'' labeled by 𝑅0. 

By hypothesis on the derivation 𝐷1, R ∈𝑅1, so deriv(𝑅0,{R'}∪R, 
𝑅1) ⊆ deriv(R', R, 𝑅1) ⊆ derivable(F, 𝑅1) (third case of the definition 
of deriv(R', R, 𝑅1)). 

If ∀𝑅1 ∈ {R'} ∪R, 𝑅1 𝑅0, 𝐷2  is a derivation of F' in D, with 
fewer nodes than 𝐷1, which is a contradiction.  

Otherwise, ∃𝑅1∈ {R'} ∪R, 𝑅1 ⊒𝑅1. Therefore, by Lemma 3.4, we 
can build a derivation  𝐷1 by relabeling η'' with 𝑅1 in 𝐷2. There is an 
older call to deriv, of the form deriv(𝑅1,R', 𝑅1), such that deriv(𝑅1,R', 
𝑅1) ⊆ derivable(F, 𝑅1). Moreover, 𝑅1 has been added to R' in this call, 
since 𝑅1 appears in {R'} ∪R. Therefore the third case of the definition 
of deriv(𝑅1, R', 𝑅1)  has been applied, and not the first case. So 
∀𝑅2 ∈R', 𝑅2 𝑅1, so the derivation 𝐷3 is in D and has fewer nodes 
than 𝐷1, which is a contradiction. 

In all cases, we could find a derivation in D that has fewer nodes 
than 𝐷1. This is a contradiction, so sel(R') = ∅, hence deriv(R, R, 𝑅1) = 
{R'} (second case of the definition of deriv), so R' ∈derivable(F, 𝑅1). 
The other clauses of this derivation are in 𝑅1. By definition of a 
derivation, R' ⊒ H' ⇒ F where H' is the multiset of labels of the 
outgoing edges of the subroot of the derivation. Taking R' = H  ⇒ C, 



Formal Methods for the Analysis of Security Protocols 

107 

there exists 𝜎 such that  𝜎𝐶 = 𝐹 and H ⊆ H', so all elements of 𝜎𝐻 are 
derivable from 𝑅1. 

The proof of the converse implication is left to the reader. 
(Basically, if a fact is derivable by applying the clause 𝑅 ∘𝐹0 𝑅

′, then it 
is also derivable by applying R and R'.) 

Optimizations 

The resolution algorithm uses several optimizations, in order to 
speed up resolution. The first two are standard, while the last three are 
specific to protocols. 

Elimination of duplicate hypotheses If a clause contains several 
times the same hypotheses, the duplicate hypotheses are removed, so 
that at most one occurrence of each hypothesis remains. 

Elimination of tautologies If a clause has a conclusion that is 
already in the hypotheses, this clause is a tautology: it does not derive 
new facts. Such clauses are removed. 

Elimination of hypotheses attacker(x) If a clause H ⇒C contains in 
its hypotheses attacker(x), where is a variable that does not appear 
elsewhere in the clause, then the hypothesis attacker(x) is removed. 
Indeed, the attacker always has at least one message, so attacker(x) is 
always satisfied for some value of x. 

Decomposition of data constructors A data constructor is a 
constructor f of arity n that comes with associated destructors 𝑔𝑖 for i ∈ 
{1, . . . ,n } defined by 𝑔𝑖(f(𝑥1, . . . , 𝑥𝑛)) → 𝑥𝑖. Data constructors are 
typically used for representing data structures. Tuples are examples of 
data constructors. For each data constructor f, the following clauses are 
generated: 

attacker(𝑥1) ∧...∧ attacker(𝑥𝑛) ⇒ attacker(f(𝑥1, . . . , 𝑥𝑛))  (Rf) 
attacker(f(𝑥1,..., 𝑥𝑛))⇒attacker(𝑥𝑖)   (Rg) 
Therefore, attacker(f(𝑝1, . . . , 𝑝𝑛)) is derivable if and only if ∀i 

∈{1, . . . ,n}, attacker(𝑝𝑖) is derivable. When a fact of the form 
attacker(f(𝑝1, . . . , 𝑝𝑛)) is met, it is replaced with attacker(𝑝1)∧. . 
.∧attacker(𝑝𝑛). If this replacement is done in the conclusion of a clause 
H ⇒ attacker(f(𝑝1, . . . , 𝑝𝑛)), n clauses are created: H ⇒ attacker(𝑝𝑖) for 
each i ∈ {1, . . . ,n }. This replacement is of course done recursively: if 
𝑝𝑖 itself is a data constructor application, it is replaced again. The 
clauses (Rf) and (Rg) for data constructors are left unchanged. (When 
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attacker(x) cannot be selected, the clauses (Rf) and (Rg) for data 
constructors are in fact not necessary, because they generate only 
tautologies during resolution. However, when attacker(x) can be 
selected, which cannot be excluded with certain extensions, these 
clauses may become necessary for soundness.) 

Secrecy assumptions When the user knows that a fact will not be 
derivable, he can tell it to the verifier. (When this fact is of the form 
attacker(M), the user tells that M remains secret.) The tool then 
removes all clauses which have this fact in their hypotheses. At the end 
of the computation, the tool checks that the fact is indeed underivable 
from the obtained clauses. If the user has given erroneous information, 
an error message is displayed. Even in this case, the verifier never 
wrongly claims that a protocol is secure. 

Mentioning such underivable facts prunes the search space, by 
removing useless clauses. This speeds up the resolution algorithm. In 
most cases, the secret keys of the principals cannot be known by the 
attacker. So, examples of underivable facts are attacker(𝑠𝑘𝐴 [ ]), 
attacker(𝑠𝑘𝐵 [ ]), ... 

Termination 

In general, the resolution algorithm may not terminate. (The 
derivability problem is un-decidable.) In practice, however, it 
terminates in most examples. 

In [53] it is shown that it always terminates on a large and 
interesting class of protocols, the tagged protocols [53]. We consider 
protocols that use as crypto-graphic primitives only public-key 
encryption and signatures with atomic keys, shared-key encryption, 
message authentication codes, and hash functions. Basically, a protocol 
is tagged when each application of a cryptographic primitive is marked 
with a distinct constant tag. It is easy to transform a protocol into a 
tagged protocol by adding tags. For instance, example of protocol can 
be transformed into a tagged protocol, by adding the tags 𝑐0, 𝑐1, 𝑐2 to 
distinguish the encryptions and signature: 

 Message 1. 𝐴 → 𝐵 {|〈𝑐1, [〈𝑐0, 𝑘〉]𝑠𝑘𝐴〉|}𝑝𝑘𝐵
𝑎   

Message 2. 𝐵 → 𝐴 {|〈𝑐2, 𝑠〉|}𝑘𝑠  
Adding tags preserves the expected behavior of the protocol, that is, 

the attack-free ex-ecutions are unchanged. In the presence of attacks, 
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the tagged protocol may be more secure. Hence, tagging is a feature of 
good protocol design: the tags are checked when the messages are 
received; they facilitate the decoding of the received messages and 
prevent confusions between messages. More formally, tagging pre-
vents type-flaw attacks, which occur when a message is taken for 
another message. However, the tagged protocol is potentially more 
secure than its untagged version, so, in other words, a proof of security 
for the tagged protocol does not imply the security of its untagged 
version. 

Extensions. Treatment of Equations 

Up to now, we have defined cryptographic primitives by 
associating rewrite rules to destructors. Another way of defining 
primitives is by equational theories, as in the applied pi calculus [54]. 
This allows us to model, for instance, variants of encryption for which 
the failure of decryption cannot be detected or more complex primitives 
such as Diffie-Hellman key agreements. The Diffie-Hellman key 
agreement enables two principals to build a shared secret. It is used as 
an elementary step in more complex protocols, such as SSH, SSL, and 
IPsec. 

The Horn clause verification approach can be extended to handle 
some equational theories. For example, the Diffie-Hellman key 
agreement can be modeled by using a constant g and a function exp that 
satisfy the equation 
exp(exp(𝑔, 𝑥) , 𝑦) =  exp(exp(𝑔, 𝑦) , 𝑥).                            (4) 
In practice, the function is exp(x,y) = 𝑥𝑦  mod  , where  is prime 

and g is a generator of ℤ𝑝∗ . The equation exp(exp(𝑔, 𝑥) , 𝑦) =
(𝑔𝑥)𝑦 𝑚𝑜𝑑 𝑝 =  (𝑔𝑦)𝑥 𝑚𝑜𝑑 𝑝 = exp (exp(𝑔, 𝑦) , 𝑥) is satisfied. In 
ProVerif, following the ideas used in the applied pi calculus [6], we do 
not consider the underlying number theory; we work abstractly with the 
equation (4). The Diffie-Hellman key agreement involves two 
principals A and B. A chooses a random name 𝑥0, and sends 
𝑒𝑥𝑝(𝑔, 𝑥0) to B. Similarly, B chooses a random name 𝑥1, and sends 
𝑒𝑥𝑝(𝑔, 𝑥1)  to A. Then A computes exp (exp(𝑔, 𝑥1) , 𝑥0) and B 
computes 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑥0), 𝑥1). Both values are equal by (4), and they 
are secret: assuming that the attacker cannot have 𝑥0 or 𝑥1, it can 
compute neither exp (exp(𝑔, 𝑥1) , 𝑥0)  nor 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑥0), 𝑥1). 
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In ProVerif, the equation (4) is translated into the rewrite rules 
𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑥 ), 𝑦 )  →  𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑦 ), 𝑥)   𝑒𝑥𝑝(𝑥 , 𝑦 )  →  𝑒𝑥𝑝(𝑥, 𝑦). 

Notice that this definition of exp is non-deterministic: a term such 
as 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑎), 𝑏) can be reduced to 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑏 ), 𝑎) and 
𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑎), 𝑏), so that 𝑒𝑥𝑝(𝑒𝑥𝑝(𝑔, 𝑎 ), 𝑏) re-duces to its two forms 
modulo the equational theory. The rewrite rules in the definition of 
function symbols are applied exactly once when the function is applied. 
So the rewrite rule 𝑒𝑥𝑝(𝑥 , 𝑦 )  →  𝑒𝑥𝑝( 𝑥, 𝑦) is necessary to make sure 
that exp never fails, even when the first rewrite rule cannot be applied, 
and these rewrite rules do not loop because they are applied only once 
at each application of exp. 

This treatment of equations has the advantage that resolution can 
still use syntactic unification, so it remains efficient. However, it also 
has limitations; for example, it cannot handle associative functions, 
such as XOR, because it would generate an infinite number of rewrite 
rules for the destructors. Recently, other treatments of equations that 
can han-dle XOR and Diffie-Hellman key agreements with more 
detailed algebraic relations (in-cluding equations of the multiplicative 
group modulo p) within the Horn clause approach have been proposed 
by Küsters and Truderung: they handle XOR provided one of its two 
arguments is a constant in the clauses that model the protocol [55] and 
Diffie-Hellman key agreements provided the exponents are constants in 
the clauses that model the pro-tocol [56]; they proceed by transforming 
the initial clauses into richer clauses on which the standard resolution 
algorithm is applied. 

Translation from the Applied Pi Calculus 

ProVerif does not require the user to manually enter the Horn 
clauses described previ-ously. These clauses can be generated 
automatically from a specification of the protocol in the applied pi 
calculus [6]. On such specifications, ProVerif can verify various 
security properties, by using an adequate translation into Horn clauses: 

- secrecy, as described above. The translation from the applied pi 
calculus to Horn clauses is given in [50].  

- correspondences, which are properties of the form “if an event 
has been executed, then other events have been executed” [45]. They 
can in particular be used for formalizing authentication.  
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- some process equivalences, which mean intuitively that the 
attacker cannot distinguish two processes (i.e. protocols). Process 
equivalences can be used for for-malizing various security properties, 
in particular by expressing that the attacker cannot distinguish a process 
from its specification. ProVerif can prove particular cases of 
observational equivalences. It can prove strong secrecy [57], which 
means that the attacker cannot see when the value of the secret changes. 
This is a stronger notion of secrecy than the one mentioned previously. 
It can be used, for instance, for expressing the secrecy of values taken 
among a set of known constants, such as bits: one shows that the 
attacker cannot distinguish whether the bit is 0 or 1. More generally, 
ProVerif can also prove equivalences between processes that differ by 
the terms they contain, but have otherwise the same structure [58]. In 
particular, these equivalences can express that a password-based 
protocol is resistant to guessing attacks: even if the attacker guesses the 
password, it cannot verify that its guess is correct.  

As for secrecy, when no derivation from the clauses is found, the 
desired security prop-erty is proved. When a derivation is found, there 
may be attack. ProVerif then tries to reconstruct a trace in the applied pi 
calculus semantics that corresponds to this derivation [59]. (Trace 
reconstruction may fail, in particular when the derivation corresponds 
to a false attack; in this case, one does not know whether there is an 
attack or not.) 

Application to Examples of Protocols 

The automatic protocol verifier ProVerif is available at 
http://www.proverif. ens.fr/. It is successfully applied to many 
protocols of the literature, to prove secrecy and authentication 
properties: flawed and corrected versions of the Needham-Schroeder 
public-key [82,74] and shared-key [43,82, 83], Woo-Lam public-key 
[88,89] and shared-key [9, 12, 62,88,89], Denning-Sacco [54,9], 
Yahalom [43], Otway-Rees [9,84, 85], and Skeme [70] protocols. No 
false attack occurred in the tests and the only non-termination cases 
were some flawed versions of the Woo-Lam shared-key protocol. The 
protocols can be verified in less than one second [31]. 

ProVerif is also used for proving strong secrecy in the corrected 
version of the Needham-Schroederpublic-keyprotocol [74] and in the 
Otway-Rees [84], Yahalom [43], and Skeme [70] protocols, the 
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resistance to guessing attacks for the password-based protocols EKE 
[18] and Augmented EKE [20], and authentication in the Wide-Mouth-
Frog protocol [8] (version with one session). The runtime goes from 
less than one second to 15 s on the tests [29,34]. 

Moreover, ProVerif is also used in more substantial case studies: 
- With Abadi [4], is applied to the verification of a certified email 

protocol [7]. We can use correspondence properties to prove that the 
receiver receives the message if and only if the sender has a receipt for 
the message. (We can use simple manual arguments to take into 
account that the reception of sent messages is guaranteed.) One of the 
tested versions includes the SSH transport layer in order to establish a 
secure channel. 

- With Abadi and Fournet [5], we can study the JFK protocol (Just 

Fast Keying) [10], which was one of the candidates to the replacement 
of IKE as key exchange proto-col in IPSec. We combined manual 
proofs and ProVerif to prove correspondences and equivalences. 

- With Chaudhuri [35], we can study the secure filesystem Plutus 
[68] with ProVerif, which allowed us to discover and fix weaknesses of 
the initial system.  

Other authors also use ProVerif for verifying protocols or for 
building other tools: 

- Bhargavan et al. [21,23,27] use it to build the Web services 
verification tool Tu-laFale: Web services are protocols that send XML 
messages; TulaFale translates them into the input format of ProVerif 
and uses ProVerif to prove the desired security properties.  

- Bhargavan et al. [24,25,26] use ProVerif for verifying 
implementations of protocols in F# (a functional language of the 
Microsoft .NET environment): a sub-set of F# large enough for 
expressing security protocols is translated into the in-put format of 
ProVerif. The TLS protocol, in particular, was studied using this 
technique [22].  

- Canetti and Herzog [44] use ProVerif for verifying protocols in 
the computational model: they show that, for a restricted class of 
protocols that use only public-key encryption, a proof in the Dolev-Yao 
model implies security in the computational model, in the universal 
composability framework. Authentication is verified using 
correspondences, while secrecy of keys corresponds to strong secrecy.  
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- ProVerif is also can be used for verifying a certified email web 
service [75], a certified mailing-list protocol [69], e-voting protocols 
[16,71], the ad-hoc routing protocol ARAN (Authenticated Routing for 

Adhoc Networks) [61], and zero-knowledge protocols [17].  
Finally, Goubault-Larrecq and Parrennes [65] also use the Horn 

clause method for analyzing implementations of protocols written in C. 
However, they translate protocols into clauses of the 𝐻1 class and use 
the 𝐻1 prover by Goubault-Larrecq [64] rather than ProVerif to prove 
secrecy properties of the protocol. 

Conclusion 

A strong aspect of the Horn clause approach is that it can prove 
security properties of protocolsfor an unboundednumber of sessions, in 
a fully automatic way. This is essential for the certification of protocols. 
It also supports a wide variety of security primitives and can prove a 
wide variety of security properties. 

On the other hand, the verification problem is undecidable for an 
unboundednumber of sessions, so the approach is not complete: it does 
not always terminate and it performs approximations, so there exist 
secure protocols that it cannot prove, even if it is very precise and 
efficient in practice. 

 
Tasks for laboratory work №3. 
1. According to given in Table 3.1 variant verify security 

protocols based on an abstract representation of protocols by 
Horn clauses. 

2. Use the protocol verifier ProVerif.  
3. Use different sets of sessions for protocol verification. 
4. Specify different cryptographic primitives defined by rewrite 

rules or equations. 
5. Prove  the security authentication properties . 
6. Prove  the process equivalences. 
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Table 3.1. Variants 
 
№ Protocol 
1 S/MIME 
2 VPN 
3 IPSec 
4 TLS 
5 SSL 
6 HTTPS 
7 PGP 
 S-HTTP 
 KERBEROS 
 SET 
 

Requirements to the report 
The report should consists of: 
- title sheet; 
- the aim and the task of the laboratory work; 
- results of the security protocols verification based on the abstract 

representation of protocols by Horn clauses; 
- results of the usage of the protocol verifier ProVerif; 
- results of the usage of the different sets of sessions for protocol 

verification; 
- list of the specified cryptographic primitives defined by rewrite 

rules or equations; 
- presentation of the provement of the  the security authentication 

properties and the process equivalences; 
- conclusions. 
 

Advancement questions 

1. What we should do to verify security protocols based on an 
abstract representation of protocols by Horn clauses? 

2. How to use the protocol verifier ProVerif? 
3. How to use different sets of sessions for protocol verification? 
4. What cryptographic primitives can be defined by rewrite rules 

or equations? 
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5. How to prove the security authentication properties? 
6. How to prove the process equivalences? 
7. What is the main goal of Horn clauses? 
8. What can be verified by an approach based on Horn clauses 

and how? 
9. What is the the Dolev-Yao model? 
10. What do the methods rely on sound abstractions overestimate 

the possibilities of attacks? 
 

2.2 Laboratory work №4. Validating security protocols under the 
general attacker 

 
The aim and the task of the laboratory work 
The aim of this laboratory work is to analyze the security protocols 

under the General Attacker threat model. 
Task of the work:  
- get acquainted with the General Attacker threat model. 
- use model checker SATMC to automatically validate a protocol 

under the new threats, in order to found retaliation and anticipation 
attacks automatically. 

Preparation for laboratory work  
- to clarify the aims and objectives; 
- to study theoretical material given in the description. 

 
Theoretical material 
 

Introduction 

The analysis of security protocols stands among the most attractive 
niches of research in computer science, as it has attracted efforts from 
many communities. It is difficult to even provide a satisfactory list of 
citations, which would have to at least include process calculi, strand 
spaces, the inductive method and advanced model checking techniques 
[61-67]. 

Any meaningful statement about the security of a system requires a 
clear specification of the threats that the system is supposed to 
withstand. Such a specification is usually referred to as threat model . 
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Statements that hold under a threat model may no longer hold under 
other models. For example, if the threat model only accounts for 
attackers that are outsiders, then Lowe’s famous attack on the 
Needham-Schroeder Public-Key (NSPK) protocol cannot succeed, and 
the protocol may be claimed secure. But the protocol is notoriously 
insecure under a model that allows the attacker as a registered principal. 
The standard threat model for symbolic protocol analysis is the Dolev-
Yao model (DY in brief), which sees a powerful attacker control the 
whole network traffic. The usual justification is that a protocol secure 
under DY certainly is secure under a less powerful, perhaps more 
realistic attacker. By contrast, a large group of researchers consider DY 
insufficient because a DY attacker cannot do cryptanalysis, and their 
probabilistic reasoning initiated with a foundational research. This 
sparked off a research thread that has somewhat evolved in parallel 
with the DY research line, although some efforts exist in the attempt to 
conjugate them [68]. The present research is not concerned with 
probabilistic protocol analysis. The main argument is that security 
protocols may still hide important subtleties even after they are proved 
correct under DY. These subtleties can be discovered by symbolic 
protocol analysis under a new threat model that adheres to the present 
real world more strictly than DY does. The new model we develop here 
is the General Attacker (GA in brief), which features each protocol 
participant as a DY attacker who does not collude or share knowledge 
with anyone else. In GA, it is meaningful to continue the analysis of a 
protocol after an attack is mounted, or to anticipate the analysis by 
looking for extra flaws before that attack, something that has never 
been seen in the relevant literature. This can assess whether additional 
attacks can be mounted either by the same attacker or by different 
attackers. Even novel scenarios whereby principals attack each other 
become possible. A significant scenario is that of retaliation [69], 
where an attack is followed by a counterattack. It recasts that scenario 
into the new GA threat model. Also, a completely new scenario is 
defined, that of anticipation, where an attack is anticipated, before its 
termination, by another attack by some other principal. 

As its main contribution, the research tailors an existing formalism 
suited for model checking to accommodate the GA threat model. This 
makes it possible to analyse protocol subtleties that go beyond standard 
security properties such as confidentiality and authentication. We begin 
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by extending an existing setrewriting formalisation of the classical DY 
model to capture the GA model. Then, we leverage an established 
model checking tool for security protocols to tackle the validation 
problems arisen from the new threat model. Finally, we run the tool 
over the NSPK protocol and its variants to investigate retaliation and 
anticipation attacks. 

The General Attacker 

DY can be considered the standard threat model to study security 
protocols [47]. The DY attacker controls the entire network although he 
cannot perform cryptanalysis. Some historical context is useful here. 
The model was defined in the late 1970s when remote computer 
communications were still confined to military/espionage contexts. It 
was then natural to imagine that the entire world would collude joining 
their forces against a security protocol session between two secret 
agents of the same country. The DY model has remarkably favoured 
the discovery of significant protocol, but the prototype attacker is 
significantly changed today. To become an attacker has never been so 
easy as in the present technological setting because hardware is 
inexpensive, while security skill is at hand—malicious exploits are 
even freely downloadable from the web. 

A seminal threat model called BUG [69] is recalled here. The name 
is a permuted acronym for the “Good”, the “Bad” and the “Ugly”. This 
model attempts stricter adherence than DY’s to the changed reality by 
partitioning the participants in a security protocol into three groups. The 
Good principals would follow the protocol, the Bad would in addition 
try to subvert it, and the Ugly would be ready to either behaviour. This 
seems the first account in the literature of formal protocol verification 
on the chance that attackers may attempt to attack each other without 
sharing knowledge. More recently, Bella observed [70] that the 
partition of the principals had to be dynamically updated very often, in 
principle at each event of a principal’s sending or receiving a message, 
depending on whether the principal respected the protocol or not. Thus, 
BUG appeared overly detailed, and he simplified it as the Rational 
Attacker threat model: each principal may at any time make 
cost/benefit decisions to either behave according to the protocol or not 
[71]. After BUG’s inception, homologous forms of rational attackers 
were specifically carved out in the area of game theory and therefore 
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are, as such, not directly related to the symbolic analysis [71-73]. 
Analyzing a protocol under the Rational Attacker requires specifying 
each principal’s cost and benefit functions, but this still seems out of 
reach, especially for classical model checking. By abstracting away the 
actual cost/benefit analysis, we derive the following simplified model: 
The General Attacker (GA) threat model: each principal is a Dolev-Yao 
attacker. 

The change of perspective in GA with respect to DY is clear: 
principals do not collude for a common aim but, rather, each of them 
acts for his own personal sake. Although there is no notion of collusion 
constraining this model, the human protocol analyser can define some 
for their particular investigations. The GA model has each principal 
endowed with the entire potential of a DY attacker. So, each principal 
may at any stage send any of the messages he can form to anyone. Of 
course, such messages include both the legal ones, conforming to the 
protocol in use, and the illegal, forged ones. As we shall see, analysing 
the protocols under the GA threat model yields unknown scenarios 
featuring retaliation or anticipation attacks. This paves the way for a 
future analysis under the Rational Attacker. For example, if an attack 
can be retaliated under GA, such a scenario will not occur under the 
Rational Attacker because the cost of attacking clearly overdoes its 
benefit, and hence the attacker will not attack in the first place. 

1. A→ B : {𝑁𝑎 , 𝐴}𝐾𝑏 
2. B→ A : {𝑁𝑎 , 𝑁𝑏}𝐾𝑎 
3. A→ B : {𝑁𝑏}𝐾𝑏 
4a. A→ B : {“𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑋1  𝑓𝑟𝑜𝑚 𝐴’𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑡𝑜 𝑌 1’𝑠”}〈𝑁𝑎,𝑁𝑏〉 
4b. B→ A : {“𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑋2  𝑓𝑟𝑜𝑚 𝐵’𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑡𝑜 𝑌 2’𝑠”}〈𝑁𝑎,𝑁𝑏〉 

Fig. 4.1. NSPK++: the NSPK protocol terminated with the completion 
steps 

This argument is after all not striking: even a proper evaluation of 
the “realism” of classical attacks found under DY would have required 
a proper cost/benefit analysis.  

The research suggests that if in the real world an attacker can mount 
an attack that can be retaliated, then he may rationally opt for not 
attacking in the first place. In consequence, even a deployed protocol 
suffering an attack that can be retaliated may perhaps be kept in place. 
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The BUG threat model was demonstrated over the public-key 
Needham-Schroeder protocol [72]. Let us recast that analysis under the 
GAmodel. The protocol version studied here,which we address 
asNSPK++, is its original design terminated with the completion steps 
for reciprocal, authenticated money transfers (Figure 4.1). It can be 
seen that principal A issues a fresh nonce Na in message 1, which she 
sees back in message 2. Because message 1 is encrypted under B’s 
public key, the nonce was fresh and cryptanalysis cannot be broken by 
assumption, A learns that B acted at the other end of the 
network.Messages 2 and 3 give B the analogous information about A by 
means of nonce Nb. This protocol version is subject to Lowe’s attack, 
as described in Figure 4.2. It can be seen how the attackerC 

masquerades asA withB to carry out an illegal money transfer atB 

(which intuitively is a bank) fromA’s to C’s account. It is known that 
the problems originated with the confidentiality attack upon the nonce 
Nb. Another observation is that there is a second nonce whose 
confidentiality is violated—by B, not by C— in this scenario: it is Na. 
Although it is invented byAto be only sharedwith C, also B learns it. 
This does not seem to be an issue in the DY model, where all principals 
except C followed the protocol like soldiers follow orders.What one of 
them could do with a piece of information not meant for him therefore 
became uninteresting. To what extent this is appropriate to the current 
real world, where there often are various attackers with targets of their 
own, is at least questionable. Strictly speaking, B’s learning of Na is a 
new attack because it violates the confidentiality policy upon the 
nonces, which are later used to form a session key. It can be easily 
captured in the GA threat model, where more than one principal may 
act illegally at the same time for their own sake. 

We are facing a new perspective of analysis. Principal B did not 
have to act to learn a nonce not meant for him, therefore this is named 
an indeliberate attack. To use a metaphor, B does not know which lock 
the key Na can open. This is not an issue in the GA threat model, where 
each principal just sends out anything he can send to anyone. 
Nevertheless, there are at least four methods to help B practically 
evaluate the potential of Na [74]. 
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1. A→ C : {𝑁𝑎 , 𝐴}𝐾𝑐 
1'. C(A) → B : {𝑁𝑎 , 𝐴}𝐾𝑏 
2'. B→ A : {𝑁𝑎 , 𝑁𝑏}𝐾𝑎 
2. C→ A : {𝑁𝑎 , 𝑁𝑏 }𝐾𝑎 
3. A→ C : { 𝑁𝑏 }𝐾𝑐 
3'. C(A) → B : { 𝑁𝑏 }𝐾𝑏 

4a'.C(A)→B:{“𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 1000  𝑓𝑟𝑜𝑚 𝐴’𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 to 𝐶’𝑠”}〈𝑁𝑎,𝑁𝑏〉 
Fig. 4.2. Lowe’s attack to the NSPK++ protocol 

 
4b'. B(C)→A: {“𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 2000  𝑓𝑟𝑜𝑚 𝐶’𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑡𝑜 𝐵’𝑠”}〈𝑁𝑎,𝑁𝑏〉 

Fig. 4.3. Retaliation attack following Lowe’s attack 

 
The natural consequence of B’s learning Na is the retaliation attack 

in Figure 4.3. Note that the first method indicated above gives B a 
reasonable set of target principals to try retaliation against, while the 
second one gives him a probabilistic answer originated from traffic 
analysis. However, the remaining two methods exactly tell him who the 
target for retaliation is. 

It is worth remarking once more that a retaliation attack cannot be 
captured in the standard DY threat model, where all potential attackers 
merely collude to form a super-potent one. However, the GA model can 
support this notion. 

An important finding that will be detailed below is that B learns Na 

before C learns Nb (Figure 4.2). This may lead to the unknown scenario 
that sees B steal money by step 4b from Figure 4.3 before C does it by 
step 4a' from Figure 4.2. The more quickly does B use any of the first 
three methods given above to evaluate Na and pinpoint C, the more 
realistic this scenario. Potentially, B’s illegal activity may even succeed 
before message 3 reaches C disclosing Nb. This attack will be 
addressed as anticipation attack. 

Extending the Validation Method over the General Attacker 

To perform the experiments: the SAT-based model checker 
SATMC, one of the AVISPA backends was used. This tool has 
successfully tackled the problem of determining whether the concurrent 
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execution of a finite number of sessions of a protocol enjoys certain 
security properties in spite of the DY attacker [75,76]. Leveraging on 
that work, we aim at relaxing the assumption of a single, super-potent 
attacker to specify the GA threat model, where principals can even 
compete each other. It was already stated above that the aim is to study 
novel protocol subtleties that go beyond the violation of standard 
security properties such as confidentiality and authentication. We are 
currently focusing on retaliation attacks and anticipation attacks. Also 
these notions can be recast into a model checking problem. 

Basics of SAT-Based Model Checking 

Let us outline the basic definitions and concepts underlying SAT-
based model checking. The reader who is familiar with such concepts 
can skip this. Let us recall that a model checking problem can be stated 
as  M |= G , where M is a labelled transition system modelling the 
initial state of the system and the behaviours of the principals 
(including their malicious activity) and G is an LTL formula expressing 
the security property to be checked. 

The states of M are represented as sets of facts i.e. ground atomic 
formulas of a first-order language with sorts. If S is a state, then its facts 
are interpreted as the propositions holding in the state represented by S, 
all other facts being false in that state (closed-world assumption). A 
state is written down by the convenient syntax of a list of facts 
separated by the . symbol, as we shall see.  

The transitions of M are represented as set-rewriting rules that 
define mappings between states. Each rule has a label expressing what 
the rule is there for: for example, the label 𝑠𝑡𝑒𝑝𝑖 is for a rule that 
formalises the i-th legal protocol step, the label overhear is for a rule 
whereby an attacker reads some traffic, and so on. Each rule label is 
parameterised by the rule variables or proper instances of them, and we 
will encounter a number of self-explaining rule labels below. 

Let (L 
𝑝
→ R) be (an instance of) a rewriting rule and S be a set of 

facts. If L ⊆ S then we say that ρ is applicable in S and that S' = 𝑎𝑝𝑝𝜌 
(S) = (S \L) ∪ R is the state resulting from the execution of ρ in S. A 
path π is an alternating sequence of states and rules 
𝑆0𝜌1𝑆1 . . . 𝑆𝑛−1𝜌𝑛𝑆𝑛 such that 𝑆𝑖  =  𝑎𝑝𝑝𝜌𝑖  (𝑆𝑖−1) (i.e. 𝑆𝑖 is a state 
resulting from the execution of 𝜌𝑖 in 𝑆𝑖−1), for i = 1, . . . , n. Let I be the 
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initial state of the transition system; if S0 ⊆ I, then we say that the path 
is initialised. Let π = 𝑆0𝜌1𝑆1 . . . 𝑆𝑛−1𝜌𝑛𝑆𝑛 be a path. We define π(i) = 
𝑆𝑖 and 𝜋𝑖 = 𝑆𝑖𝑝𝑖+1𝑆𝑖+1 . . . 𝑆𝑛−1𝜌𝑛𝑆𝑛. Therefore, π(i) and 𝜋𝑖 are the i-th 
state of the path and the suffix of the path starting with the i-th state 
respectively. Also, it is assumed that paths have infinite length. This 
can be always obtained by adding stuttering transitions to the transition 
system. 

The language of LTL used here has facts and equalities over ground 
terms as atomic propositions, the usual propositional connectives 
(namely, ￢, ∨ ) and the temporal operators X (next), F (eventually) 
and O (once). Let π be an initialised path of M, an LTL formula φ is 

valid on π, written π |= φ, if and only if (π, 0) |= φ, where (π, i) |= φ (φ 

holds in π at time i) is inductively defined as: 
  (π, i) |= f   iff f ∈ π(i) (f is a fact) 
  (π, i) |= (𝑡1 = 𝑡2)       iff 𝑡1  and 𝑡2 are the same terms 
  (π, i) |= ￢φ   iff (π, i)  φ 

  (π, i) |= (φ1 ∨ φ2)    iff (π, i) |= φ1 or (π, i) |= φ2 
  (π, i) |= Xφ   iff (π, i + 1) |= φ 

  (π, i) |= Fφ   iff ∃j ∈ [i,∞).(π, j) |= φ 
  (π, i) |= Oφ   iff ∃j ∈ [0, i].(π, j) |= φ 
In the sequel we use (φ1∧ φ2), (φ1⇒ φ2) and Gφ as abbreviations 

of ￢(￢φ1∨￢φ2), 

(￢φ1 ∨ φ2) and ￢F ￢φ respectively. 

Formalising the General Attacker 

We conveniently adopt the IF language as it can specify inputs to 
the AVISPA backends and more specifically to SATMC, a successful 
SAT-based model checker [75] that will be used in the final validation 
phase. The following syntactical conventions are adopted in the sequel. 

- Lower-case typewriter fonts, such as na, denote IF constants. 
-  Upper-case typewriter fonts, such as A, denote IF variables. 
-  Lower-case italics fonts of 0 arity, such as s indicating a session 

identifier, compactly denote IF terms. 
-  Lower-case italics fonts of positive arity, such as attack(a, v, s), 

denote metapredicates 
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- that aim at improving the readability of this manuscript, but in 
fact do not belong to the current IF formalisation. 

-  Upper-case italics fonts serve diverse purposes, as specified each 
time.  

To specify the GA threat model, a number of new facts must be 
defined in our language. They are summarised with their informal 
meaning in Table1. 

If S is a set of facts representing a state, then the state of principal a 

is represented by the facts of form 𝑠𝑡𝑎𝑡𝑒𝑟(j, a, es, s) (called state-facts) 
and of form ak(a,m) occurring in S. It is assumed that for each session s 

and for each principal a there exists at most one fact of the form 
𝑠𝑡𝑎𝑡𝑒𝑟(j, a, es, s) in S. This does not prevent a principal from playing 
different roles in different sessions. 

The dedicated account on the attacker’s knowledge in DY must be 
extended as a general account on principals’ knowledge in GA. In 
practice, what was the ik fact to represent the DY attacker knowledge is 
now replaced by ak, which has as an extra parameter the principal’s 
identity whose knowledge is being defined. Incidentally, we 
conveniently write down the set of facts in a state by enumerating the 
facts and interleaving them a dot. Here is the definition of ak:  

ak(a,m) . ak(a, k)         
𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑉𝐴𝑅𝑆(𝑎,𝑘,𝑚))
→                             ak(a, {𝑚}𝑘) . 

LHS 

ak(a, {𝑚}𝑘) . ak(a, �̅�)     
𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑉𝐴𝑅𝑆(𝑎,�̅�,𝑚))
→                              ak(a,m) . LHS 

ak(a,𝑚1) . ak(a, 𝑚2)  
𝑝𝑎𝑖𝑟𝑖𝑛𝑔(𝑉𝐴𝑅𝑆(𝑎,𝑚1,𝑚2))
→                         ak(a, 〈𝑚1,𝑚2〉).LHS 

ak(a, 〈𝑚1,𝑚2〉)    
𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑉𝐴𝑅𝑆(𝑎,𝑚1,𝑚2))
→                            ak(a, 𝑚1) . ak(a, 𝑚2). 

LHS 
where VARS (𝑡1, . . . , 𝑡ℎ) and LHS abbreviate in each rule, 

respectively, all the IF variables occurring in the IF terms represented 
by 𝑡1, . . . , 𝑡ℎ and the set of facts occurring in the left hand side of the 
rule. Also, k and k are the inverse keys of one another. 
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Table 4.1. New facts and their informal meaning 
Fact Holds when 

𝑠𝑡𝑎𝑡𝑒𝑟(j, a, es, s) Principal a, playing role r, is ready to execute step j 
in session s of the protocol, and has internal state 

es, which is a list of expressions affecting her 
future behaviour. 

ak(a,m) Principal a knows message m. 
nt(a) Principal a is not trustworthy. 
c(n) Term n is the current value of the counter used to 

issue fresh terms, and is incremented as s(n) every 
time a fresh term is issued. 

msg(rs, b, a,m) Principal rs has sent message m to principal a 

pretending to be principal b. 
contains(db,m) Message m is contained into set db. Sets are used, 

e.g., to share data between honest principals. 
confidential(m, g) Message m is a secret shared among the group of 

principals 
g (the set g is clearly populated through 

occurrences of contains(g, a) for each principal a 

intended to be in g). 
transferred(rs,a, b, c,x,s) rs, in the disguise of a, transferred x  from a’s 

account to c s at b (which intuitively is a bank) in 
session s. 

Under the GA threat model any principal may behave as a DY 
attacker. We may nonetheless need to formalise protocols that 
encompass trusted third parties, or where a principal loses her 
trustworthiness due to a certain event. Reading through Table 1, it can 
be seen that our machinery features the nt(a) predicate, holding of a 
principal a that is not to be trusted. It may conveniently be used either 
statically, if added to the initial state of principals, or dynamically when 
introduced by rewriting rules. It is understood that if all principals but 
one are declared as trustworthy, then we are back to the DY threat 
model. 

The fact c(n) holds of the current counter n used to generate fresh 
nonces. For example, c(0) holds in the initial state, and c(s(0)) after the 
generation of the first fresh nonce, which takes the value 0. More 
generally, if the fact c(na) holds, a fresh nonce na can be issued 
producing another state with counter c(s(na)). 
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The initial state of the system defines the initial knowledge and the 
statefacts of all principals involved in the considered protocol sessions. 
Its standard definition is omitted here but can be found elsewhere [77]. 
Appropriate rewriting rules specify the evolution of the system. Those 
for honest principals, which also serve to demonstrate the remaining 
facts enumerated in Table 1, are of the form: 

msg(rs, 𝑏1, a, 𝑚1). 𝑠𝑡𝑎𝑡𝑒𝑟(i, a, es, s) 
𝑠𝑡𝑒𝑝𝑙(𝑉𝐴𝑅𝑆(𝑎,𝑏1,𝑏2,𝑟𝑠,𝑒𝑠,𝑒𝑠

′,𝑚1,𝑚2,𝑠))
→                              

msg(a, a, 𝑏2,𝑚2) . 𝑠𝑡𝑎𝑡𝑒𝑟(j, a, es', s) . ak(a, 𝑚1). ak(a, 𝑚2), 
where l is the step label, i and j are integers and r is a protocol role 

(e.g., the NSPK++ has two roles Alice and Bob, also said Initiator and 
Responder roles). Rule 2 models the reception by a principal of a 
message and the principal’s sending of the next message according to 
the protocol. More precisely, it states that if principal a, who is playing 
role r at step i with internal state es in session s of the protocol, has 
received message m1 supposedly from b1 (while the real sender is rs), 
then she can honestly send message m2 to b2. In doing so, a updates 
her internal state as es_ and her knowledge accordingly, that is the new 
state registers the facts ak(a,m1) and ak(a,m2). Note that rule 2 may 
take slightly different forms depending on the protocol step it models. 
For example, if j = 1 and a sends the first message of the protocol, the 
fact msg(rs, b1, a,m1) does not appear in the left hand side of the rule, 
reflecting a’s freedom to initiate the protocol at anytime. Similarly, for 
generating and sending a fresh term, c(N) is included in the left hand 
side of the rule, while c(s(N)) and ak(a, N) appear in the right hand side 
to express the incremented counter and the principal’s learning the 
fresh term. A further variant is necessary when the step involves either 
a membership test or an update of a set of elements. In this case, facts 
of the form contains(db,m) must be properly defined. Facts such as 
confidential(m, g) or transferred(rs, b, a, c, x, s) added to the right hand 
side express respectively confidentiality for a group of principals, and a 
successful transfer of money. 

To illustrate the specification of concrete protocol rules we consider 
two steps of the NSPK++ protocol. The transition in which B receives 
the first message of the protocol (supposedly) from A and replies with 
the second protocol message is modelled by the following rule: 

msg(RS, A,B,{〈𝐴, 𝑁𝐴〉}KB) . 𝑠𝑡𝑎𝑡𝑒𝑏𝑜𝑏(1, B, [A, KA, KB, G], S) . 

c(NB) 
𝑠𝑡𝑒𝑝2(𝐵,𝐴,𝑅𝑆,𝐾𝐴,𝐾𝐵,𝑁𝐴,𝑁𝐵,𝐺,𝑆)
→                        
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msg(B, B, A,{〈𝑁𝐴,𝑁𝐵〉}KA).𝑠𝑡𝑎𝑡𝑒𝑏𝑜𝑏 (3, B,[A, KA, KB, NA, NB, 
G],S).ak(B,{ 〈𝐴, 𝑁𝐴〉}KB) . ak(B, NB) . contains(G, A) . contains(G, B) 
. confidential(NB, G) .c(s(NB)), 

where G represents the group of principals that are allowed to share 
the freshly generated nonce NB. This also illustrates our different 
treatment of confidentiality with respect to DY’s. While DY reduced 
confidentiality of a message to keeping the message confidential from 
the attacker, GA requires the original, subtler and unsimplified, 
definition of confidentiality: “confidentiality is the protection of 
information from disclosure to those not intended to receive it”[78]. For 
example, it regards the confidentiality of a message as compromised if 
ever anyone beyond its intended peers learns it. To provide another 
example of a protocol rule, the completion step 4b in which A receives 
and then executes a money transfer from B is modeled by two rules, 
one for B’s sending and one for A’s reception. Here is the latter: 

msg(RS, B, A, {𝑡𝑟(𝐵, 𝐶, 𝑋)}〈NA,NB〉) . 𝑠𝑡𝑎𝑡𝑒𝑎𝑙𝑖𝑐𝑒(4, A, [B, KA, KB, 
NA, NB, G], S) 
𝑠𝑡𝑒𝑝4𝑏𝑟𝑒𝑐(𝐴,𝐵,𝐶,𝑅𝑆,𝐾𝐴,𝐾𝐵,𝑁𝐴,𝑁𝐵,𝑋,𝐺,𝑆)
→     

 𝑠𝑡𝑎𝑡𝑒𝑎𝑙𝑖𝑐𝑒 (4, A, [B, KA, KB, NA, NB, G], S).ak(A,

{𝑡𝑟(𝐵, 𝐶, 𝑋)}〈NA,NB〉) . ak(A, X) . transferred(RS, B, A, C, X, S) 
The rule states the fact transferred(RS, B, A, C, X, S) to record that 

RS, who is not necessarily B, transferred X  from B’s account to C's

at A (which intuitively is a bank) in session S. This is not to be 
confused with {𝑡𝑟(𝐵, 𝐶, 𝑋)}〈NA,NB〉, which is a message expressing the 
request of a transfer. 

The malicious behaviour of each principal C acting as a DY 
attacker can be specified by the following rules: 

nt(C).ak(C, M).ak(C, A).ak(C, B)
𝑓𝑎𝑘𝑒(𝐶,𝐴,𝐵,𝑀)
→          msg(C, A, B, 

M).LHS 

nt(C) . msg(RS, A, B, M)   
𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑟(𝑅𝑆,𝐴,𝐵,𝐶,𝑀)
→        ak(C, M) . LHS 

nt(C) . msg(RS, A, B, M)   
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝑅𝑆,𝐴,𝐵,𝐶,𝑀)
→        ak(C, M) . nt(C) 

Although the model outlined so far is accurate, it is not the most 
appropriate to perform automatic analysis efficiently. This is not a big 
issue for validating the NSPK++protocol in particular, but it is in 
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general. Themain problem is the specification of themalicious 
behaviour of principals. It allows for the forging ofmessages that will 
clearly not help to attack the protocol, as they do not correspond to the 
forms that the protocol prescribes. In other words, forging messages 
that no one will ever accept is of no use to any attacker. Efficiency of 
the analysis improves by adopting a refinedmodel ofmalicious activity, 
for example by introducing a forged message only if it conforms to one 
of the forms that belong to the protocol. More narrow-scoped, though 
realistic, impersonate rules detailed elsewhere [26] can easily be recast 
in the GA threat model. For example, the following impersonate 
rulemodels a principal C who, pretending to be A, sends the 
firstmessage of our example protocol to B, who is exactly waiting for a 
message of that form: 

 
nt(C) . 𝑠𝑡𝑎𝑡𝑒𝑏𝑜𝑏(2, B, [A, KA, KB, G], S).ak(C, A).ak(C, NA).ak(C, 

KB) 
𝑖𝑚𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑡𝑒2(𝐶,𝐴,𝐵,𝐾𝐴,𝐾𝐵,𝑁𝐴,𝐺,𝑆)
→                            

 msg(C, A, B, {〈𝐴, 𝑁𝐴〉}KB) . ak(C, {〈𝐴, 𝑁𝐴〉}KB) . LHS 
 

Formalising Protocol Properties under the General Attacker 

One may expect that standard security properties such as 
confidentiality and authentication can be routinely specified and 
checked under the GA threat model using a model checker. Yet, 
confidentiality deserves particular consideration in what the GA model 
differs from the DY one. 

In general, the confidentiality of a message m w.r.t. a group of 
principals g is guaranteed if and only if m is only known to principals in 
g. This property is clearly violated anytime a principal a outside g 

learns, for any reason, m. However, under DY, where all principals but 
the attacker meticulously follow the protocol, the violation is by design 
not considered so unless a is the attacker. There are many real 
scenarios—ranging from a betrayed person who publishes his/her 
partner’s credit card details, to a scenario where a fired employee 
discloses sensitive information about its former employer—in which 
this violation is significant and therefore not negligible. In the GA 
model this confidentiality breach is not overlooked, as it can be 
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checked by the following meta-predicate formalising a violation of 
confidentiality: 

voc(a, m, g) = F(confidential(m, g) ∧ ak(a,m) ∧ ￢contains(g, a) ) 
The negation of the meta-predicate given above corresponds to G in 

the model checking problem 1 and represents the confidentiality 
property. 

The GA threat model paves the way to investigate subtler protocol 
properties than confidentiality and authentication. The retaliation is a 
common practice in the real world. (Even anyone who is most peaceful 
may react under attack—whether this is fortunate or unfortunate lies 
outside our focus.) Depending on who reacts against the attacker, 
retaliation can be named differently [16]: if it is the victim, then there is 
direct retaliation; if it is someone else, then there is indirect retaliation. 
Let attack(c, a, b) be a meta-predicate holding if and only if an attacker 
c has successfully attacked a victim a (being a ≠ c and a ≠ b) with the 
(unaware) support of b (if any). Of course, “has successfully attacked” 
denotes the violation of the specific property that the protocol under 
analysis is supposed to achieve. Any violation of a protocol property 
should make the predicate hold, and therefore the predicate should be 
defined by cases. If we focus for simplicity on the didactic attack to the 
NSPK++ protocol seen above, which is an illegal money transfer, then 
the meta-predicate can be defined as: 

attack(c, a, b) = transferred(c, a, b, r, x, s) ∧ c ≠ a (4) 
Clearly, this definition can be extended to check other kinds of 

attacks. Because not all money transfers are illegal, the second conjunct 
in the formula is crucial: the illegal transfers are only those that are not 
requested by the account holder. 

Direct and indirect retaliation can be respectively modelled as the 
following meta-predicates: 

direct retaliation(a,c) = F( attack(c,a,b1) ∧XFattack(a, c, b2) ) (5) 
indirect retaliation(a,c,b) = F( attack(c,a,b) ∧XFattack(b,c,a) ) (6) 
It can be seen that the formula defined by Definition 4.5 is valid on 

those paths where an attacker hits a victim who hits the attacker back. 
Each attack can be carried out with the help of potentially different 
supporters b1 and b2. By contrast, Definition 6 of indirect retaliation 
shows that who hits the attacker back is not the victim but the 
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supporter, who perhaps realises what he has just done and decides to 
rebel against the attacker. 

The definition of anticipation attack is deferred to the next 
subsection because it is best demonstrated upon the actual experiments. 

Validating the NSPK++ Protocol under the General Attacker 

The previous subs ection outlined the model checking problem in 
general, and described how to formalise the GA threat model for the 
validation of security protocols. For the sake of demonstration, it 
presented the formalisation of a step of the NSPK++ protocol. It 
concluded with the specification of protocol properties under the GA 
threat model. 

Having digested the innovative aspects, deriving the full 
formalisation of the NSPK++ protocol under the General Attacker, 
which is omitted here, became an exercise. That formalisation was fed 
to SATMC, a state-of-the-art SAT-based model checker for security 
protocols, to carry out the first protocol validation experiments under 
GA. The details of SATMC appear elsewhere [76]. Its core is a 
procedure that automatically generates a propositional formula. The 
satisfying assignments of this formula, if any exist, correspond to 
counterexamples (i.e. execution traces of M that falsify G) of length 
bounded by some integer k, which can be iteratively deepened. Finding 
violations (of length k) on protocol properties boils down to solving 
propositional satisfiability problems. SATMC accomplishes this task by 
invoking state-of-the-art SAT solvers, which can handle satisfiability 
problems with hundreds of thousands of variables and clauses. 

In running SATMC over the formalisation of the NSPK++ protocol, 
we considered the classical scenario in which a wants to talk with b in 
one session and with c in another session. Because the formalisation 
accounted for the new threat model, we were pleased to observe that it 
passed simple sanity checks: SATMC outputs the known 
confidentiality attack whereby c learns nb, and the known 
authentication attack whereby c impersonates a with b. As these are 
well known, they are omitted here. More importantly, the tool also 
reported what are our major findings: b’s confidentiality attack upon na, 
and interesting retaliation attacks, which are detailed in the following. 
We argue that this is the first mechanised treatment of these subtle 
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properties, laying the ground for much more computer-assisted analysis 
of security protocols. 
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0: [step_1(a,c,ka,kc,na,nb,set_ac,1)] 
1: [overhear(c,a,a,c,{na,a}kc)] 
2: [decrypt(c,inv(kc),{na,a})] 
3: [impersonate_2(c,a,b,ka,kb,na,set_ab,2)] 
4: [step_2(b,a,c,ka,kb,na,nb,set_ab,2)] 
5: [decrypt(b,inv(kb),{na,a})] 
Fig.4. 4. Trace of NSPK++ featuring b’s confidentiality attack 

6: [impersonate_3(b,c,a,ka,kc,na,nb,set_ac,1)] 
7: [step_3(a,c,b,ka,kc,na,nb,set_ac,1)] 
8: [overhear(c,a,a,c,{nb}kc)] 
9: [decrypt(c,inv(kc),{nb})] 
10: [impersonate_3_rec(c,a,b,ka,kb,nb,set_ab)] 
11: [step_3_rec(b,a,c,ka,kb,na,nb,set_ab,2)] 
12: [impersonate_4a_rec(c,a,b,c,ka,kb,na,nb,set_ab,2)] 
13: [step_4a_rec(b,a,c,c,ka,kb,na,nb,1K,set_ab,2)] 
14: [impersonate_4b_rec(b,c,a,b,ka,kc,na,nb,set_ac,1)] 
15: [step_4b_rec(a,c,b,b,ka,kc,na,nb,2K,set_ac,1)] 
Fig. 4.5. Trace of NSPK++ (continuation) featuring b’s indirect 

retaliation 

Figure 4.4 reports the protocol trace that the tool outputs when 
checking a violation of confidentiality by the formula voc(A, M, G). 
Precisely, the trace is obtained by mildly polishing the partial-order 
plan returned by SATMC. Each trace element reports the label of the 
rule that fired, and hence the trace can be interpreted as the history of 
events leading to the confidentiality attack. 

A full description of the trace requires a glimpse at the protocol 
formalization — each rule label in a trace element must be matched to 
the actual rule—but we will see that the trace can be automatically 
converted into a more user-friendly version. Element 0 means that 
principal a initiates the protocol with principal c. Elements 1, 2 and 3 
show c’s illegal activities respectively of getting the message, 
decrypting it and forging a well-formed one for principal b. Although c 
does not need in practice to overhear a message meant for him, element 
1 is due to our monolithic formalisation of the acts of receiving a 
message and of sending out its protocol-prescribed reply. Therefore, for 
a principal to abuse a message, the principal must first overhear it. 
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Element 3 reminds that c’s forging of the message for b counts as an 
attempt to impersonate a. The last two elements signal b’s legal 
participation in the protocol by receiving the message meant for him, 
and his subsequent deciphering of the nonce. SATMC now returns 
because voc(b, na, set_ac) holds (where the set set_ac = {a, c}). 

To illustrate the detection of a retaliation attack, SATMC can be 
launched on a significant property such as indirect retaliation(A, B, C). 
It returns a trace that continues as in Figure 4.5 the one seen in Figure 
4.4. The impersonate rules show that both b and c are acting illegally in 
this trace, a development that has never been observed by previous 
analyses under DY. Elements 6 and 7 show that b is impersonating c 
with a, who naively replies to c. The next three elements confirm c’s 
attempt at fooling b, who legally replies as element 11 indicates. Now c 
can finalise his attack as in elements 12 and 13. The latter element 
indicates the firing of rule 4a, which makes attack(c, a, b) hold. The last 
two elements witness b’s retaliation attack by making attack(b, c, a) 
hold. Therefore, by Definition 4.6, the property indirect retaliation(a, c, 

b) holds, indicating that the tool reports the retaliation attack described 
above (Figure 3.3). 
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Fig. 4.6. Graphics of b’s indirect retaliation in NSPK++ 

A graphical illustration of this retaliation attack is in Figure 6, and 
can be easily built. First, we run a procedure to transform the output of 
the tool into a more readable and intuitive version. Then, we coherently 
associate the significant phrases of this version to graphical elements, 
and hence build the image. The behaviours and interactions of the 
principals can be observed by looking at the figure from top to bottom. 
The overhear and impersonate icons emphasise the significant number 
of illegal steps taken by both principals c and b). 

We run the tool repeatedly on the protocol model, each time 
adjusting the property to check. In particular, we tried an alternative 
definition of indirect retaliation where the X operator was left out. The 
tool returned a trace leading to a state where both attacks held, as if 
retaliation did not need be triggered by another attack. This called for 
more attention at the trace. 

In consequence, we observed from element 3 in Figure 4.4 that c 
initialises his attack very early—precisely, with his impersonation of a 
based upon the repetition to b of a’s nonce na. This means that b learns 
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na when c has not yet learned nb and hence cannot attack yet. We thus 
defined the self-explaining fact nonce_leak(c, a, b). In the GA threat 
model, it is plausible that b exploits his knowledge before c does. This 
can be interpreted as a scenario in which a potential victim realises that 
he is going to be attacked, and therefore reacts successfully before 
being actually attacked. We name such a successful reaction 
anticipation attack and define it as a meta-predicate below. For the sake 
of efficiency, we decided to add a rule that introduces the fact nonce 
leak(C, A, B) following c’s attack initialisation: 

confidential(NA, G) . ak(B, NA) . ￢contains(G, B) . 
ak(B, 𝐾𝐵−1) . msg(C, A, B, {〈𝐴, 𝑁𝐴〉}KB)   

 𝑖_𝑔𝑜𝑡_𝑦𝑜𝑢(𝐶,𝐴,𝐵,𝑁𝐴,𝐺)
→                  

nonce_leak(C, A, B) 
A meta-predicate attack init(c, a, b) must be introduced to formalise 

some c’s act of initialising an attack, which is yet to be carried out, 
while interleaving sessions with some a and b. In the same fashion of 
Definition 4 of attack(c, a, b), we provide a definition that is 
appropriate for the attack under analysis, and corresponds to the nonce 
leak: 

attack_init(c, a, b) = nonce_leak(c, a, b) 
The definition of anticipation attack can be given now. It insists that 

an attack initiated by someone, such as c, is followed by an actual 
attack carried out by someone else, such as b: 

anticipation_attack(c, a, b) = F( attack_init(c, a, b) ∧ 
                  XFattack(b, c, a) )           (7) 
SATMC validated our intuition.When run on anticipation attack(C, 

A, B) as a goal, the tool produced the partial order plan reported in 
Figure 7. Element 6 in the trace indicates that c leaked a nonce created 
by a by sending it to b. So, the meta-predicate attack_init(c, a, b) 
holds.Moreover, the last two elements witness b’s anticipation attack by 
making attack(b, c, a) hold. Therefore, by Definition 4.7, we have that 
anticipation_attack(c, a, b) is true, which signifies that the tool reports 
the anticipation attack described above (Figure 4.8). 
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0: [step_1(a,c,ka,kc,na,nb,set_ac,1)] 
1: [overhear(c,a,a,c,{na,a}kc)] 
2: [decrypt(c,inv(kc),{na,a})] 
3: [impersonate_2(c,a,b,ka,kb,na,set_ab,2)] 
4: [overhear(b,c,a,b,{na,a}kb)] 
5: [decrypt(b,inv(kb),{na,a})] 
6: [i_got_you(c,a,b,na,set_ac)] 
7: [impersonate_3(b,c,a,ka,kc,na,nb,set_ac,1)] 
8: [step_3(a,c,b,ka,kc,na,nb,set_ac,1)] 
9: [impersonate_4b_rec(b,c,a,b,ka,kc,na,nb,set_ac,1)] 
10: [step_4b_rec(a,c,b,b,ka,kc,na,nb,2K,set_ac,1)] 
Figure. 4.7. Trace of NSPK++ featuring b’s anticipation attack 

 

 
Figure. 4.8. Graphics of b’s anticipation attack in NSPK++ 

Various experiments produced, that SATMC reported a trace 
describing the following scenario. In a session, a discloses to c her 
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nonce generated for b. In another session, a discloses to b another 
nonce of hers generated for c. In consequence, both b and c become 
capable of attacking each other with a’s support if needed. Moreover, b 
and c may be initially unaware of each other’s capability of attack. This 
reflects the real-world situation in which someone creates strife in a 
couple that starts fighting. 

Conclusions 

The General Attacker threat model seems most appropriate to the 
present social/technological setting. Reasoning that was impossible 
under DY can now be carried out, highlighting protocol niceties that are 
routinely overseen. 

Retaliation teaches us that we can perhaps live with flawed 
protocols. We are used to go back to design when a protocol is found 
flawed, even if already deployed. However, an attack that can be 
retaliated may in practice convince an attacker to refrain from attacking 
in the first place. If the “cost” of attacking overdoes its “benefits” then 
the attacker will not be carried out. Retaliation makes that precondition 
hold. 

Anticipation teaches us to ponder the entire sequence of events 
underlying an attack. An attack typically is an interleaving of legal and 
illegal steps rather than a single illegal action. Therefore, we may face a 
scenario, unreported so far, where a principal mounts an attack by 
successfully exploiting for his own sake the illegal activity initiated but 
not yet finalised by someone else. This is routine for the present 
hackers’ community. 

Tasks for laboratory work №4. 
1. According to given in Table 4.2 variant of the security 

protocols define its properties. 
2. According to given in Table 4.2 variant use the threat model 

and automatically validate a protocol under the new threats, so 
that retaliation and anticipation attacks can automatically be 
found. 

Table 4.2. Variants 
№ Protocol Threat model 
1 S/MIME Dolev-Yao 
2 VPN Rational Attacker 
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3 IPSec General Attacker 
4 TLS Dolev-Yao 
5 SSL Rational Attacker 
6 HTTPS General Attacker 
7 PGP Dolev-Yao 
8 S-HTTP Rational Attacker 
9 KERBEROS General Attacker 
10 SET Rational Attacker 

Requirements to the report 
The report should consists of: 
- title sheet; 
- the aim and the task of the laboratory work; 
- the list of the defined properties of the security protocols; 
- results of the usage of the threat model and validation of the 

protocol under the new threats with the demonstration that retaliation 
and anticipation attacks can automatically be found; 

- conclusions. 
 

Advancement questions 

1. Can Dolev-Yao be considered the standard threat model to 
study security protocols and why? 

2. Can Dolev-Yao attacker control the entire network without 
perform cryptanalysis and how? 

3. Can the relation attack be captured in the standard Dolev-Yao 
threat mode and why? 

4. What tool is able to successfully tackle the problem of 
determining whether the concurrent execution of a finite 
number of sessions of a protocol enjoys certain security 
properties ? 

5. What are the main syntactical conventions are adopted to 
Formalize the General Attacker? 

6. How the dedicated account on the attacker’s knowledge in 
Dolev-Yao must be extended? 

7. What the initial state of system defines? 
8. What are the main definitions of SAT-based model? 
9. How to define properties of security protocols? 
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10. How to validate a protocol under the new threats, so that 
retaliation and anticipation attacks can automatically be found? 
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3 FORMAL AND INTELLECTUAL METHODS FOR SYSTEM 
SECURITY AND RESILIENCE  

3.1 Seminar №1. Formal Goal-Oriented Development of 
Resilient MAS in Event-B 

 
The aim and the task of the laboratory work 
The aim of this laboratory work is to get acquainted with a formal 

goal-oriented approach to development of resilient multi agent system. 
Task of the work:  
- to define goals in Event-B and ensure goal reachability by 

refinement.  
- To defined a set of modelling and refinement patterns that 

describe generic solutions common to formal modelling of multi agent 
system 

- Use the rigorous modelling of the impact of agent failures on 
goal achieving I order to build a dynamic goal reallocation mechanism 
that guarantees system resilience in presence of agent failures 

 
Preparation for laboratory work  
- to clarify the aims and objectives; 
- to study theoretical material given in the description. 

 
Theoretical material 

Introduction 

Goal-Oriented Development [79,80] has been recognised as an 
useful framework for structuring and specifying complex system 
requirements. In goal-oriented development, the system requirements 
are defined in terms of goals - the functional and non-functional 
objectives that a system should achieve. Often changes in system 
operational environment, e.g., caused by failures of agents - 
independent system components of various types - might hinder 
achieving the desired goals. Hence, to ensure system resilience [81], 
i.e., guarantee its dependability in spite of the changes, we need 
formally verify reachability of the targeted goals. Traditionally, such a 
verification is undertaken by abstracting implementation up to 
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requirements level and model-checking satisfiability of goals. However, 
such an approach suffers from a state explosion that is especially 
prohibitive for such applications as multi-robotic systems [82]. 

Let us consider a formal development approach that ensures goal 
reachability “by construction”. It is based on refinement in Event-B. 
Event-B [83] is a formal top-down development approach to correct-
by-construction system development. The main development technique 
- refinement - allows us to ensure that a concrete specification preserves 
globally observable behaviour and properties of abstract specification. 
Verification of each refinement step is done by proofs. The Rodin 
platform [84] automates modelling and verification in Event-B. 
Currently Event-B is actively used within EU project DEPLOY [85] to 
model dependable systems from various domains. 

The goal-oriented development by defining a set of specification 
and refinement patterns is formalised. The formalisation reflects the 
main concepts of the goal- oriented engineering. In particular, we 
demonstrate how to define system goals at different levels of 
abstraction and guarantee goal reachability while specifying 
collaborative agent behaviour. Moreover, we propose refinement 
patterns that allow the system to dynamically reallocate goals from 
failed agents to healthy ones and per se, guarantee resilience. A 
development of an autonomous multi- robotic system illustrates 
application of the proposed patterns. 

Formal Modelling and Refinement in Event B 

Let us consider formal framework - Event-B. The Event-B 
formalism is an extension of the B Method [86]. It is a state-based 
formal approach that promotes the correct-by-construction development 
paradigm and formal verification by theorem proving. Event-B has 
been specifically designed to model and reason about parallel, 
distributed and reactive systems. 

Modelling in Event-B 

In Event-B, a system model is specified using the notion of an 
abstract state machine [87]. An abstract state machine encapsulates 
the system state represented as a collection of model variables, and 
defines operations on this state, i.e., it describes the dynamic behaviour 
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of the modelled system. A machine may also have the accompanying 
component, called context. A context might include user- defined 
carrier sets, constants and their properties, which are given as a list of 
model axioms. In Event-B, the variables are strongly typed by the 
constraining predicates called invariants. Moreover, the invariants 
specify important properties that should be preserved during the system 
execution. 

The dynamic behaviour of the system is defined by the set of 
atomic events. Generally, an event can be defined as follows: 

evt ̂any ul where g then S end 
where vl is a list of new local variables (parameters), g is the event 

guard, and S is the event action. The guard is a state predicate that 
defines the conditions under which the action can be executed, i.e., 
when the event is enabled. If several events are enabled at the same 
time, any of them can be chosen for execution non-deterministically. If 
none of the events is enabled then the system deadlocks. In general, the 
action of an event is a parallel composition of deterministic or non-
deterministic assignments. 

Event-B Refinement 

Event-B employs a top-down refinement-based approach to system 
development. Development starts from an abstract system specification 
that non-deterministically models the most essential functional 
requirements. In a sequence of refinement steps we gradually reduce 
non-determinism and introduce detailed design decisions. In particular, 
we can replace abstract variables by their concrete counterparts, i.e., 
perform data refinement. In this case, the invariant of the refined 
machine formally defines the relationship between the abstract and 
concrete variables. Via such a gluing invariant we establish a 
correspondence between the state spaces of the refined and the abstract 
machines. 

Often a refinement step introduces new events and variables into 
the abstract specification. The new events correspond to the stuttering 
steps that are not visible at the abstract level, i.e., they refine implicit 
skip. To guarantee that the refined specification preserves the global 
behaviour of the abstract machine, we should demonstrate that the 
newly introduced events converge. To prove it, we need to define a 



FORMAL AND INTELLECTUAL METHODS FOR SYSTEM 
SECURITY AND RESILIENCE  

142 

variant - an expression over a finite subset of natural numbers - and 
show that the execution of new events decreases it. Sometimes, 
convergence of an event cannot be proved due to a high level of non-
determinism. Then the event obtains the status anticipated. This 
obliges the designer to prove at some later refinement step, that the 
event indeed converges. 

Each refinement step requires to verify a number of proof 
obligations that ensure that the refined specification adheres to its 
abstract counterpart [87]. The verification efforts, in particular, 
automatic generation and proving of the required proof obligations, are 
significantly facilitated by the Rodin platform [84]. 

Refinement and proof-based verification of Event-B offers the 
designers a scalable support for the development of such complex 
systems as multi-agent systems (MAS). MAS are decentralised 
distributed systems composed of agents asynchronously 
communicating with each other. Agents are computer programs acting 
autonomously on behalf of a person or organisation, while coordinating 
their activities by communication [88]. MAS are increasingly used in 
various critical applications such as factories, hospitals, rescue 
operations in disaster areas, etc. 

A Formal View of Goal-Oriented Multi-Agent System. Patterns for 
Goal-Oriented Development 

The goal-oriented engineering facilitates structuring complex 
system requirements in terms of goals - objectives that the system 
should meet [80]. In this subsection we focus on modelling functional 
goals, i.e., the goals defining objectives of the services that the system 
should deliver. We propose a number of specification and refinement 

patterns that interpret essential activities of goal-oriented engineering 
in terms of Event-B refinement. 

A pattern in Event-B is an abstract machine that defines a generic 
modelling solution that can be reused in similar developments via 
instantiation. Usually, an Event-B pattern contains abstract types, 
constants and variables. The context of such a model constraints the 
instantiation by defining the properties that should be satisfied by 
concrete instantiations of abstract data structures. The invariant 
properties of a pattern, once proven, remain valid for all instantiations. 



FORMAL AND INTELLECTUAL METHODS FOR SYSTEM 
SECURITY AND RESILIENCE  

143 

The aim of defining a pattern is to capture experience gained in 
modelling a certain problem. To illustrate how patterns are defined, let 
us now present a pattern that allows the designers to explicitly define 
goals while modelling a system in Event-B. We call it Abstract Goal 

Modelling Pattern. 

Abstract Goal Modelling Pattern 

Let GST ATE be an abstract type defining the system state space3. 
Moreover, let Goal be a non-empty proper subset of GST AT E that 
abstractly defines the given system goals. We say that the system has 
achieved the desired goals if its current state belongs to Goal. Both 
GST ATE and Goal are the abstract types. Together with their 
properties they are defined in the model context as follows:  

Goal   and Goal   GST ATE. 
Let us note that GSTATE and Goal are generic parameters of the 

initial pattern. During a system development, we should supply their 
concrete instantiations that satisfy the properties shown above. 

While modelling a system in Event-B, we should ensure that the 
system under development achieves the desired goal. We can formally 
express this by requiring that the system terminates in a state belong to 
Goal. The machine M_AGM is defined according to the Abstract Goal 

Modelling Pattern: 
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The dynamic behaviour of the system is abstractly modelled by the 
event Reaching_Goal. The system terminates when Reaching_Goal 
becomes disable, i.e., when a state satisfying Goal is reached. 

The event Reaching_Goal has the status anticipated. Hence, in the 
machine M_AGM goal reachability is postulated rather than proved. 
However, it also obliges us to prove (at some refinement step) that the 
event or its refinements converge. Therefore, while refining a concrete 
specification defined according to Abstract Goal Modelling Pattern, 
we will be forced to prove goal reachability. 

Let us assume that we have a collection of Event-B patterns: P1, P2, 

..., Pn that refine each other in the following way: 
P1 is refined by P2 ... is refined by Pn. 
Such a refinement chain expresses a generic development by 

refinement. Abstract data structures of all the involved patterns become 
generic parameters of the development. Each pattern abstractly defines 
a solution for specifying a certain modelling aspect. Therefore, each 
refinement step has a rationale behind it - its meta-level description. We 
use it to formulate modelling aspects that the refinement transformation 
aims at defining. The result of refinement transformation is called a 
refinement pattern. 



FORMAL AND INTELLECTUAL METHODS FOR SYSTEM 
SECURITY AND RESILIENCE  

145 

Next we propose several refinement patterns that allow us to 
implement the ideas of goal-oriented engineering in Event-B 
refinement. We start from defining Goal Decomposition Pattern. 

Goal Decomposition Pattern 

The main idea of goal-oriented development is to decompose the 
high-level system goals into a set of subgoals. This is an iterative 
process that aims at building the hierarchy of system goals. Essentially, 
subgoals define intermediate stages of the process of achieving the 
main goal. 

The purpose of Goal Decomposition Pattern is to explicitly model 
subgoals in the system specification. While defining this pattern, we 
should ensure that high- level goals remain achievable. Hence the 
refinement pattern should reflect the relation between the high-level 
goals and subgoals. Moreover, it should ensure that high-level goal 
reachability is preserved and can be defined via reachability of lower-
layer subgoals. 

In this subsection we assume that subgoals are independent of each 
other. This means that reachability of any subgoal does not affect 
reachability of another one. Moreover, while a certain subgoal is 
reached, it remains reached, i.e., the system always progresses towards 
achieving its goals. Formally, it can be expressed as a stability property 
with respect to some state predicate P: 

Stable(P)   “once P becomes true it remains true”. 

In Event-B, stability properties can be easily expressed by 
introducing auxiliary variables for storing the previous value of the 
state and then formulating stability properties as the invariant properties 
of the form: 

P(prev state) = TRUE   P(state) = TRUE. 

To express a goal decomposition in terms of Event-B, let us define 
a corresponding refinement pattern. We present it by the machine 
M_GD. The new pattern allows us to introduce a number of subgoals 
into our system model and express their reachability. Moreover, the 
refinement relation between patterns allows us to express reachability 
of the main goal via reachability of its subgoals. 

Let us assume for simplicity, that system goal Goal is achieved by 
reaching three subgoals. The subgoals are defined as corresponding 
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variables of the M_GD machine: Subgoali, Subgoal2, and Subgoal3. 
The goal independence assumption allows us to partition high-level 
goal state space GST ATE into three non-empty subsets: SGST AT E1, 

SGST ATE2, SGST ATE3. We define the subgoals as follows: 
Subgoali   and Subgoali   SGSTATEi, i   1..3. 

To establish a relationship between the new state spaces SG_STATEi, i 
 1..3, of the M_GD machine and the abstract state space of M_AGM 
machine we define the following function: 

State_map   SG_STATE1 x SG_STATE2 x SG_STATE3   GSTATE, 

where   designates a bijection function. Essentially it partitions 
the original goal state space into three independent parts. 

To postulate that the main goal is reached if and only if all three 
subgoals are reached, we add an axiom into the context of the M_GD 
machine: 

GoalsgsgsgmapState

SubgoalsgSubgoalSubgoalsgsgsgsg





)321(_

313,2,1 321



Refinement performed according to the Goal Decomposition Pattern is 
an example of the Event-B data refinement. We replace the abstract 
variable gstatei with the new variables gstatei  SG_STATEi, i   1..3. 
The new variables model the state of the corresponding subgoals. The 
following gluing invariant allows us to prove data refinement: 

)321(_ gstategstategstatemapStategstate 
 

Essentially the M_GD machine decomposes the Reaching_Goal 
event of the M_AGM machine into three similar events 
Reaching_SubGoali, i  1..3: 
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Let us observe that we can easily verify that the following stability 

property holds for the pattern M_GD: 

)(
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The proposed Goal Decomposition Pattern can be repeatedly used 

to refine subgoals into the subgoals of finer granularity until the desired 
level of details is reached. 

Agent Modelling Pattern 

The elaborated Abstract Goal Modelling and Goal Decomposition 
patterns allow us to specify the system goal(s) at different levels of 
abstraction. In multi-agent systems, (sub)goals are usually achieved by 
system agents. Agents are independent entities that are capable of 
performing certain tasks. In general, the system might have several 
types of agents that are distinguished by the type of tasks that they are 
capable of performing. The next refinement pattern - Agent Modelling 

Pattern - allows us to model agents and associate them with goals. 
We introduce the set AGENTS that abstractly defines the set of 

system agents. In this refinement pattern we also introduce a concept of 
agent eligibility. An agent is eligible if it is capable of achieving a 
certain task (subgoal). We define the non-empty sets EL_AG1, 

EL_AG2, and EL_AG3 of the agents eligible to achieve each particular 
subgoal. 

Agent might fail while trying to achieve a certain subgoal. Then it 
is removed from the dynamic set of the eligible agents represented by 
the variable eligi: eligi   ELAGi, i  1..3. 
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A goal is achieved if there is at least one eligible agent associated 
with it. This is formulated as the corresponding invariant property in 
the pattern: 

 321 eligandeligandelig  
The dynamic part of the Agent Modelling Pattern is defined in the 

machine M_AM. Since we assumed that the agents can fail, the goal 
assigned to the failed agent cannot be reached. To reflect this 
assumption in our model, we refine the abstract event 
Reaching_SubGoali by two events Successful_Reaching_SubGoali and 
Failed_Reaching_SubGoali, i 1..3, which respectively model 
successful and unsuccessful reaching of the subgoal by some eligible 
agent:  

 
In the guard of the event Failed_Reaching_SubGoali we restrict 

possible agent failures by postulating that at least one agent associated 
with the subgoal remains operational: card(eligi) > 1, i  1..3. This 
assumption allows us to change the event status from anticipated to 
convergent. In other words, we are now able to prove that, for each 
subgoal, the process of reaching it eventually terminates. To prove the 
convergence we define the following variant expression:  

card(elig1) + card(elig2) + card(elig3). 



FORMAL AND INTELLECTUAL METHODS FOR SYSTEM 
SECURITY AND RESILIENCE  

149 

When an agent fails, it is removed from a corresponding set of 
eligible agents eligi. This in turn decreases the value of card(eligi) and 
consequently the whole variant expression. On the other hand, when an 
agent succeeds in reaching the goal, all the events become disabled, 
thus ensuring system termination as well. 

In practice, the constraint to have at least one operational agent 
associated with our model can be validated by probabilistic modelling 
of goal reachability. Let us also note that for multi-robotic systems with 
many homogeneous agents this constraint is usually satisfied. 

Agent Refinement Pattern 

Above we have defined the notion of agent eligibility quite 
abstractly. We establish the relationship between subgoals (tasks) and 
agents that are capable of achieving them. The last refinement pattern, 
Agent Refinement Pattern, aims at unfolding the notion of agent 
eligibility. Here we define the agent eligibility by introducing agent 
attributes - agent types and agent statuses. An eligible agent will be an 
operational agent that belongs to a particular agent type. 

We define an enumerated set of agent types AG_TYPE = {TYPE1, 

TYPE2, TYPE3} and establish the correspondence between abstract sets 
of eligible agents and the corresponding agent types by the following 
axioms: 

3..1,)(_  iTYPEiagatypeAGiELagag  
Fig.5.1. An agent is eligible to perform a certain subgoal if it has 

the type associated with this subgoal. 
An agent might be operational or failed. To model the notion of 

agent status we define an enumerated set AGSTATUS = {OK, KO}, 
where constants OK and KO designate operational and failed agents 
correspondingly. 

Below we present an excerpt from the dynamic part of the Agent 

Refinement Pattern - the machine M_AR. We add a new variable 
astatus to store the dynamic status of each agent: 

astatus  AGENTS   AG_STATUS. 
Moreover, we data refine the variables eligi. The following gluing 

invariants relate them with the concrete sets: 

3..1},)(

)(|{





iOKaastatus

TYPEiaatypeAGENTSaaelig i
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In our case, the dynamic set of agents eligible to perform a certain 
subgoal becomes a set of active agents of the particular type. The event 
Failed_Reaching_SubGoal1 is now refined to take into account the 
concrete definition of agent eligibility. The event also updates the status 
of the failed agent. 

 
As mentioned above, to prove the defined goal reachability 

property, we had to make the assumptions related to agent reliability, 
i.e., assume that some agents remain operational to successfully 
complete the goal achieving process. To validate this assumption, we 
can employ quantitative assessment  probabilistic model checking 
techniques.  

To enable probabilistic analysis of Event-B models in the 
probabilistic model checker PRISM, we can rely on the continuous-
time probabilistic extension of the Event-B framework. The idea of this 
approach is as follows. We annotate actions of all model events with 
real-valued rates (e.g.,failure rate, service rate) and then transform such 
a probabilistically augmented Event-B specification into a continuous-
time Markov chain, which we can represent in PRISM. Then we can 
assess the probability of achieving the goal as well as to compare 
several alternative system configurations. 

The resilience-explicit goal-oriented refinement approach presented 
above allowed us to identify the key concepts required for formal 
development of resilient MAS. It has inspired as to propose a 
conceptual framework for goal-oriented reasoning about resilient MAS 
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that puts a specific emphasis of rigorous definition of of system 
reconfigurability. 

Case Study: a Multi-Robotic System. A Case Study Description 

As a case study we consider a multi-robotic system. The goal of the 
system is to coordinate identical robots to get a certain area cleaned. 
The area is divided into several zones, which can be further divided into 
a number of sectors. Each zone has a base station - a static computing 
and communicating device - that coordinates the cleaning of the zone. 
In its turn, each base station supervises a number of robots by assigning 
cleaning tasks to them. 

A robot is an autonomous electro-mechanical device - a special 
kind of a rover that can move and clean. The base station may assign a 
robot a sector a certain area in the zone - to clean. As soon as the robot 
receives a new cleaning task, it autonomously travels to this area and 
starts to clean it. After successfully completing its mission, it returns 
back to the base station to receive a new order. The base station keeps 
track of the cleaned sectors. A robot may fail to clean the assigned 
sector. In that case, the base station assigns another robot to perform 
this task. To ensure that the whole area is eventually cleaned, each base 
station in its turn should ensure that its zone is eventually cleaned. 

The system should function autonomously, i.e., without human 
intervention. Such kind of systems are often deployed in hazardous 
areas (nuclear power plants, disaster areas, mine fields, etc.). Hence 
guaranteeing system resilience is an important requirement. Therefore, 
we should formally demonstrate that the system goal is achievable 
despite possible robot failures. 
Pattern-Driven Refinement of a Multi-Robotic System 

Let us consider the case study that describes the formal 
development of a multi-robotic system in Event-B. The development is 
concluded via instantiation of the proposed patterns, with the goal 
decomposition pattern being applied twice in a row.  

Abstract model. The initial model defined by the machine 
MRS_Abs specifies the behaviour of a multi-robotic system according 
to the Abstract Goal Modelling Pattern. We apply this pattern by 
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instantiating abstract variables with the concrete values and specifying 
events that model system behaviour. 

The state space of the initial model is defined by the type BOOL. 
The value TRUE corresponds to the situation when the desired goal is 
achieved (i.e., the whole territory is cleaned), while FALSE represents 
the opposite situation. 

Similarly to the pattern machine M_AGM, the machine MRS_Abs 
contains an event, CleaningTerritory, that models system behaviour. It 
abstractly represents the process of cleaning the territory, where a 
variable completed € BOOL models the current state of the system 
goal. This event is constructed according to the pattern event 
Reaching_Goal by taking all the instantiations into account, as shown 
below: 

  
The system continues its execution until the whole territory is 

cleaned, i.e., as long as completed stays FALSE. At this level of 
abstraction, the event CleaningTerritory has the anticipated status. In 
other words, similarly to the abstract pattern, we delay the proof that 
the event eventually converges to subsequent refinements. It is easy to 
see that the machine AbsMRS is an instantiation of the pattern machine 
M_AGM, where the abstract type GSTATE its replaced with BOOL, 
the constant Goal is instantiated with a singleton set {TRUE}, and the 
variable gstate is renamed into completed. 

First refinement. The initial model specifies system behaviour in a 
highly abstract way. It models the process of cleaning the whole 
territory. The goal of the first refinement is to model the cleaning of the 
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territory zones. Refinement is performed according to the Goal 

Decomposition Pattern. 
In the first refinement step resulting in the machine MRS_Ref1, we 

augment our model with representation of subgoals. The whole territory 
is divided into n zones, n  N and n >= 1. We associate the notion of a 
subgoal with the process of cleaning a particular zone. Thus a subgoal 
is achieved when the corresponding zone is cleaned. A new variable 
zone-completed represents the current subgoal status for every zone. 
The value TRUE corresponds to the situation when the certain zone is 
cleaned:  

...1_ BOOLncompletedzone   
The refined model MRS_Ref1 is built as an instantiation of the 

Goal Decomposition Pattern machine M_GD, where the subgoal 
states are defined as elements of the variable zone_comvleted, i.e., 

...1),(_ niforicompletedzonegstatei   
This observation suggests the following gluing invariant between 

the initial and the refined models: 
}{]..1[_ TRUEncompletedzoneTRUEcomleted   

The invariant can be understood as follows: the territory is 
considered to be cleaned if and only if its every zone is cleaned. 

The pattern events Reaching.SubGoali correspond to a single event 
Cleaning Zone. 

 
Second refinement. In the development of a multi-robotic system 

we should apply the goal decomposition pattern twice, until we reach 
the level of “primitive” goals, i.e., the goals for which we define the 
classes of agents eligible for execution of these goals 
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Every zone in our system is divided into k sectors, k € N and k > 1. 
A robot is responsible for cleaning a certain sector. We associate the 
notion of a subsubgoal (or simply task) with the process of cleaning a 

particular sector. The task is completed when the sector is cleaned. A 
new variable sector -completed represents the current task status for 
every sector. 

)..1(..1_sec BOOLkncompletedtor   
The refined model is again built as an instantiation of the Goal 

Decomposition Pattern, where the subsubgoal states are defined as the 
elements of the variable sector_completed, i.e., 

kjniforjicompletedtorgstateij ..1,..1),)((_sec   
A gluing invariant expresses the relationship between subgoals and 

tasks: 

}){]..1)[(_sec

)(_(..1

TRUEkzonecompletedtor

TRUEzonecompletedzonenzonezone





 
The invariant postulates that any zone is cleaned if and only if its 

every sector is cleaned. The abstract event CleaningZone is refined by 
the event CleaningSector. The subsubgoal will be achieved if this 
section is eventually cleaned: 

 
Now we have reached the desire level of granularity of our 

subgoals. In the next refinement step (the machine MRS_Ref3) we are 
going to augment our model with an abstract representation of agents. 
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Third refinement. The next refined model of our development is 
constructed according to the refinement Agent Modelling Pattern. As a 
result, we introduce the abstract set AGENTS, and its subset ELIG 
containing the eligible agents for executing the tasks. A new variable 
elig represents the dynamic set of (currently available) eligible agents. 
Following the proposed pattern, we should also guarantee that there 
will be at least one eligible agent for cleaning the sector. This property 
is formulated as an additional invariant: elig  . 

Moreover, according to the pattern, we need abstractly introduce 
agent failures. This is achieved by refining the abstract event 
CleaningSector by two events SuccessfulCleaningSector and 
FailedCleaningSector, which respectively model successful and 
unsuccessful execution of the task by some eligible agent: 
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Following the proposed pattern, we add in the event 

FailedCleaningSector the guard card(elig) > 1 to restrict possible agent 
failure in task performance. Let us also note that for multi-robotic 
systems with many homogeneous agents this constraint is not 
unreasonable. This assumption allows us to prove the convergence of 
the goal-reaching events, i.e., to prove that the process of cleaning the 
territory eventually terminates. 

Fourth refinement. Finally, the Agent Refinement Pattern for 
introducing agent types and their statuses is applied to produce the last 
refined model of our multi-robotic system. In this refinement step we 
explicitly define the agent types - robots and base stations. We partition 
our abstract set AGENTS by disjointed non-empty subsets RB and BS, 
that represent robots and base stations respectively. In this case study 
robots perform the cleaning task. Hence our abstract set of eligible 
agents is completely represented by robots: ELIG = RB. Robots might 



FORMAL AND INTELLECTUAL METHODS FOR SYSTEM 
SECURITY AND RESILIENCE  

157 

be active or failed. We introduce the enumerated set STATUS, which in 
our case has two elements {active, failed}. 

At previous refinement step we have modelled agent faults while 
performing their tasks in a very abstract way. Now we will specify 
them more concretely. We assume that only robots may fail in our 
multi-robotic system. Their dynamic status is stored in the variable 
rbstatus: 

STATUSRBstatusrb _ . 
The abstract variable elig is now data refined by the concrete set: 

}.)(_)(|{ activeastatusrbRBaatypeAGENTSaaelig 

The concrete events are also built according to the proposed pattern. 
For instance, the event FailedCleaningSector can now be specified as 
follows: 

 
An overview of the development of an autonomous multi-robotic 

system according to the proposed specification and refinement patterns 
is shown in the Fig. 5.1. 
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Fig. 5.1. Overview of the development 

While modelling the behaviour of a multi-robotic system, we have 
shown that refinement process allows us also to discover restrictions 
that we have to impose on system behaviour to guarantee its resilience. 
In our case, the goal was achievable only if at least one robot remains 
healthy. Feasibility of such a restriction can be checked 
probabilistically based on the failure rates of robots. 

 
Tasks for seminar 1. 
1. Preparation (determining) of the theme for the work (abstract 

analytical review, development) and clarifying the tasks. 
Topics of work can be formed by students on their own and agreed 

with the leaders on the basis of the indicative list: 
– formal development and quantitative assessment of a resilient 

multi-robotic system; 
– formal reasoning about resilient goal-oriented multi-agent 

systems; 
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- integrating event-b modelling and discrete-event simulation to 
analyse resilience of data stores in the cloud; 

- biological immunity and software resilience; 
- dynamic software diversity for resilient redundant embedded 

systems; 
- designing a resilient deployment and reconfiguration 

infrastructure for remotely managed cyber-physical systems. 
2. Search of the subject information (library, the Internet) and its 

preanalysis. 
Submission of abstract and presentation in English. 
Guidelines and a list of recommended reading to abstracts issued 

individually. 
3. The report plan development and project presentation. 
Report plan (and presentation) includes the preparation of the 

following sections: 
- introduction of (motivation, previous works, state-of-art, the main 

task of the abstract, the structure and characteristics of the content, the 
work plan); 

- a systematic presentation of the basic parts of the report 
(classification schemes, the characteristic of models, methods, tools, 
techniques in groups, the choice of indicators and criteria for 
evaluation, comparative analysis); 

- conclusions (achieving statement of the goal, the basic theoretical 
and practical results, its importance, further work directions); 

- references; 
- appendix. 
4. Report writing. The report shoud has a 15-20 A4 pages (font size 

14, half interval, margins 2 cm), including the title page, the content, 
the main text, references, appendix. Reports prepared by the simple 
compilation of Internet material without careful structuring, using the 
incorrect terminology, and without conclusions are not considered. 

5. Presentation preparation. The presentation should be designed in 
PowerPoint and corresponded to the plan of the repotrt (10-15 slides) 
according to the presentation time - 10 min. 

The presentation should include the following slides: 
- the title slide (with the theme of the report, the author, date of 

presentation); 
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- the content (structure) of the report; 
- the motivation of the issues, purpose and tasks of the report on the 

basis of this analysis; 
- slides with highlighted questions according to tasks; 
- the conclusions of the report; 
- references. 
Each slide should contain a footer with the title and author of the 

report. 
Slide content should not be a part of the text of the report, and 

include keywords, pictures, formulas. 
Submission information can be dynamic. 
Report defense  
Report defense is carried during the seminar, itshould take about 15 

minutes and include the actual report with a presentation (10 minutes) 
and discussion (5 minutes). 

Assessment  
Assessment takes into account the quality of the report text (form 

and content), presentations (content and design), the report (structure, 
content and conclusions), completeness, and correctness of answers. 

Advancement questions 

1. What frameworks are useful for structuring and  specifying 
complex system requirements? 

2. What are the main steps to ensure system resilience in order to 
guarantee its dependability? 

3. What have to do to correct-by-construction system 
development? 

4. What verification is undertaken by abstracting implementation 
up to requirements level and model-checking satisfiability of 
goals? 

5. What does allow us to ensure that a concrete specification 
preserves globally observable behavior and properties of 
abstract specification? 

6. What the Event-B framework has been  designed for? 
7. What does an abstract state machine encapsulate? 
8. What a refinements patterns allow perform concerning to te 

system? 
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9. What notion is specified using in Event-B? 
10. In Event-B, the variables are strongly typed by the constraining 

predicates called invariants 
11. What are the main features in constraining predicates in Event-

B? 
 

3.2 Seminar№2. Formal Modelling of Resilient Data Storage in 
Cloud 

 
The aim and the task of the laboratory work 
The aim of this laboratory work is to formalise an industrial 

approach to implementing resilient cloud data storage.  
Task of the work:  
- To ensure resilience, F-Secure combined the WAL mechanism 

with the log replication.  
- describe the formally expressed data integrity and consistency 

properties in three different replication architectures and explicitly 
identified situations that lead to data loss.  

- use modelling approach to facilitate early design exploration and 
evaluate benefits of different fault tolerance mechanisms in 
implementing resilience requirements. 

 
Preparation for laboratory work  
- to clarify the aims and objectives; 
- to study theoretical material given in the description. 

 
Theoretical material 
 

Introduction 

Rapid development of digital technology puts a high demand on 
reliable handling and storage of large volumes of data. It is forecasted 
that worldwide consumer digital storage needs will grow from 329 
exabytes in 2011 to 4.1 zettabytes in 2016 [89]. Often algorithms for 
data storage in cloud reuse the ones that have been proposed for 
databases. The transactional model adopted in databases guarantees 
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ACID properties - Atomicity, Consistency, Isolation and Durability, 
and as such delivers high resilience guarantees. However, in a pursue of 
high performance, cloud data storages rarely rely on the transactional 
model and hence deliver weaker guarantees regarding data integrity. 
This subsection undertakes a formal study of data integrity and 
consistency properties that can be guaranteed by several different 
architectures of cloud data stores. 

To achieve a high degree of fault tolerance, let us has combine 
write-ahead logging (WAL) [81,82] - a widely used mechanism for 
database error recovery - and massive data replication. As such, this 
combination gives very high resilience guarantees (usually in the form 
of eventual consistency). However, these guarantees are different in 
non-transactional settings typical for cloud. Moreover, data integrity 
and consistency properties vary in the synchronous, semi-synchronous 
and asynchronous architectures used for data replication. Therefore, it 
is useful to rigorously define and compare the properties that can be 
ensured by different solutions. 

To formally model write-ahead logging in replicated data stores the 
Event-B method and the associated Rodin platform is used. Event-B 
[86] is a formal framework that is particularly suitable for the 
development of distributed systems. System development starts from an 
abstract specification that is transformed into a detailed specification in 
a number of correctness- preserving refinement steps. Here the 
synchronous, semi-synchronous and asynchronous replication 
architectures are separately modelled. Event-B and the Rodin platform 
[84] allow us to explicitly define the data integrity and consistency 
properties as model invariants and compare them in all three models. 
Such approach allows the designers to gain formally grounded insights 
on properties of cloud data stores and their resilience. 

Modelling in Event-B 

Event-B is a state-based formal approach that promotes the correct-
by-construc- tion development paradigm and formal verification by 
theorem proving. In Event-B, a system model is specified using the 
notion of an abstract state machine [86]. An abstract state machine 
encapsulates the model state, represented as a collection of variables, 
and defines operations on the state, i.e., it describes the dynamic 
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behaviour of a modelled system. The variables are strongly typed by 
the constraining predicates that together with other important system 
properties are defined as model invariants. Usually, a machine has an 
accompanying component, called a context, which includes user-
defined sets, constants and their properties given as a list of model 
axioms. 

The dynamic behaviour of the system is defined by a collection of 
atomic events. Generally, an event has the following form: 

e ̂  any a where Ge then Re end, 
where e is the event’s name, a is the list of local variables, and (the 

event guard) Ge is a predicate over the model state. The body of an 
event is defined by a multiple (possibly nondeterministic) assignment 
to the system variables. In Event-B, this assignment is semantically 
defined as the next-state relation Re. 

The event guard defines the conditions under which the event is 
enabled, i.e., its body can be executed. If several events are enabled at 
the same time, any of them can be chosen for execution 
nondeterministically. 

Event-B employs a top-down refinement-based approach to system 
development. A development starts from an abstract specification that 
nondeterministically models the most essential functional requirements. 
In a sequence of refinement steps we gradually reduce nondeterminism 
and introduce detailed design decisions. In particular, we can add new 
events, refine old events as well as replace abstract variables by their 
concrete counterparts, i.e., perform data refinement. In the latter case, 
we need to define gluing invariants, which define the relationship 
between the abstract and concrete variables. The proof of data 
refinement is often supported by supplying witnesses - the concrete 
values for the replaced abstract variables. Witnesses are specified in the 
event clause with. 

The consistency of Event-B models, i.e., verification of model well-
formedness, invariant preservation as well as correctness of refinement 
steps, is demonstrated by discharging the relevant proof obligations. 
The Rodin platform [84] provides an automated support for modelling 
and verification. In particular, it automatically generates the required 
proof obligations and attempts to discharge them. 
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Event-B adopts an event-based modelling style that facilitate a 
correct-by- construction development of a distributed system. Since 
cloud data storage is a large-scale distributed system, Event-B is a 
natural choice for its formal modelling and verification. 

Resilient Cloud Data Storage 

Essentially, a cloud data storage can be seen as a networked online 
data storage available for its clients as a cloud service. Data are stored 
in virtualised data stores (pools) usually hosted by third parties. 
Physically, the data stores may span across multiple distributed servers. 
Cloud data storage providers should ensure that their customers can 
safely and easily store their content and access it from their computers 
and mobile devices. Therefore, there is a clear demand to achieve both 
resilience and high performance in handling data. 

Write-ahead logging (WAL) is a standard data base technique for 
ensuring data integrity. The main principle of WAL is to apply the 
requested changes to data files only after they have been logged, i.e., 
after the log has been stored in the persistent storage (disk). The WAL 
mechanism ensures fault-tolerance because, in case of a crash, the 
system would be able to recover using the log. Moreover, the WAL 
mechanism helps to optimise performance, since only the log file 
(rather than all the data changes) should be written to the permanent 
storage to guarantee that a transaction is (eventually) committed. 

The WAL mechanism has been thoroughly studied under the 
reliable persistent storage assumption, i.e., if the disk containing the log 
never crashes. However, in the cloud implementing such a highly-
reliable data store is rather unfeasible. Therefore, to ensure fault 
tolerance, F-Secure has proposed a solution that combines WAL with 
replication. The resulting system - distributed data store (DDS) - 
consists of a number of nodes distributed across different physical 
locations. One of the nodes, called master, is appointed to serve 
incoming data requests from DDS clients and report on success or 
failure of such requests. As a result, for instance, the client may receive 
an acknowledgment that the data have been successfully stored in the 
system. The remaining nodes, called standby nodes, contain replicas of 
the stored data. 
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Each request received by the master is translated into a number of 
reading and writing commands. These commands are first recorded in 
the master log and then applied to the stored data. After this, an 
acknowledgement is sent to the client. (In the non-replicated version of 
WAL widely used in the databases, an acknowledgement to the client is 
sent already after the request is written in the log). The standby nodes 
are constantly monitoring and streaming the master log records into 
their own logs, before applying them to their persistent data in the same 
way. Essentially, the standby nodes are continually trying to “catch up” 
with the master. If the master crashes, one of the standby nodes is 
appointed to be the master in its stead. At this point, the appointed 
standby effectively becomes the new master and starts serving all data 
requests. 

DDS can implement different models (architectures) of logging. In 
the asynchronous model, the client request is acknowledged after the 
master node has performed the required modifications in its persistent 
storage. The second option - the cascade master-standby - is a semi-
synchronous architecture. The client receives an acknowledgement 
after both the master and its warm standby (called upper standby) has 
performed the necessary actions. Finally, in the synchronous model, 
only after all replica nodes have written into their persistent storage, 
i.e., fully synchronised with the master node, the transaction can be 
committed. Obviously, such different logging models deliver different 
resilience guarantees. 

In the formal modelling, we aim at formally defining and 
comparing data integrity and consistency properties that can be ensured 
by each architecture. 

Modelling the Asynchronous Architecture 

In the asynchronous model of replication, the standby nodes may 
stream the master log records only after the required changes have been 
committed and reported to the client. If the master crashes shortly after 
committing the required modifications, some changes will not be 
replicated thus leading to an inconsistent system state. In particular, this 
might happen because a standby node has not yet received (streamed) 
all the master log records when the master failed. To minimise such a 
data loss, the node that has the freshest (and hence the most complete) 
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copy of the master log is chosen to become the next master. A graphical 
representation of the system architecture is shown in Fig.6.1. 

Abstract specification. The initial model - the machine 
Replicationl_m0 abstractly describes the behaviour of the master node - 
receiving and processing of the received requests. The overall model 
structure is given on Fig.6.2. 

The variable comp, comp   COMP, represents the dynamic set of 
active system nodes (data stores), where COMP is a set (type) of all 
available data stores. The variable master, such that master   comp, 
represents the master node. The other variables buffer, inprocess and 
processed represent the received data requests at different stages of 
their processing by the master. They are modelled as disjoint sets of the 
abstract data type REQUESTS. In particular, the variable buffer stores 
the requests that have been received by the master and are waiting to be 
handled. The variable inprocess contains the requests that the master 
node is currently processing, while the variable processed keeps the 
requests that are completed and acknowledged to the client. 

 

 
Figure.6.1. A graphical representation of the system architecture 

The event Requestln specifies arriving of a new request to the 
master. Processing of the received requests and sending notifications to 
the client are modelled by the events Process and RequestOut 
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respectively. The events update the variables buffer, inprocess and 
processed to reflect the progress in request handling. 

 

 
Figure. 6.2. Asynchronous model: the abstract model 

The event ChangeMaster models a crash of a master and selection 
of a new master. One of the remaining nodes is non-deterministically 
chosen to become a new master, while the old master is removed from 
the set of active nodes. Due to possible data loss, the requests being 
handled by the new master may be only a subset of those of the failed 
master. This is reflected by the guard condition: 
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processedinprocessbufferprocessedinprocessnbuffern  __

where n_buffer, n_inprocess, and n_processed are the corresponding 
data structures of the new master. 

Finally, the last two events, CompActivation and 
CompDeactivation, model a possibility to add new data storage nodes 
from the cloud and remove some currently active nodes from the 
system respectively. Only standby nodes can be activated and 
deactivated in this way. 

First Refinement. In the first refinement step (defined by the 
machine Replication1_ref1), we extend the abstract model by explicitly 
representing the behaviour of the standby nodes. 

To accomplish this, we lift the abstract variables buffer, inprocess, 

processed to become node-dependent functions. In Event-B, this is 
achieved by data refinement that replaces these variables with the new 
variables comp_buffer, comp-inprocess and comp-processed. The 
following gluing invariants are defined to to prove correctness of data 
refinement: 

 buffermasterbuffercompREQUESTScompbuffercomp )(_)(_  
 inprocessmasterinprocesscompREQUESTScompinprocesscomp )(_)(_

processedmasterprocessedcompREQUESTScompprocessedcomp  )(_)(_

The overview of the refined model is presented in the Fig. 6.3. The set 
of model events includes the refined versions of the abstract events 
(RequestInMst, ProcessMst, RequestOutMst, ChangeMaster, 
CompActivation, and CompDeactivation) as well as new events 
describing the behaviour of standby nodes. 

We refine the event ChangeMaster to a deterministic procedure of 
choosing the node with the freshest log as a new master to the failed 
master. We formulate this condition as a new guard of the event 
ChangeMaster in the following way: 

 mastercmasternewccompcc _  
 )(_)(_)(_ cprocessedcompcinprocesscompcbuffercomp  

)_(_)_(_)_(_ masternewprocessedcompmasternewinprocesscompmasternewbuffercomp 

 
The standby nodes are continuously streaming the master log. 

Essentially, this means that, as soon as the master node completes the 
request(s), i.e., performs the required modifications in its persistent 
storage, the standby nodes start copying the corresponding entries in the 
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master log. This behaviour is modelled by the new event RequestInStb. 
Similarly as for the master node, the processing of requests and their 
completion by the standby nodes are respectively modelled by the 
events ProcessStb and RequestOutStb. 

In our model, we assume that the nodes might become temporary 
unavailable (i.e., crush and recover). The new variable failed, failed   
comp, is introduced to store such failed nodes. The new event 
CompFailure and CompStbRecovery model possible node crashes and 
recoveries correspondingly. 
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Figure 6.3. Asynchronous model: the first refinement 

Now we are ready to formulate and prove some data consistency 
properties expressing the relationships between the requests handled by 
the master and those handled by the standby nodes. Since any standby 
node is continuously copying the master log, we can say that any 
standby node is logically “behind” the master node. Mathematically, 
this means that all the standby requests (no matter what stage of 
processing they are in) are subset of those of the master node. 
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Moreover, all the requests that are now handled by a standby node 
should have been already completed by the master before. We can 
formulate these two properties as the following system invariants: 

 

 
As it turns out, the last property cannot be proven as an 

(unconditional) invariant of the system. Indeed, it can be violated right 
after one of the standby nodes is appointed the new master. A short 
transitional period may be needed for the new master to “catch up” with 
some of the standby nodes that got ahead by handling the requests still 
not committed by the new master. It is easy to show termination of this 
transitional period, since all such standby nodes are blocked from 
reading any new requests from the master until the master catches up 
with them by processing its requests. 

We can formally model this transitional stage by introducing the 
variable in-transit, inJtransit  BOOL. The variable obtains the value 
TRUE when a new master is appointed, and reobtains the value FALSE 
(in the new event TransitionOver) when all the remaining standby 
nodes have the requests already processed by the new master. 

Then we can reformulate the property (3) as a system invariant and 
prove its preservation: 
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Second Refinement. In the previous refinement step we introduced 

the standby nodes and their interactions with the master. We also 
modelled how the received data requests are transferred through the 
different processing stages on the master and standby sides. The 
variables buffer, inprocess and processed were used to store incoming, 
processing and processed requests. The goal of the second refinement 
step is explicitly model the WAL mechanism and the resulting inter-
dependencies between the master and standby logs/ 

Mathematically, any log can be represented as a sequence, i.e., as a 
function of the type 

ELEMENTSkany  ..1log_  
where k is the index of the last written element. 
In our case, we want to store in the node log all the requests - 

received, being processed, or completed. This can be represented as 
partitioning of the component log into three separate parts. To achieve 
that, we introduce three variables index_written, index_inprocess, and 
index_processed:  

 
such that 

 
For any component c, index_written(c) defines the index of the last 
written log entry, index_inprocess(c) - the index of the last request 
being processed, and index_processed(c) - the index of the last 
completed request. Graphically, this can be represented as shown in 
Fig.6.4. 
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Figure. 6.4. The log partition 

Then the logs of all the components can be defined as the following 
function: 

),(log REQUESTSNATcomp   
such that 

),(_..1))(log( cwrittenindexcdomcompс   
where dom is the functional domain operator. 
The function log is introduced to replace (data refine) the abstract 

variables comp_buffer, comp-inprocess, and comp-processed. To 
prove correctness of such data refinement, the following gluing 
invariants are added: 

 
where R[S] denotes relational image of R with respect to the given 

set S. 
An introduction of the sequential representation of the component 

log allows us to refine some proven invariants as well as prove some 
new ones. For instance, the invariant property (4) now can be 
reformulated in terms of new variables 



FORMAL AND INTELLECTUAL METHODS FOR SYSTEM 
SECURITY AND RESILIENCE  

174 

 
The formulated data refinement also affects all the events where the 
abstract variables were used. For instance, the event RequestOutMst 
(see Fig. 6.5) now specifies completion of master request processing by 
recording this in the node log, i.e., by increasing 
index_processed(master). 

We can refine the procedure of choosing a new master by 
reformulating the guard condition (1) of the event ChangeMaster as 
follows: 

 
Here we check that the new candidate for the master has the largest 

index_written, i.e., the freshest log copy. The other events are refined 
in a similar way. The overview of the refined model is presented in Fig. 
5.6. Moreover, we can explicitly formulate and prove the log data 
integrity properties as model invariants: 
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Figure 6.5. Asynchronous model: the second refinement 
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These properties state that the corresponding log elements of any 
two storage (master or standby) nodes are always the same. In other 
words, all logs are consistent with respect to the log records of the 
master node. 

The Cascade Master-Standby and Synchronous Architectures 

An alternative, semi-syncronous replication model is the cascade 

master-standby. Besides the master node that serves incoming data 
base requests, we single out another functional node - upper standby. 
The upper standby node starts streaming the master log as soon as the 
master records the requests in its log. Moreover, the master node waits 
until the upper standby reads its processed records and, only after that, 
commits the changes and reports to the client. 

In its turn, the other standby nodes are constantly monitoring and 
streaming the upper standby log records into their own logs. 
Essentially, the standby nodes are continually trying to catch up with 
the upper standby. 

If the master node goes down, the upper standby node is 
automatically appointed to be the master in its stead. Moreover, the 
next candidate for the new upper standby node becomes the node that is 
closest (with respect to the copied log file) to the current upper standby. 

Let us note that this proposed cascade replication mode allows to 
decrease the possibility of loss of the committed changes if the master 
node fails. Indeed, at that point, when the master node fails, the upper 
standby node had already recorded all the changes that were committed 
and reported to the client by master before. Therefore, such an 
architectural solution increases the system resilience. A possibility of 
data loss leading to an inconsistent system state is still present. 
However, for this to happen, the master node and the upper standby 
node should both fail in a very short time period. A graphical 
representation of the system architecture is shown in Fig.6.6. 
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Fig. 6.6. Cascade system architecture 

The formal development of the proposed replication model consists 
of an initial specification and its two refinements. The initial model 
abstractly describes the system behaviour focusing on the master and 
the upper standby nodes. The first refinement step introduces the 
remaining standby nodes and their interoperation with the upper 
standby, while the second refinement explicitly models the sequential 
logging mechanism and the interdependencies between the master, the 
upper standby and others standby logs. Let us note that the 
development is similar to that of the asynchronous model. Due to the 
lack of space we will only highlight the most significant differences 
between them. 

Abstract specefication. In the initial model defined by the machine 
Replication2_m0 we focus on the master and upper standby 
components and their interoperation. The overall model structure is 
given on Fig.6.7. 
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In addition to the master node,we single out one more node to serve 
as an upper standby node. We model this by inrodusing the variable 
ups_stanbdy, such that ups_stanbdy comp and ups_stanbdy   master 

The variables m_buffer, m_inprocess, m_processecl represent the 
received requests at different stages of their processing by the master. 
Similarly, the variables ups_buffer, ups_inprocess, ups_processed are 
introduced to model the respective data structures for the upper 
standby. The events RequestlnMst, ProcessMst, RequestOutMst and 
RequestlnUps, ProcessUps, RequestOutUps specify the corresponding 
request stages for the master and upper standby nodes. 

The master node can not commit the changes until the upper 
standby reads them. We model this requirement by adding the 
following guard condition in the event RequestOutMst: 

 
The process of changing of the master node by the upper standby is 

modelled by the event ChangeMaster. The event also specifies the 
selection procedure of a new upper standby. Due to possible data loss, 
the requests being handled by the new upper standby may be only a 
subset of those of the current upper standby: 
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Fig. 6.7. Cascade architecture: abstract model 

 
Moreover, a similar event, ChangeUpsStb, models the selection of a 

new upper standby in the case when the current one fails. 
First Refinement. In the first refinement step we extend the 

abstract model by explicitly introducing the behaviour of the remaining 
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standby nodes. Similarly as for the asynchronous model, we data refine 
the abstract variables m_buffer, m_inprocess, m_processed and 
ups_buffer, ups_inprocess, ups_processed by the new functional 
variables comp_buffer, comp_inprocess and comp_processed. 

In addition, a number of the new events are added to describe the 
behaviour of standby nodes, node failures and recovery (RequestInStb, 
ProcessStb, RequestOutStb, CompFailure, CompStbRecovery). 

 

 
As for the asynchronous model, we can formulate and prove data 

consistency properties between the involved components. The property 
(2) (stating that a standby node is always behind the master in terms of 
handled requests) corresponds to two properties for the cascade 
replication mode: the first one stating this property between any 
standby and the upper standby, while the second one stating the same 
property between the upper standby and master nodes. 

The property (4) for the asynchronous mode expresses the 
relationships between the processed requests of the master node and 
read requests of the standby nodes. This property again corresponds to 
two properties for the cascade mode: one between the upper standby 
and remaining standbys, and the other one between the master and 
upper standby nodes. In both cases, the properties may be violated for a 
short period (indicated by in_transit = TRUE) right after a new upper 
standby node is chosen to replace a failed one: 
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Note how the requirement that the master cannot commit a request 

before it is read by the upper standby reverses the inclusion relationship 
in the (11). 

Second Refinement. The goal of the second refinement step is 
explicitly model the write-ahead logging mechanism and the resulting 
interdependencies between the master, upper standby and other standby 
logs. 

 
We data refine the abstract variables comp_buffer, 

comp_inprocess, and comp_processed by the introduced function log. 
The following gluing invariants allow us to prove correctness of such a 
data refinement:  
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Introducing the sequential representation of the component log 
allows us to reformulate some proven invariants as well as prove some 
new ones. For instance, the invariant properties (10) and (11) now can 
be reformulated in terms of the new variables as follows:  

Finally, the log data integrity properties (in the exact form as in (7)) 
are formulated and proved for this replication mode as well. 

Synchronous Architecture. The last development formalises the 
synchronous replication architecture, which can be considered as a 
combination of both asynchronous and cascade models. The essential 
differences of this model are following. The standby nodes start 
streaming the master log records as soon as master records the 
commands in its log. Moreover, the master node waits until all the

standby nodes read processed records from its log and, only after that, 
commits the corresponding changes and reports to the client. If the 
master goes down, one of the standby nodes is appointed to be the 
master in its stead. Essentially, it is a generalisation of the cascade 
model where all the standby nodes play the role of upper standby. 

This architecture allows to avoid a possibility of loss of the 
committed changes if the master fails. Indeed, at that point, all the 
standby nodes have already recorded all the changes that were 
committed and reported to the client by master. On the other hand, the 
necessity for the master to synchronise in such a way with all the 
standbys may negatively affect the performance of this model. 

Developing the formal model of this architecture, we essentially 
repeat the refinement steps of the asynchronous model. In particular, 
the initial model is the same as the abstract model presented on Fig.6.2. 
In the first refinement step, in the RequestOutMst event modelling the 
commitment of the changes by master, we have to impose an additional 
restriction for this behaviour. Namely, the master node can not commit 
the changes until all the standby nodes have read them. We model this 
requirement by adding the following guard condition to the event:  
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where we check that the request r has already been recorded by all 

the standby nodes. Moreover, in the eventRequestInStb, we relax its 
guard by allowing to copy the master log as soon as the master records 
requests in its log. 

Similarly as for the first two models, we formulate and prove log 
data consistency properties. Specifically, the property (2), stating that 
the standby nodes are continuously trying to catch up with the master in 
terms of handled requests, can be proved for this architecture as well. 
Moreover, since the master can not commit the changes until the all 
standbys have read the corresponding log records, it means that all the 
requests committed by the master have been previously read by all 
standbys. We can formulate this property as follows: 

 
Note that, once again, this property can be violated right after a new 

master is appointed and thus a transitional period is needed. This 
property is very similar to that of (11) (for the cascade architecture) and 
is inverse, with respect to the inclusion relation, to that of (4) (for the 
asynchronous architecture). 

As in the previous two developments, in the second refinement step 
we introduce component logs as sequences. In terms of the new 
variables, the (14) property can be then reformulated as follows: 

 
Finally, the log data integrity properties (7), stating that the 

corresponding log elements of any two storage components are always 
the same, are proved for this model as well. The full formal 
developments can be found in [88]. 
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Proof Statistics To verify correctness of the presented formal 
developments, we have discharged around 400 proof obligations for the 
first model, more than 750 proof obligations for the second model, and 
around 400 for the third model. In total, around 90% of them have been 
proved automatically by the Rodin platform and the rest have been 
proved manually in the Rodin interactive proving environment. The 
proof statistics in terms of generated proof obligations for the presented 
Event B developments is shown in the Table 6.1. The numbers 
represent the total number of proof obligations and the percentage of 
manual effort for each model in each refinement step. The whole 
development and proving effort has taken around one person-month. 

Table 6.1. The proof statistics 

 
Tasks for seminar 2. 
1. Preparation (determining) of the theme for the work (abstract 

analytical review, development) and clarifying the tasks. 
Topics of work can be formed by students on their own and agreed 

with the leaders on the basis of the indicative list: 
– empirical assessment of resilience; 
– quantitative verification of system safety in event-B; 
- architecting resilient computing systems; 
- predictability and evolution in resilient systems; 
- modelling resilience of data processing capabilities of CPS; 
- safety lifecycle development process modeling for embedded 

systems. 
2. Search of the subject information (library, the Internet) and its 

preanalysis. 
Submission of abstract and presentation in English. 
Guidelines and a list of recommended reading to abstracts issued 

individually. 
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3. The report plan development and project presentation. 
Report plan (and presentation) includes the preparation of the 

following sections: 
- introduction of (motivation, previous works, state-of-art, the main 

task of the abstract, the structure and characteristics of the content, the 
work plan); 

- a systematic presentation of the basic parts of the report 
(classification schemes, the characteristic of models, methods, tools, 
techniques in groups, the choice of indicators and criteria for 
evaluation, comparative analysis); 

- conclusions (achieving statement of the goal, the basic theoretical 
and practical results, its importance, further work directions); 

- references; 
- appendix. 
4. Report writing. The report shoud has a 15-20 A4 pages (font size 

14, half interval, margins 2 cm), including the title page, the content, 
the main text, references, appendix. Reports prepared by the simple 
compilation of Internet material without careful structuring, using the 
incorrect terminology, and without conclusions are not considered. 

5. Presentation preparation. The presentation should be designed in 
PowerPoint and corresponded to the plan of the repotrt (10-15 slides) 
according to the presentation time - 10 min. 

The presentation should include the following slides: 
- the title slide (with the theme of the report, the author, date of 

presentation); 
- the content (structure) of the report; 
- the motivation of the issues, purpose and tasks of the report on the 

basis of this analysis; 
- slides with highlighted questions according to tasks; 
- the conclusions of the report; 
- references. 
Each slide should contain a footer with the title and author of the 

report. 
Slide content should not be a part of the text of the report, and 

include keywords, pictures, formulas. 
Submission information can be dynamic. 
Report defense  
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Report defense is carried during the seminar, itshould take about 15 
minutes and include the actual report with a presentation (10 minutes) 
and discussion (5 minutes). 

Assessment  
Assessment takes into account the quality of the report text (form 

and content), presentations (content and design), the report (structure, 
content and conclusions), completeness, and correctness of answers. 

Advancement questions 

1. What does the F-Secure do to ensure resilience? 
2. What are the main steps to describe the formally expressed data 

integrity and consistency properties in three different 
replication architectures and explicitly identified situations that 
lead to data loss? 

3. 2.Q. ? 
4. What have we do to facilitate early design exploration and 

evaluate benefits of different fault tolerance mechanisms in 
implementing resilience requirements? 

5. What can we use to write-ahead logging in replicated data 
stores? 

6. What are the main phases to construct the detailed specification 
in a number of correctness-preserving refinement steps? 

7. What does allow us to explicitly define the data integrity and 
consistency properties as model invariants and compare them 
in all three models? 

8. What does promotes Event-B? 
9. What does abstract state machine describe? 
10. What does abstract state machine include? 
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DESCRIPTION OF  THE MODULE  
 

TITLE OF THE MODULE Code  
Formal and Intellectual Methods for System 

Security and Resilience  
 

 

 
Teacher(s) Department 

Coordinating: Oksana 
Pomorova 

Others: Sergii Lysenko, 
Dmytro Medzatyi 

System Programming 
 

 
Study cycle Level of the 

module 
Type of the 
module 

Doctoral A Full-time tuition 
 

 
Form of delivery Duration  Langage(s) 

Full-time tuition 
 

One  semester 
 

English 
 

 
Prerequisites 

Prerequisites: 
Formal Methods; Foundation of 
Modeling; Computer Networks; 
Artificial Intelligence; Computer 
Systems and System Analysis 
 

Co-requisites (if necessary): 
 

 
Credits of 

the module 
Total 

student 
workload 

Contact 
hours 

Individual 
work hours 

4 108 36 72 
 
Aim of the module (course unit): competences foreseeen by the study 

programme 
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The aim of module is to create a knowledge base for formal methods for 
System Security and Resilience and to provide a prerequisites for practical use 
of B-method for specifying and designing computer systems and software with 
formal notation. The study also expands the current research on artificial 
intelligence in cyber defense. 

. 
Learning outcomes of 

module (course unit) 
Teaching/lear

ning methods 
Assessment 
methods 

At the end of course, the 
successful student will be able 
to: 

1. apply Formal Analysis 
and Design for Security 
Engineering to industry-related 
case studies in order to 
demonstrate the feasibility and 
effectiveness of the approach in 
building secure computer 
systems and software in a 
provable way 

Interactive lectures,  
Learning in 
laboratories,  
Just-in-Time 
Teaching 

Module 
Evaluation 
Questionnaire 

2. model and analyze the 
security properties in 
architecture designs; model 
security functional and non-
functional properties; to use the 
automated analysis of non-
functional properties by formal 
methods; use a combination of 
semi-formal UML and formal 
methods in order to achieve the 
modelling efficiency provided 
by UML and the rigorous 
analysis provided by formal 
methods; use the model 
checking and theorem prover as 
the tools in the analysis of non-
functional properties; use of 
different notations, tailored 
notations for modelling and 
analyzing a comprehensive 
collection of security properties 

Interactive lectures,  
Learning in 
laboratories,  
Just-in-Time 
Teaching 

Module 
Evaluation 
Questionnaire 
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in software architectures 
3. use model checkers and 

theorem provers for verifying 
that a formal specification 
satisfies a security property of 
interest; automatically generate 
test cases that check source code 
annotations; automatically 
construct efficient provably 
correct code from specifications 

Interactive lectures,  
Learning in 
laboratories,  
Just-in-Time 
Teaching 

Module 
Evaluation 
Questionnaire 

4. use the BAN logic and 
the authentication of logic in 
order to verify in the correctness 
of a protocol; use the process 
algebra CSP for describing and 
reasoning about the behaviour of 
concurrent systems and for 
reasoning about the high-level 
interactions and events that may 
occur during a run of a protocol; 
take into account the security 
properties and build methods for 
assessing the security of a 
system; use formal methods for 
the detection of weaknesses and 
possible attacks; use and apply 
tools that automatically translate 
abstract descriptions of security 
protocols into process-algebraic 
descriptions that can be 
analyzed with model checkers 

Interactive lectures,  
Learning in 
laboratories,  
Just-in-Time 
Teaching 

Module 
Evaluation 
Questionnaire 

5. architect of an intelligent 
system for information security 
management; build the adaptive 
and capable systems for 
discovering and building new 
knowledge for the information 
security domain 

Interactive lectures,  
Learning in 
laboratories,  
Just-in-Time 
Teaching 

Module 
Evaluation 
Questionnaire 

6. use the techniques based 
on Artificial Intelligence for 
information security 

Interactive lectures,  
Learning in 
laboratories,  

Module 
Evaluation 
Questionnaire 
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management and cyber defense Just-in-Time 
Teaching 

7. use and apply the 
quantitative safety assessment 
into resilient system 
development in event-B; apply 
b-method for merging logical 
(qualitative) reasoning about 
resilience of system behaviour; 
involve the B Method and 
Event-B in the development of 
resilient systems 

Interactive lectures,  
Learning in 
laboratories,  
Just-in-Time 
Teaching 

Module 
Evaluation 
Questionnaire 
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Themes 

Contact work hours  
Time and tasks 
for individual 

work 

Le
ct

ur
es
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su
lta
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ns
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s  
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La
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Pl
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en

ts
 

T
ot

al
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ta

ct
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or
k 

In
di

vi
du

al
 w

or
k 

Tasks 

1. Formal Analysis and 
Design for Security 
Engineering 
1.1. Introduction to 
formal methods.  
1.2. Formal Analysis 
and Design for Security 
Engineering 
1.3. Formal methods for 
Architecting Secure 
Software Systems 

6    4  10 21  

2. Formal Methods for 
the Analysis of 
Security Protocols 
2.1. Formal Methods for 
Assuring Security of 
Computer Networks 
2.2. Formal Methods for 
the Analysis of Security 
Protocols. Soundness of 
Formal Encryption 
2.3. Formal Methods for 
the Analysis of Security 
Protocols. Process 
Algebras for Studying 
Security 
2.4. A Process Algebra 
for Reasoning about 
Quantum Security 

8    4  12 28  

3. Formal and 
Intellectual Methods 
for System Security 
and Resilience 
3.1. Intellectual methods 

6  4    10 23  
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for security 
3.2. Methods and 
Techniques for Formal 
Development and 
Quantitative 
Assessment. Resilient 
systems 
3.3. Formal 
Development and 
Quantitative Assessment 
of Resilient Distributed 
Systems 

Iš viso 
 

20  4  8  32 72  

 
Assessment 
strategy 

Weight 
in % 

Deadlines Assessment criteria 

Lecture activity, 
including 
fulfilling special 
self-tasks 

10 7,14 85% – 100% Outstanding 
work, showing a full grasp of 
all the questions answered. 
70% – 84% Perfect or near 
perfect answers to a high 
proportion of the questions 
answered. There should be a 
thorough understanding and 
appreciation of the material. 
60% – 69% A very good 
knowledge of much of the 
important material, possibly 
excellent in places, but with a 
limited account of some 
significant topics. 
50% – 59% There should be a 
good grasp of several 
important topics, but with only 
a limited understanding or 
ability in places. There may be 
significant omissions. 

45% – 49% Students will 
show some relevant knowledge 
of some of the issues involved, 
but with a good grasp of only a 
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minority of the material. Some 
topics may be answered well, 
but others will be either 
omitted or incorrect. 
40% – 44% There should be 
some work of some merit. 
There may be a few topics 
answered partly or there may 
be scattered or perfunctory 
knowledge across a larger 
range. 
20% – 39% There should be 
substantial deficiencies, or no 
answers, across large parts of 
the topics set, but with a little 
relevant and correct material in 
places. 

0% – 19% Very little or 
nothing that is correct and 
relevant. 

Learning in 
laboratories  

30 7,14 85% – 100% An outstanding 
piece of work, superbly 
organised and presented, 
excellent achievement of the 
objectives, evidence of original 
thought. 

70% – 84% Students will 
show a thorough understanding 
and appreciation of the 
material, producing work 
without significant error or 
omission. Objectives achieved 
well. Excellent organisation 
and presentation. 

60% – 69% Students will 
show a clear understanding of 
the issues involved and the 
work should be well written 
and well organised. Good work 
towards the objectives. 

The exercise should show 
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evidence that the student has 
thought about the topic and has 
not simply reproduced standard 
solutions or arguments. 

50% – 59% The work 
should show evidence that the 
student has a reasonable 
understanding of the basic 
material. There may be some 
signs of weakness, but overall 
the grasp of the topic should be 
sound. The presentation and 
organisation should be 
reasonably clear, and the 
objectives should at least be 
partially achieved. 
45% – 49% Students will show 
some appreciation of the issues 
involved. The exercise will 
indicate a basic understanding 
of the topic, but will not have 
gone beyond this, and there 
may well be signs of confusion 
about more complex material. 
There should be fair work 
towards the laboratory work 
objectives. 
40% – 44% There should be 
some work towards the 
laboratory work objectives, but 
significant issues are likely to 
be neglected, and there will be 
little or no appreciation of the 
complexity of the problem. 
20% – 39% The work may 
contain some correct and 
relevant material, but most 
issues are neglected or are 
covered incorrectly. There 
should be some signs of 
appreciation of the laboratory 
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work requirements. 
0% – 19% Very little or 
nothing that is correct and 
relevant and no real 
appreciation of the laboratory 
work requirements. 

Module 
Evaluation Quest 

60 8,16 The score corresponds to the 
percentage of correct answers 
to the test questions 

 
Author Year 

of 
issue 

Title  No 
of 
periodic
al or 
volume 

Place of 
printing. Printing 
house or intrenet 
link 

Compulsory literature 
Dr. Hubert 
Garavel 

2013 Formal Methods 
for Safe and 
Secure Computers 
Systems 

 Federal Office for 
Information 
Security 

P. Popov, O. 
Netkachov, K. 
Salako 

2014 Model-based 
evaluation of the 
resilience of 
critical 
infrastructures 
under cyber 
attacks 

№1. – р. 
231-243 

International 
Conference on 
Critical 
Information 
Infrastructures 
Security 

Vain J. 2007 Formal 
Techniques for 
Networked and 
Distributed 
Systems 

№4574. 
– p. 364-
373. 

FORTE 2007: 
27th IFIP WG 6.1 
International 
Conference, 
Tallinn, Estonia, 
June 27-29, 2007, 
Proceedings, 
Springer Science 
& Business Media 

J. Vain, E. 
Halling, G. 
Kanter, A.  
Anier, D. Pal  

2016 Model-Based 
Testing of Real-
Time Distributed 
Systems 

№2. – p. 
272-286. 

International 
Baltic Conference 
on Databases and 
Information 
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Systems 
T. Tagarev, H. 
Bucur-Marcu, P. 
Flur  

2009 Defence 
Management: An 
Introduction 

212 p. Geneva : DCAF, 
Geneva Centre, 

S. Russo, G. 
Carrozza, R. 
Pietrantuono  

2014 Defect analysis in 
mission-critical 
software systems: 
a detailed 
investigation 

№1699. 
– р. 22-
49. 

Software: 
Evolution and 
Process 

S. Russo, D. 
Cotroneo, R. 
Pietrantuono  

2015 RELAI testing: a 
technique to assess 
and improve 
software reliability 

№42. – 
р. 452-
475 

IEEE Transaction 
on Software 
Enginering. 

V. Kharchenko, 
A. Tarasyuk, A. 
Gorbenko  

2015 Principles of 
Formal Methods 
Integration for 
Development 
Fault-Tolerant 
Systems: Event-B 
and FME (C) 

№3. – р. 
423-429. 

Journal of 
Computing 

 Kharchenko, B. 
Volochiy, O. 
Mulyak, L. 
Ozirkovskyi 

2016 Automation of 
Quantitative 
Requirements 
Determination to 
Software 
Reliability of 
Safety Critical 
NPP I&C systems 

№6. – p. 
337-346 

Second 
International 
Symposium on 
Stochastic Models 
in Reliability 

O. Tarasyiuk, A. 
Gorbenko 
 

2009 Formal method for 
the development of 
the critical 
software 

 Kharkiv: Nationa 
Aerospace univ 
«Kharkiv Aviation 
Institure» 

Romanovsky A. 
 

2012 Deployment of 
Formal Methods in 
Industry: the 
Legacy of the FP7 
ICT DEPLOY 
Integrated 
Project”, 

 Newcastle 
University, 
Computing 
Science Newcastle 
upon Tyne 

Laprie, J-C. 2008 From 
dependability to 

 38th Annual 
IEEE/IFIP 
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resilience International 
Conference on 
Dependable 
Systems and 
networks 

Reder, L., Day, 
J., Ingham, M., 
Murray, R., and 
Williams, B. 

2012 Engineering 
Resilient Space 
Systems 
Introduction to 
Short Course 

Enn Tyugu 2011 Artificial 
Intelligence in 
Cyber Defense 

3rd International 
Conference on 
Cyber Conflict 
(Tallinn, Estonia) 

Lirong Dai and 
Kendra Cooper 

2007 A Survey of 
Modelling and 
Analysis 
Approaches for 
Architecting 
Secure Software 
Systems 

International 
Journal of 
Network Security 

Constance L. 
Heitmeyer, Myla 
M. Archer, 
Elizabeth I. 
Leonard and 
John D. McLean 

2008 Applying Formal 
Methods to a 
Certifiably Secure 
Software System 

SOFTWARE 
ENGINEERING 

Pedro Miguel 
dos Santos Alves 
Madeira Adão 

2006 Formal Methods 
for the Analysis of 
Security Protocols 

PhD diss., 
INSTITUTO 
SUPERIOR 
TĖCNICO 

Bruno Blanchet 2011 Using Horn 
Clauses for 
Analyzing 
Security Protocols 

Formal Models 
and Techniques 
for Analyzing 
Security Protocols 

Oksana 
Pomorova, Oleg 
Savenko, Sergii 
Lysenko, Andrii 
Kryshchuk  

2013 Multi-Agent Based 
Approach for 
Botnet Detection 
in a Corporate 
Area Network 
Using Fuzzy Logic 

Vol 37 Computer 
Networks 
Communications 
in Computer and 
Information 
Science 
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Lysenko S., 
Savenko O., A. 
Kryshchuk, Y. 
Klyots 
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Syllabus 
 

MODULE1  Formal Analysis and Design for Security Engineering 

1 TOPIC 1.  Introduction to FormalMethods 
1.1 What are Formal Methods?  
1.2 The Nature of Formal Methods 
1.3 Benefits in the use of Formal Methods 

2 TOPIC 2. Formal Analysis and Design for Security Engineering 
2.1 Knowledge Acquisition for Automated Specifications – 

Goal-Oriented Requirements of the Security Engineering 
2.2 Goal-Oriented Requirements of the Security Engineering 
2.4 The B Method 
2.3  Formal Analysis and Design for Security Engineering 
3.3 FADES Tool Support 

3 TOPIC 2. Formal methods for Architecting Secure Software 
Systems 

1.1. Systematical security engineering into software 
applications 

1.2 Semi-formal Security Modelling and Analysis Approaches 
1.3 MAC-UML Framework. SecureUML 
1.4 Separating Modelling of Application and Security Concerns 
1.5 Formal Security Modelling and Analysis Approaches 
1.6 Integrated Semi-formal and formal Modelling and Analysis 

Approaches 
 

 

LAB1 Formal Analysis and Design for Security Engineering. 
Demonstration with Case Studies. The Spy Network Case Study 

4.1.1 Case Study Preliminary Problem Statement  
4.1.2 Elaborating Security Requirements with KAOS 
4.1.2.1 Integrity Goals 
4.1.2.2 Confidentiality Goals  
4.1.2.3 Authentication Goals 
4.1.2.4 Availability Goals  
4.1.2.5 Access Control Goals 
4.1.3 Analysis and Resolution of Obstacles and Conflicts for 

Security Goals  
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4.1.3.1 Generating Obstacle to the Goal RevelationIntegrity 
4.1.3.2 Resolving Obstacles to the Goal RevelationIntegrity 
4.1.4 Transforming the Spy Network Security Goal Graph to B 
4.1.5 Derivation of Design and Implementation  
4.1.6 Acceptance Testing 
4.1.7 Security Specifications Changes  

LAB 2. Formal Methods for a Certifiable Secure Software System 
2.1. Code verification process 
2.2 Formal foundations for a certifiably secure software system 
2.3 Applying formal Techniques to Other Security Properties 

 

MODULE 2 . Formal Methods for the Analysis of Security 
Protocols. 

4 TOPIC 1. Formal Methods for Assuring Security of Computer 
Networks 

1.1 Formal Methods and Security of Computer Networks 
1.2 Needham–Schroeder protocol 
1.3 Tools for formal methods 
1.4 Model–based software development 
1.5 Principals of security.  
1.6 Key security properties 
1.7 Assessing security protocols 
1.8. Needham–Schroeder public–key protocol.BAN logic 

5    TOPIC 2. Formal Methods for the Analysis of Security 
Protocols. Soundness of Formal Encryption 

4.1 The Abadi-Rogaway Logics of Formal Encryption. Process 
Algebras for Security. Quantum Security 

4.2 The Abadi-Rogaway Soundness Theorem 
4.3 Soundness in the Presence of Key-Cycles 
4.4 Partial Leakage of Information 
4.5 Information-Theoretic Interpretations: Soundness and 

Completeness for One-Time Pad 
4.6 General Treatment for Symmetric Encryption 

6  TOPIC 3. Formal Methods for the Analysis of Security 
Protocols. Process Algebras for Studying Security 

3.1 Low-Level Target Model 
3.2 A Distributed Calculus with Principals and Authentication 
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3.2.1 Syntax and Informal Semantics 
3.2.2 Operational Semantics 
3.2.3 An Abstract Machine for Local Reductions 
3.3 High-Level Equivalences and Safety 
3.4 Applications  
3.4.1 Anonymous Forwarders  
3.4.2 Electronic Payment Protocol 
3.4.3 Initialisation 
3.5 A Concrete Implementation 
3.5.1 Implementation of Machines 

7  TOPIC 3. A Process Algebra for Reasoning about Quantum 
Security  

4.1 Process Algebra 
4.1.1 Quantum polynomial machines 
4.1.2 Process algebra 
4.1.3 Semantics  
4.1.4 Observations and observational equivalence 
4.2 Emulation and Composition Theorem 
4.3 Quantum Zero-Knowledge Proofs 

LAB 4. Using Horn Clauses for Analyzing Security Protocols 
LAB 5 Validating Security Protocols under the General 

Attacker 
MODULE 3 Formal and Intellectual Methods for System Security 

and Resilience 

8  TOPIC 1.  Intellectual methods for security 
1.1  Artificial Intelligence Techniques Applied to Intrusion 

Detection.  
1.2 Multi-agent based approach of botnet detection in computer 

systems 
1.3  Technique for bots detection which use polymorphic code 

9  TOPIC 2. Methods and Techniques for Formal Development and 
Quantitative Assessment. Resilient systems 

2.1 Resilience and Dependability: Basic Definitions. Goal-
Based Development 

2.2 Development Methodologies 
2.3 Event-B Method 
2.4 Quantitative Assessment 
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2.5 PRISM model checker 
2.6 Discrete-event simulation 

10   TOPIC 3. Formal Development and Quantitative Assessment 
of Resilient Distributed Systems 

3.1 Resilience-Explicit Development Based on Functional 
Decomposition 

3.2 Modelling Component Interactions of the Resilient System 
with Multi-Agent Framework  

3.3 Goal-Oriented Modelling of Resilient Systems 
3.4 Pattern-Based Formal Development of Resilient MAS 
3.5 Formal Goal-Oriented Reasoning About Resilient 

Reconfigurable MAS 
3.6 Modelling and Assessment of Resilient Architectures 

Seminar №1. Formal Goal-Oriented Development of Resilient 
MAS in Event-B 

Seminar№2. Formal Modelling of Resilient Data Storage in Cloud. 
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