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1 STANDARDS FOR SECURITY OF SAFETY 
CRITICAL SYSTEMS 

 
1.1 Survey of standards in security 
 
At the present security standards are developed by many national 

and international standardization organizations. The most relevant to 
safety critical systems are the following security standards sets: 

– ISO/IEC 27000 “Information technology – Security techniques – 
Information security management systems” standards family states 
requirements to the Information Security Management System (ISMS) 
independently from type of computer system or organization; this series 
contains about 40 parts and is an umbrella document for all other 
documents in security (see Section 1.2); 

– ISO/IEC 15408 “Information technology – Security techniques –
Evaluation criteria for IT security” establishes Common Criteria to 
evaluate security functions and assurance techniques for information 
product (see Section 1.3) [1]; 

– ISA/IEC 62443 “Security for Industrial Automation and Control 
Systems” (see Section 1.4); 

– The United States National Institute of Standards and 
Technology (NIST) developed NIST SP 800 series which cover many 
security issues; formally NIST standards are national but many 
countries and companies apply it as valuable state-of-the-art 
requirements; the NIST Cybersecurity Framework (SCF) based on 
NIST SP 800-53 “Security and Privacy Controls for Federal 
Information Systems and Organizations” is described in 
Section 1.5 [2,3]; 

– Institute of Electrical and Electronics Engineers (IEEE) 
standards, such as IEEE 1686-2007 “Standard for Substation Intelligent 
Electronic Devices IED Cybersecurity Capabilities”, IEEE P1711 
“Standard for a Cryptographic Protocol for Cybersecurity of Substation 
Serial Links”, IEEE 1815-2012 “Standard for Electric Power System 
Communications-Distributed Network Protocol (DNP3)”; 

– Standards applicable to specific domains which give details of 
the above standards requirements; we consider nuclear standard 
IEC 62645 “Nuclear power plants – Instrumentation and control 

 



systems – Cybersecurity requirements” with associated IEC 62859 
“Nuclear power plants – Instrumentation and control systems – 
Coordination between safety and cybersecurity” and IEC 62988 
“Nuclear power plants – Instrumentation and control important to 
safety – Selection and use of wireless devices”. 

Also it should be mentioned a lot of activities, performed in 
different industrial domains by technical and research organizations. 
The most powerful organizations are working in USA as a part of the 
continuing effort to provide effective security standards and guidance to 
federal agencies and their contractors in support of the Federal 
Information Security Management Act (FISMA). FISMA was signed 
into law part of the Electronic Government Act of 2002. There are 
the following organizations, addressing security [4]: 

– The USA Department of Energy (DOE) developed the 
Cybersecurity Capability Maturity Model (C2M2) from the Electricity 
Subsector Cybersecurity Capability Maturity Model (ES-C2M2) by 
removing sector specific references and terminology. The ES-C2M2 
was developed in support of a White House initiative led by the DOE, 
in partnership with the Department of Homeland Security (DHS), and 
in collaboration with private and public sector experts; 

– The American Gas Association (AGA), representing energy 
utility organizations that deliver natural gas customers industries 
throughout the United States. The AGA 12 series of documents 
recommends practices designed to protect supervisory control and data 
acquisition (SCADA) communications against cyber incidents [5]; 

– The American Petroleum Institute represents members involved 
in all aspects of the oil and natural gas industry. API 1164 provides 
guidance to the operators of oil and natural gas pipeline systems for 
managing SCADA system integrity and security; 

– The Industrial Control Systems Cyber Emergency Response 
Team (ICS-CERT) operates within the National Cybersecurity and 
Integration Center (NCCIC), a division of the Department of Homeland 
Security's Office of Cybersecurity and Communications (DHS CS&C). 
NCCIC/ICS-CERT is a key component of the DHS Strategy for 
Securing Control Systems. ICS-CERT works with the control systems 
community to ensure that recommended practices, which are made 

 



available, have been vetted by subject-matter experts in industry before 
being made publicly available in support of this program [6]; 

– The North American Electric Reliability Corporation (NERC) 
mission is to improve the reliability and security of the bulk power 
system in North America. NERC has issued a set of security standards, 
named as Critical Infrastructure Protection (SIP), to reduce the risk of 
compromise to electrical generation resources and high-voltage 
transmission systems above 100 kV, also referred to as bulk electric 
systems. 

Also there are a lot of non-profit organizations which develop free 
guidelines and best practices on security issues including the following: 

– The Open Web Application Security Project (OWASP) 
Foundation supports the following projects: OWASP Software 
Assurance Maturity Model, OWASP Development Guide, OWASP 
Testing Guide, OWASP Code Review Guide etc.; 

– The Institute for Information Infrastructure Protection (I3P) is a 
consortium of leading national cybersecurity institutions, including 
academic research centers, government laboratories, and non-profit 
organizations. It was founded in September 2001 to help meet a well-
documented need for improved research and development (R&D) to 
protect the nation's information infrastructure against catastrophic 
failures. The institute's main role is to coordinate a national 
cybersecurity R&D program and help build bridges between academia, 
industry, and government; 

– International Professional Association ISACA (the former 
Information Systems Audit and Control Association) developed the 
good-practice framework Control Objectives for Information and 
Related Technologies (COBIT) which is created for information 
technology management IT governance. COBIT provides an 
implementable set of controls over information technology and 
organizes them around a logical framework of IT-related processes and 
enablers. COBIT components include process descriptions, control 
objectives, management guidelines, and maturity models; 

– Center for Internet Security (CIS) released Critical Security 
Controls for Effective Cyber Defense (CSC) framework, which is also 
known as CIS CSC or CCS CSC. CCS CSC includes he guidelines 
consist of 20 key actions, called CSC, that organizations should take to 
block or mitigate known attacks. The controls are designed so that 

 



primarily automated means can be used to implement, enforce and 
monitor them. 

Taking into account variety of security standards, it should be 
noted they focus on some common issues. These issues include the 
following: 

– Risk Management and Assessment [7]; 
– Information Security Management System [2,3]; 
– Security Life Cycle [8]; 
– Security Levels [4]; 
– Failures and attack avoidance [9,10]; 
– Security and safety relation for critical systems [4]. 
General security concept, directed to comprehensive security 

assurance, is described in Part 4 of this multi-book. 
Below in this section a survey is done for the main security 

standards, such as ISO/IEC 27000, ISA/IEC 62443, and NIST SP 800. 
 
1.2 Standards family ISO/IEC 27000 
 
ISO/IEC 27000 “Information technology – Security techniques– 

Information security management systems” standards family contains 
about 40 parts and is an umbrella document for all other documents in 
security. Now many parts of ISO/IEC 27000 are booming, so many 
new parts are appearing and some existing parts are reworking once per 
3-5 years. 

The title standard in the family is ISO/IEC 27000:2016 
“Information security management systems – Overview and 
vocabulary”. 

All ISO/IEC 27000 standards family can be divided in the three 
following sets: 

– Standards specifying requirements; 
– Standards describing general guidelines; 
– Standards describing sector-specific guidelines. 
Standards specifying requirements include the following: 
– ISO/IEC 27001 “Information security management systems – 

Requirements” formally specifies ISMS against which thousands of 
organizations have been certified compliant; 

– ISO/IEC 27006 “Requirements for bodies providing audit and 
certification of information security management systems” provides a 

 



formal guidance for the for accredited organizations which certify other 
organizations compliant with ISO/IEC 27001; 

– ISO/IEC 27009 “Sector-specific application of ISO/IEC 27001 – 
Requirements” at the time of 2016 is existing as a draft intended to 
provide guidance for those developing new ISO/IEC 27000 family 
standards. 

Standards describing general guidelines include the following: 
– ISO/IEC 27002 “Code of practice for information security 

controls” provides a reasonably comprehensive suite of information 
security control objectives and generally-accepted good practice 
security controls 

– ISO/IEC 27003 “Information security management system 
implementation guidance” provides basic advices on implementing 
ISO/IEC 27001; 

– ISO/IEC 27004 “Information security management – 
Measurement” provides description for a set of security metrics, 

– ISO/IEC 27005 “Information security risk management” 
discusses risk management principles; 

– ISO/IEC 27007 “Guidelines for information security 
management systems auditing” provides recommendations for auditing 
of management elements of the ISMS; 

– ISO/IEC TR 27008 “Guidelines for auditors on information 
security management systems controls” provides recommendations for 
auditing the information security elements of the ISMS; 

– ISO/IEC 27013 “Guidance on the integrated implementation of 
ISO/IEC 27001 and ISO/IEC 20000-1” combining ISO/IEC 27000 
ISMS with ISO/IEC 20000 IT Service Management, particularly for 
ITIL (IT Infrastructure Library) 

– ISO/IEC 27014 “Governance of information security” provide 
governing recommendations in the context of information security; 

– ISO/IEC TR 27016 “Information security management – 
Organizational economics” provides economic theory applied to 
information security. 

Standards describing sector-specific guidelines cover such 
domains as energy, medicine, telecommunications, finance, cloud 
computing and others. 

For example, ISO/IEC 27010 “Information security management 
for inter-sector and inter-organisational communications” sharing 
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information on information security between industry sectors and/or 
nations, particularly those affecting “critical infrastructure”. 

For more information concerning ISO/IEC 27000 see Part 9 of this 
multi-book. 

 
1.3 Standards series ISO/IEC 15408 
 
Standards series ISO/IEC 15408, which is also known as the 

Common Criteria includes the following three parts: 
– ISO/IEC 15408-1 “Information technology – Security techniques 

– Evaluation criteria for IT security – Part 1: Introduction and general 
model”; 

– ISO/IEC 15408-2 “Information technology – Security 
techniques – Evaluation criteria for IT security – Part 2: Security 
functional components”; 

– ISO/IEC 15408-3 “Information technology – Security 
techniques – Evaluation criteria for IT security – Part 2: Security 
assurance components”; 

Part 1, “Introduction and general model” defines the general 
concepts and principles of IT security evaluation and presents a general 
model of evaluation (see Fig. 1.1). At the time evaluation concept is 
based on a confidence in correctness and sufficiency of security 
countermeasures (see Fig.1.2). 

Part 2, “Security functional components” establishes a set of 
functional components that serve as standard templates upon which to 
base functional requirements for Targets of Evaluation (TOEs). 
ISO/IEC 15408-2 catalogues the set of functional components and 
organizes them in families and classes. There are the following classes 
of functional components described in ISO/IEC 15408-2: Security 
audit, Communication, Cryptographic support, User data protection, 
Identification and authentication, Security management, Privacy, 
Protection of the security functionality, Resource utilization, Access, 
Trusted path/channels. 

Part 3, “Security assurance components” establishes a set of 
assurance components that serve as standard templates upon which to 
base assurance requirements for TOEs. ISO/IEC 15408-3 catalogues 
the set of assurance components and organizes them into families and 
classes. There are the following classes of assurance components 

 



described in ISO/IEC 15408-3: Development, Guidance documents, 
Life-cycle support, Security Target evaluation, Tests, and Vulnerability 
assessment. 

 

 
Fig. 1.1 – Security concepts and relationships 

(source: ISO/IEC 15408-1) 

 
ISO/IEC 15408-3 also defines evaluation criteria for Protection 

Profiles and Security Targets and presents seven pre-defined assurance 
packages which are called the Evaluation Assurance Levels (EALs). 
ISO/IEC 15408-3 states the following EALs: 

– EAL1: functionally tested; 
– EAL2: structurally tested; 
– EAL3: methodically tested and checked; 
– EAL4: methodically designed, tested, and reviewed; 
– EAL5: semiformally designed and tested; 

 



– EAL6: semiformally verified design and tested; 
– EAL7: formally verified design and tested. 
For more information concerning ISO/IEC 15408see Part 14 of 

this multi-book. 
 

 
Fig. 1.2 – Evaluation concepts and relationships 

(source: ISO/IEC 15408-1) 
 
1.4 Standards series ISA/IEC 62443 
 
Originally these standards have been developed by International 

Society of Automation (ISA) as series ANSI/ISA-99.00. 
After that these standards have been adopted by International 

Electrotechnical Commission. At the present there are the following 
standards in force adopted by IEC: 

 



– IEC TS 62443-1-1:2009 “Industrial communication networks – 
Network and system security – Part 1-1: Terminology, concepts and 
models”; 

– IEC 62443-2-1:2010 “Industrial communication networks – 
Network and system security – Part 2-1: Establishing an industrial 
automation and control system security program”; 

– IEC TR 62443-2-3:2015 “Security for industrial automation and 
control systems – Part 2-3: Patch management in the IACS 
environment”; 

– IEC 62443-2-4:2015 “Security for industrial automation and 
control systems – Part 2-4: Security program requirements for IACS 
service providers”; 

– IEC PAS 62443-3:2008 “Security for industrial process 
measurement and control – Network and system security”; 

– IEC TR 62443-3-1:2009 “Industrial communication networks - 
Network and system security – Part 3-1: Security technologies for 
industrial automation and control systems”; 

– IEC 62443-3-3:2013 “Industrial communication networks – 
Network and system security – Part 3-3: System security requirements 
and security levels”. 

Now a structure of series is updated and new versions of the 
standards are in progress. ISA is developing master versions for the 
62443 series, after that IEC should reissue identical standards. The 
developed 62443 series includes the following thirteen standards 
divided into four groups: 

1) General: 
– ISA/IEC 62443-1-1 “Terminology, concepts and models”; 
– ISA/IEC 62443-1-2 “Master glossary of terms and 

abbreviations”; 
– ISA/IEC 62443-1-3 “System security compliance metrics”; 
– ISA/IEC 62443-1-4 “Industrial Automation and Control Systems 

(IACS) security lifecycle and use-case”; 
2) Policies and Procedures: 
– ISA/IEC 62443-2-1 “Requirements for an IACS security 

management system”; 
– ISA/IEC 62443-2-2 “Implementation guidance for an IACS 

security management system”; 

 



– ISA/IEC 62443-2-3 “Patch management in the IACS 
environment”; 

– ISA/IEC 62443-2-4 “Installation and maintenance requirements 
for IACS suppliers”; 

3) System: 
– ISA/IEC TR 62443-3-1 “Security techniques for IACS”; 
– ISA/IEC 62443-3-2 “Security levels for zones and conduits”; 
– ISA/IEC 62443-3-3 “System security requirements and security 

levels”; 
4) Component: 
– ISA/IEC 62443-4-1 “Product Development Requirements”; 
– ISA/IEC 62443-4-2 “Technical Security Requirements for IACS 

Components”. 
The ISA/IEC 62443 series address the needs to design electronic 

security robustness and resilience into industrial automation control 
systems (IACS). Robustness provides the capabilities for the IACS to 
operate under a range of cyber-induced perturbations and disturbances. 
Resilience provides the capabilities to restore the IACS after 
unexpected and rare cyber-induced events. Robustness and resilience 
are not general properties of IACS but are relevant to specific classes of 
cyber -induced perturbations. An IACS that is resilient or robust to a 
certain type of cyber-induced perturbations may be brittle or fragile to 
another. Such a trade-off is the subject of profiles, which others can 
derive from the ISA/IEC 62443 requirements and guidelines. The goal 
in developing the ISA/IEC 62443 series is to improve the availability, 
integrity and confidentiality of components or systems used for 
industrial automation and control, and to provide criteria for procuring 
and implementing secure industrial automation and control systems. 
Application of the requirements and guidance in ISA/IEC 62443 is 
intended to improve electronic security and help to reducing the risk of 
compromising confidential information or causing degradation or 
failure of the equipment (hardware and software) of systems under 
control. The concept of IACS electronic security is applied in the 
broadest possible sense, encompassing all types of plants, facilities, and 
systems in all industries. Automation and control systems include, but 
are not limited to: 

– Hardware and software systems such as DCS, PLC, SCADA, 
networked electronic sensing, and monitoring and diagnostic systems; 

 



– Associated internal, human, network, or machine interfaces used 
to provide control, safety, and manufacturing operations functionality 
to continuous, batch, discrete, and other processes. 

The requirements and guidance are directed towards those 
responsible for designing, implementing, or managing IACS. This 
information also applies to users, system integrators, security 
practitioners, and control systems manufacturers and vendors. 

For more information concerning security assurance approach as it 
is described in ISA/IEC 62443, see Part 4 of this multi-book. 

 
1.5 National Institute of Standards and Technology 

Cybersecurity Framework (NIST SCF) 
 
NIST SP 800-53 “Security and Privacy Controls for Federal 

Information Systems and Organizations” provides a catalog of security 
controls measures. This catalog includes seventeen parts covering 
different organizational, technical and physical sides of security control 
(see Fig. 1.3). 

Additionally NIST SP 800-53 it is a base for NIST CSF which 
harmonizes security control requirements with the following standards 
and good practices frameworks: 

– ISO/IEC 27000 “Information security management systems” 
(see Section 1.2); 

– ISA/IEC 62443 “Security for Industrial Automation and Control 
Systems” 

– Control Objectives for Information and Related Technologies 
(COBIT) framework 

– Center for Internet Security Critical Security Controls for 
Effective Cyber Defense framework (CIS CSC). 

NIST CSF describes security activities by systematic way dividing 
into five the main functions: Identify, Protect, Detect, Respond, and 
Recover. 

Each of the function is described through categories which include 
subcategories. Subcategories refer to Security Control Catalog 
(Appendix F of NIST SP 800-53), which provides a range of safeguards 
and countermeasures for organizations and information systems. 

The following contains functions and categories description (see 
Fig. 1.4). 

 



 
Fig. 1.3 – NIST SP 800-53: Structure of Security Control Catalog 

 

 
Fig. 1.4 – NIST SP 800-53: Cybersecurity Framework (NIST CCF) 

 



 “Identify” means to develop the organizational understanding to 
manage cybersecurity risk to systems, assets, data, and capabilities, 
what should be done with the following categories: 

– Asset Management (ID.AM): The data, personnel, devices, 
systems, and facilities that enable the organization to achieve business 
purposes are identified and managed consistent with their relative 
importance to business objectives and the organization’s risk strategy; 

– Business Environment (ID.BE): The organization’s mission, 
objectives, stakeholders, and activities are understood and prioritized; 
this information is used to inform cybersecurity roles, responsibilities, 
and risk management decisions; 

– Governance (ID.GV): The policies, procedures, and processes to 
manage and monitor the organization’s regulatory, legal, risk, 
environmental, and operational requirements are understood and inform 
the management of cybersecurity risk; 

– Risk Assessment (ID.RA): The organization understands the 
cybersecurity risk to organizational operations (including mission, 
functions, image, or reputation), organizational assets, and individuals; 

– Risk Management Strategy (ID.RM): The organization’s 
priorities, constraints, risk tolerances, and assumptions are established 
and used to support operational risk decisions. 

“Protect” means to develop and implement the appropriate 
safeguards to ensure delivery of critical infrastructure services, what 
should be done with the following categories: 

– Access Control (PR.AC): Access to assets and associated 
facilities is limited to authorized users, processes, or devices, and to 
authorized activities and transactions; 

– Awareness and Training (PR.AT): The organization’s personnel 
and partners are provided cybersecurity awareness education and are 
adequately trained to perform their information security-related duties 
and responsibilities consistent with related policies, procedures, and 
agreements; 

– Data Security (PR.DS): Information and records (data) are 
managed consistent with the organization’s risk strategy to protect the 
confidentiality, integrity, and availability of information; 

– Information Protection Processes and Procedures (PR.IP): 
Security policies (that address purpose, scope, roles, responsibilities, 
management commitment, and coordination among organizational 

 



entities), processes, and procedures are maintained and used to manage 
protection of information systems and assets; 

– Maintenance (PR.MA): Maintenance and repairs of industrial 
control and information system components is performed consistent 
with policies and procedures; 

– Protective Technology (PR.PT): Technical security solutions are 
managed to ensure the security and resilience of systems and assets, 
consistent with related policies, procedures, and agreements. 

“Detect” means to develop and implement the appropriate 
activities to identify the occurrence of a cybersecurity event, what 
should be done with the following categories: 

– Anomalies and Events (DE.AE): Anomalous activity is detected 
in a timely manner and the potential impact of events is understood; 

– Security Continuous Monitoring (DE.CM): The information 
system and assets are monitored at discrete intervals to identify 
cybersecurity events and verify the effectiveness of protective 
measures; 

– Detection Processes (DE.DP): Detection processes and 
procedures are maintained and tested to ensure timely and adequate 
awareness of anomalous events. 

“Respond” means to develop and implement the appropriate 
activities to take action regarding a detected cybersecurity event, what 
should be done with the following categories: 

– Response Planning (RS.RP): Response processes and procedures 
are executed and maintained, to ensure timely response to detected 
cybersecurity events; 

– Communications (RS.CO): Response activities are coordinated 
with internal and external stakeholders, as appropriate, to include 
external support from law enforcement agencies; 

– Analysis (RS.AN): Analysis is conducted to ensure adequate 
response and support recovery activities; 

– Mitigation (RS.MI): Activities are performed to prevent 
expansion of an event, mitigate its effects, and eradicate the incident; 

– Improvements (RS.IM): Organizational response activities are 
improved by incorporating lessons learned from current and previous 
detection/response activities. 

“Recover” means to develop and implement the appropriate 
activities to maintain plans for resilience and to restore any capabilities 

 



or services that were impaired due to a cybersecurity event, what 
should be done with the following categories: 

– Recovery Planning (RC.RP): Recovery processes and procedures 
are executed and maintained to ensure timely restoration of systems or 
assets affected by cybersecurity events; 

– Improvements (RC.IM): Recovery planning and processes are 
improved by incorporating lessons learned into future activities; 

– Communications (RC.CO): Restoration activities are coordinated 
with internal and external parties, such as coordinating centers, Internet 
Service Providers, owners of attacking systems, victims, and vendors. 

 
Conclusions 
 
There are a lot of dynamically developed standards in security 

domain. 
Standards family ISO/IEC 27000 describes requirements to ISMS 

which are implemented in many countries. All ISO/IEC 27000 
standards family can be divided in the three following sets: 

– Standards specifying requirements; 
– Standards describing general guidelines; 
– Standards describing sector-specific guidelines. 
However, many other standards and technical documents also 

endorse ISMS with diverse interpretations. NIST SP 800 53 [2], for 
example, is used in USA to establish and assess ISMS. NIST CSF is 
harmonized with ISO/IEC 27000, as well as with ISA/IEC 62443, 
COBIT, and CIS CSC. NIST CSF describes security activities by 
systematic way dividing into five the main functions: Identify, Protect, 
Detect, Respond, and Recover. 

At the same time, ISMS is mainly managerial and organizational 
issue, like Quality Management System or Project Management. ISMS 
describes processes which should be organized with under a concept of 
“Plan – Do – Check – Act” cycle. It means that for IT systems another 
part of requirements should be applied. Such requirements should also 
cover: 

– Risk Management and Assessment [7]; 
– Security Life Cycle [8]; 
– Security Levels [4]; 
– Failures and attack avoidance [9,10]; 

 



– Security and safety relation for critical systems [4]. 
Standards series ISO/IEC 15408 endorse Common Criteria for IT 

systems security assessment and provides security concepts including 
relations between basic security entities (risks, assets, threats, 
vulnerabilities, and countermeasures). 

The most applicable requirements to Industrial Control Systems 
can be taken from NIST SP 800-82 [4] and ISA/IEC 62443 standards 
series. 

 
Questions to self-checking 
 
1. List a set of standards related with security issues. 
2. List a set of organizations which develop security standards. 
3. Which standards are more applicable for security of Industrial 

Control Systems (ICS)? 
4. Which standards are more applicable for security of web-

systems? 
5. Which standards are more applicable for security of Internet 

of Thing (IoT)? 
6. Which main issues are covered in security standards? 
7. Describe structure of ISO/IEC 27000 standards family. 
8. Describe structure of ISO/IEC 15408 standards series. 
9. What is a security concept stated in ISO/IEC 15408 standards 

series? 
10. Describe structure of ISA/IEC 62443 standards series. 
11. Describe structure of NIST Cybersecurity Framework. 
12. Which are the main issues of Security Management System? 
 
References 
 
1. T. Nguyen, T. Levin, C. Irvine. High robustness requirements 

in a Common Criteria protection profile // Proceeding of 2006 IEEE 4th 
International Workshop on Information Assurance (IWIA). – P.78-87. 

2. NIST SP 800-53 Revision 4, Security and Privacy Controls 
for Federal Information Systems and Organizations. – National Institute 
of Standards and Technologies, 2015. – 462 p. 

3. NIST SP 800-53A Revision 4, Assessing Security and 
Privacy Controls in Federal Information Systems and Organizations: 

 



Building Effective Security Assessment Plans. – National Institute of 
Standards and Technologies, 2014. – 487 p. 

4. NIST SP 800-82 Revision 2, Guide to Industrial Control 
Systems (ICS) Security: Supervisory Control and Data Acquisition 
(SCADA) Systems, Distributed Control Systems (DCS), and Other 
Control System Configurations such as Programmable Logic 
Controllers (PLC). – National Institute of Standards and Technologies, 
2015. – 247 p. 

5. AGA Report No. 12, Cryptographic Protection of SCADA 
Communications, Part 1: Background, Policies and Test Plan. – 
American Gas Association, 2006. – 123 p. 

6. Common Cybersecurity Vulnerabilities in Industrial Control 
Systems. – U.S. Department of Homeland Security, 2011. – 76 p. 

7. NIST SP 800-39, Managing Information Security Risk: 
Organization, Mission, and Information System View. – National 
Institute of Standards and Technologies, 2011. – 88 p. 

8. Nuclear Power Plant Instrumentation and Control Systems for 
Safety and Security / Yastrebenetsky M., Kharchenko V. (Edits). – IGI 
Global. – 2014. – 470 p. 

9. O. Netkachov, P. Popov, K. Salako. Model-Based Evaluation 
of the Resilience of Critical Infrastructures Under Cyber Attacks // 
Proceeding of 9th International Conference (CRITIS 2014). – 
P. 231-243. 

10. S. Srinivasan, R. Kumar, J. Vain. Integration of IEC 61850 
and OPC UA for Smart Grid automation // 2013 IEEE Innovative Smart 
Grid Technologies-Asia (ISGT Asia). – P. 1-5. 

 

 



ПЕРЕЧЕНЬ СОКРАЩЕНИЙ К РАЗДЕЛУ 2 
 
AGA – American Gas Association 
C2M2 – Cybersecurity Capability Maturity Model 
CIS – Center for Internet Security 
CIS CSC – CIS Critical Security Controls for Effective Cyber 

Defense (framework)  
COBIT – Control Objectives for Information and Related 

Technologies (framework) 
DHS – the U.S. Department of Homeland Security 
DOE – the U.S. Department of Energy 
EAL – Evaluation Assurance Level 
ES-C2M2 – Electricity Subsector Cybersecurity Capability 

Maturity Model 
IEC – International Electrotechnical Commission 
IEEE – Institute of Electrical and Electronics Engineers 
ICS – Industrial Control System 
ICS-CERT – Industrial Control Systems Cyber Emergency 

Response Team 
ISMS – Information Security Management System 
ISA – International Society of Automation 
ISO – International Standardization Organization 
FISMA – Federal Information Security Management Act 
NERC – North American Electric Reliability Corporation 
NIST – National Institute of Standards and Technology 
NIST SCF – NIST Cybersecurity Framework 
NIST SP – NIST Special Publication 
OWASP – Open Web Application Security Project 
R&D – Research and Development 
SCADA – Supervisory Control And Data Acquisition 
TOE – Targets of Evaluation 
 

 



АННОТАЦИЯ 
 
В разделе рассмотрены стандарты в области информационной 

безопасности. Приведен перечень основных существующих на 
данный момент стандартов. Дана характеристика наиболее важных 
стандартов (ISO/IEC 27000, ISO/IEC 15408, ISA/IEC 62443, 
NIST SP 800-53). 

 
У розділі розглянуто стандарти у галузі інформаційної 

безпеки. Наведено перелік основних існуючий у дійсний момент 
стандартів. Дана характеристика найбільш важливих стандартів 
(ISO/IEC 27000, ISO/IEC 15408, ISA/IEC 62443, NIST SP 800-53). 

 
Information security standards are discussed in the section. List of 

the main actual security standards is given. Contents of the most 
important security standards (ISO/IEC 27000, ISO/IEC 15408, 
ISA/IEC 62443, NIST SP 800-53) are considered. 

 



2 BASICS OF CRYPTOLOGY FOR RESILIENT 
COMPUTING 

 
2.1 Introduction 
 
Cryptology take a special place in security. This science involves 

studies in two main directions: cryptography and cryptanalysis. The 
core of cryptography is secure communication. The security should 
guarantee that eavesdropper, who observes the text sent across the 
channel, could figure out nothing about message. For ages 
cryptography has been used to provide the secrecy of mostly military or 
diplomatic communications. Due to the growth of electronic commerce 
and the Internet itself the notation of secure communication is much 
more wider nowadays and includes protocols of web traffic (SSL, 
TLS), wireless traffic (WEP, WPA, WPA2), cell-phone-traffic (GSM) 
and so on. 

Initially cryptography was considered only as a tool to ensure 
confidentiality. Confidentiality is the term used to describe the 
prevention of accessing the information by unauthorized computers or 
users. Today, cryptography has a much wider reach, covering not only 
confidentiality of communications and stored data, but also 
guaranteeing identity, integrity, entity authentication, and data origin 
authentication and provenance etc. Practical applications of 
cryptography includes content protection, digital signatures, 
anonymous communication, e-voting, zero-knowledge proofs etc. 

While cryptography is concentrated on construction of secure 
cryptosystems, cryptanalysis goal is to reveal information from hidden 
messages sent over an insecure channel without secret knowledge. It is 
also known as code cracking. Usually the security of a cryptosystem is 
proven for an abstract mathematical algorithm in a formal model of 
computation under certain types of attacks. However all practical 
cryptosystems are actually semantically secure. It means that 
adversaries who have sufficient amount of time and resources can crack 
almost any algorithm and access encrypted information. A more 
realistic goal of cryptography is to make breaking a cryptosystem 
complicated and time-consuming task for an attacker, restricted by 
limited resources. This, however, is not the end of a story: the security 

 



must hold for the actual implementation of the algorithm in the real 
world in which this algorithm is run. A crucial difference about the two 
scenarios is that in the former we assume that secret keys are indeed 
secret, and the adversary has no information about them – our proofs 
crucially rely on this fact.  

In reality cryptographic algorithms are routinely run in adversarial 
settings, where keys could be compromised and the adversary might 
gain some information about those secrets, by observing the behavior of 
the algorithm, in ways not captured by our formal computational 
model. Side-channel attacks exploit the fact that computing devices 
leak information to the outside world not just through input-output 
interaction, but through physical characteristics of computation such as 
power consumption, timing, and electro-magnetic radiation. Such 
information leakage betrays information about the secrets during 
cryptosystem execution, which cannot be efficiently derived from 
access to mathematical object alone. Physical attacks have been 
successfully utilized to break many cryptographic algorithms in 
common use. Attacks such as these have broken systems with a 
mathematical security proof, without violating any of the underlying 
mathematical principles. Physical leakages are particularly accessible 
when the device is at the hands of an adversary, as is often the case for 
modern devices such as smart-cards, TPM chips, mobile phones and 
laptops.  

Leakage-resilient (or side-channel resilient) cryptography attempts 
to tackle such attacks. One main goal is building more robust models of 
adversarial access to a cryptographic algorithm, and developing 
methods grounded in modern cryptography to provably resist such 
attacks. 

Although building efficient cryptosystem resilient to physical 
leakages and tampering people needs understanding the fundamentals 
of modern crypto-primitives.  

 
2.2 Terminology. Classification of cryptosystems. 
 
Let clarify the terminology. 
Plaintext (message) is ordinary readable text before being 

encrypted 
m = "𝑚𝑚1𝑚𝑚2𝑚𝑚3…𝑚𝑚𝑙𝑙" 

 



where 𝑚𝑚𝑗𝑗 ∈ 𝐴𝐴𝑛𝑛,   𝑗𝑗 = 1. . 𝑙𝑙,  An is an alphabet of n characters. 
Alphabet is a finite set of characters, which are used for 

information coding. For instance, A26 could be a set of letters of 
English alphabet; A256 could be considered a set of symbols from 
ASCII table;  A2={0,1} is a binary alphabet. 

Ciphertext (23Tcyphertext23T) is encrypted plaintext: 
с = "𝑐𝑐1𝑐𝑐2𝑐𝑐3…𝑐𝑐𝑙𝑙", 

where  𝑐𝑐𝑗𝑗 ∈ 𝐴𝐴𝑛𝑛,   𝑗𝑗 = 1. . 𝑙𝑙. 
Secret key is a parameter that is used to encrypt and decrypt 

messages: 
k = "k

1

𝑘𝑘2𝑘𝑘3 … 𝑘𝑘𝑙𝑙", 𝑘𝑘𝑗𝑗 ∈ 𝐴𝐴𝑛𝑛,   𝑗𝑗 = 1. . 𝑙𝑙. 
Encryption is a process of conversion of information (plaintext) 

into another form (ciphertext), which cannot be easily understood by 
anyone except owner of secret key. 

Decryption is the reverse process to encryption conversion of 
ciphertext into plaintext with the secret key. 

The simplest encryption methods date back to 2000-3000 BC 
when the ancient Greeks and Romans sent secret messages by 
substituting or permutation letters. There is a sufficiently large number 
of transposition ciphers. Among them are a Scytale cipher, anagrams, 
and variety of so called route ciphers: rail fence, columnar 
transposition, double transposition, Myszkowski transposition, Cardan 
grille. The main idea of all of them is change the location of symbols in 
plaintext according to some predefined permutation rules. There were 
much more substitution ciphers, which are based on substitution of 
plaintext symbol by symbol of ciphertext. They could be subdivided on 
two large groups: monoalphabetic ciphers (Polybius square, Caesar 
cipher, affine cipher, Trithemius cipher) and polyalphabetic ciphers 
(bigram affine cipher, Playfair cipher, hill cipher, Vigenère cipher). The 
difference is that in monoalphabetic ciphers fixed symbol of plaintext is 
substituted with the same symbol of ciphertext. In polyalphabetic 
ciphers same symbol can be replaced with different symbols depends 
on its position in the plaintext. 

Symmetric encryption was the only type of encryption in use from 
the ancient till 1970s. Symmetric encryption transforms plaintext into 
ciphertext using a secret key and an encryption algorithm. Using the 
same key and a decryption algorithm, the plaintext is recovered from 

 



the ciphertext. Development of computers and Internet causes drastic 
changes in symmetric cryptography: classical methods were replaced 
with modern digital approaches to encryption: block and stream 
ciphers. Stream ciphers encrypt each binary digit in a data stream 
individually. This is usually achieved by adding a bit from a key stream 
to a plaintext bit. So the main problem to solve is the generation of the 
key sequence with good statistical properties. Block ciphers processes 
the blocks of plaintext, which has to be of fixed length. It means that 
plaintext need to be divided on blocks in advance. Both block and 
stream ciphers have some advantages, which we will consider later on. 
Nevertheless all symmetric encryption methods have one serious 
drawback, what is  key management and distribution problem. This 
difficulty can be overcome using asymmetric cryptography. Unlike 
traditional cryptographic methods quantum cryptography is based on 
physics, not mathematics. The best known example of quantum 
cryptography is quantum key distribution which offers an information-
theoretically secure solution to the key exchange problem. Currently 
used popular public-key encryption and signature schemes can be 
broken by quantum adversaries 

 
Fig.2.1 Classification of cryptographic methods 
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Which cryptographic methods are the best? Does there exist a 

perfect cipher? Let clarify these questions further. 
 
2.3 Perfect and computational secrecy 
 
There is a critical difference between the decryption performed by 

the legitimate user and cryptanalysis performed by unauthorized 
person. Features and capabilities of potential attacker determine the 
requirements for reliable encryption. One of the key steps in the 
development of the secrecy model of cryptosystem is to define threat 
model and security goal.  

Recall that the main goal of cryptanalysis is to restore the plaintext 
without knowledge of the key or to recover the secret key. 

As a basic starting point it is normally assumed that, for the 
purposes of cryptanalysis, the general algorithm is known (Kerckhoffs' 
principle).  

Attacks can be classified based on what type of information the 
attacker has available. Table 1 includes the most common threat models 
for encryption.  

 
Table 2.1 – Types of cryptographic attacks 

 Type of attack Information known to cryptanalytist  
1 Ciphertext Only 

Attack (COA) 
Encryption algorithm; 
One or more ciphertexts ci  
 
Brute Force Attack (attacker tries all possible keys) can 
be applied in this case. Modern cryptosystems are 
guarded against ciphertext-only attacks.  

2 Known Plaintext 
Attack (KPA) 

Encryption algorithm; 
One or more plaintext–ciphertext pairs (mi-ci), formed 
with the secret key 
 
The best example of this attack is linear cryptanalysis 
against block ciphers. 

3 Chosen Plaintext 
Attack (CPA) 

Encryption algorithm; 
One or more plaintext–ciphertext pairs (mi-ci), formed 
with the secret key, but unlike previous attack plaintext 
messages are chosen by cryptanalyst. 

 



  
An example of this attack is differential cryptanalysis 
applied against block ciphers as well as hash functions. 
A popular public key cryptosystem, RSA is also 
vulnerable to chosen-plaintext attacks. 

4 Chosen 
Ciphertext Attack 
(CCA) 

Encryption algorithm; 
One or more plaintext–ciphertext pairs (mi-ci), formed 
with the secret key, but unlike previous attack 
ciphertexts could be chosen by cryptanalyst  
Ciphertexts are chosen in advance (lunchtime attack) 

5 Adaptive Chosen 
Plaintext and 
Chosen 
Ciphertext 
Attacks 

Encryption algorithm; 
One or more plaintext–ciphertext pairs (mi-ci), formed 
with the secret key but unlike attacks 3 and 4 adversary 
subsequent plain- or ciphertexts based on information 
learned from previous encryptions 

6 Related-key 
attack 

Like a chosen-plaintext attack, except the attacker can 
obtain ciphertexts encrypted under two different keys. 
The keys are unknown, but the relationship between 
them is known; for example, two keys that differ in the 
one bit 

7 Side-Channel 
Attacks 

These attacks are launched to exploit the weakness in 
physical implementation of the cryptosystem. Some 
additional information is known to attacker, for 
instance computation time, power consumption, leaked 
electromagnetic radiation and so on.  
 
First implementation of AES were vulnerable to such  
attacks.  

 
Cryptosystem can be protected from one type of attacks and be 

vulnerable towards others. Formally, secrecy is understood as ability of 
cryptosystem remained resistant to cryptographic attacks. Leakage 
Resilient Cryptography tries to provide provably secure primitives in 
the presence of a wide range of side-channel information. 

K. Shannon first introduced the concept of secrecy of 
cryptosystem and took into account Ciphertext Only Attack (threat 
model). Attacker was assumed to have unlimited computing resources.  

In his book "Communication Theory of Secrecy Systems" 
Shannon considered so-called symmetric system, those in which 
encryption and decryption uses the same key. 

 



A symmetric (private-key) cryptosystem defined over (M,K,C) can 
be described in mathematical terms as  a pair of “efficient” algorithms 
(Enc,Dec), such that: 

– 𝐸𝐸𝑛𝑛𝑐𝑐: M×K→C – (encryption algorithm): takes key kϵK and 
message mϵM as inputs; outputs ciphertext    c =Enc(k,m). 

– 𝐷𝐷𝑒𝑒𝑐𝑐: C×K→M – (decryption algorithm): takes key kϵK and 
ciphertext cϵC as input; outputs message m=Dec(k,c), such that 
∀k∈K and m∈M it is valid that Enc(k,Dec(k,m))=m (consistency 
equation). 

Here: 
M – message space; 
K– key space;  
С – ciphertext space. 
Algorithm Enc could often a randomized algorithm. On the other 

hand the decrypting algorithm  Dec is always deterministic 
Often the pair (Enc, Dec) can be supplemented with one more 

algorithm Gen, which generates extended key from small key-seed. 
In general the structure of symmetric cryptosystem is illustrated on 

Fig.2.2. 

Fig.2.2 Scheme of symmetric system 
 
We have two parties, Bob and Alice, who have shared a secret key 

k across the secure channel in advance. k-value could be generated 
using a particular deterministic algorithm. When Alice has some 
message m that she wants to send to Bob she will encrypt that message, 
using the encryption algorithm and their shared key k. This results in a 
ciphertext that Alice sends across the public channel to Bob. Upon 
receiving this message, Bob will use his key to decrypt the ciphertext 
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and recover the original message. At a high level, both parties are 
trying to ensure secrecy of their communication against an 
eavesdropper Eva who can observe everything being sent across the 
public channel between Alice and Bob. 

Shannon believed that attacker would not be interested only in 
getting the entire secret message or key but also in some additional 
information about plaintext. The system has perfect secrecy by 
Shannon if regardless of any prior info the attacker has about the 
plaintext, the ciphertext should leak no additional information about the 
plaintext.  

Besides the assumption that Ciphertext Only Attack is only 
possible attack and only one ciphertext is available scientist assumed 
that knows the probability distributions of messages P(M) and keys 
P(K). 

Encryption scheme (Enc, Dec) with message space M, key space K 
and ciphertext space C is perfectly secret if for every distribution over 
M, every mϵM, and every cϵC with P(c)>0, it holds that 

P(m│c)=P(m) 
So perfect secrecy means that observing the ciphertext should not 

change the attacker’s knowledge about the distribution of the plaintext. 
Equivalent definition of perfect security could be formulated in 

terms of entropy. 
For ∀m∈M,c∈C  H(m│c)=H(m) 
It can treated as follows: attacker gets zero information from 

ciphertext about plaintext 𝐼𝐼 = 𝐻𝐻(𝑚𝑚) − 𝐻𝐻(𝑚𝑚|𝑐𝑐) = 0. 
Shannon also proved the validity of few lemmas, which are based 

on definition of perfect secrecy. 
Lemma 2.1.  
Cryptosystem has perfect secrecy if ∀m∈M, c∈C the equilaty: 

P(c│m)=P(c) 
is valid. 

Lemma 2.2. 
Cryptosystem with perfect secrecy will satisfy the inequality 

#K≥#C≥#M 
This lemma is carrying bad news, because the total number of keys 

has to be at least not less the number of messages. Shannon also gave 
the instructions how to construct the ideal system in next lemma. 

Lemma 2.3. 

 



If 〈M,C,K, Enc(k,∙),Dec(k,∙)〉 describes a particular symmetric 
cryptosystem and #K=#C=#M, it will have perfect secrecy only and 
only if 

– The distribution of keys is uniform P(k)=1/(#K)  for ∀k∈K 
– There is only one k∈K  for each pair m∈M, c∈C such that 

Enc(k,m)=c. 
The question is: Does the ideal system exist? It turns out the 

answer is “Yes” 
Gilbert Vernam invented and patented his cipher called also One-

time pad (OTP) in 1917. Let consider some details of algorithm 
Message space M={0,1}n is a set of all possible n-length bit 

strings. Key is selected randomly on uniformly distributed set 𝐾𝐾 =
{0,1}𝑛𝑛. 

Encryption: ci=mi⨁ki (⨁ is a bit-wise XOR) 
Decryption: mi=ci⨁ki 
Illustration of OTP encryption scheme is depicted in Fig.2.3.  

Fig.2.3 The encryption algorithm of OTP 
 
Shannon has also proven the following lemma.  
Lemma 2.4. Vernam cipher has perfect secrecy.  
Despite of the fact that OTP cipher is ideal it is hard to use it in 

practice. 
Drawbacks of the practical usage of the OTP cipher: 
– Key has to be as long as message. 
– Key has to used only once  
Problem arisen if key is used more than once 
– In worst case chosen plaintext attack k = m ⊕ c 
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– Otherwise ciphertext will give us information about 
plaintext as c1 ⊕ c2=m1 ⊕m2. 

Computational secrecy 
In particular, in real life people are using encryption schemes 

with keys shorter than the message size to encrypt all sort of important 
information including credit card numbers.  Could we use the proof of 
the impossibility result to break these schemes? Most cryptographic 
methods we use now are computationally secure. There is no strict 
mathematical definition of computational secrecy (semantic security). 
The following is true about computational secrecy: 

1. Computational secrecy allows an attacker to learn 
information about the message with small probability. 

2. Computational secrecy currently relies on unproven 
assumptions. 

3. Computational secrecy only ensures secrecy against 
attackers running in some bounded amount of time or restricted 
computational resources. 

 
2.4 Stream ciphers 
 
Since the Vernam cipher is unconditionally secure but not very 

practical, it is natural that people would like to come up with the 
scheme, which uses shorter key. Although this statement refuses the 
necessary condition of perfect secrecy OTP, according to which key has 
to be as long as message. The core ideas of modern stream ciphers are: 

– the encryption and decryption algorithms remain the same 
to OTP cipher; 

– to replace “random” key by “pseudorandom” key. 
So, the only difference between stream and OTP ciphers is that 

key is generated by deterministic algorithm from shorter secret key 
called seed. That is why the main problem to be solved while 
implementing stream ciphers is pseudo-random sequence modeling (γ- 
sequences).  

 



The general scheme of any stream cipher is given in Fig.2.4 

Fig.2.4 Illustration of stream cipher encryption algorithm 
 
Operation ⊕ usually means bit-wise XOR. A pseudo-random 

generator (PRG) is an efficient, deterministic algorithm that expands a 
short, uniform seed into a longer, pseudorandom sequence. We would 
like this sequence to be random, but with a finite state machine and a 
deterministic algorithm we can not get a real randomness. Moreover, 
PRG will always generate a sequence, which is ultimately periodic. 
American standard NIST uses 15 tests to qualify pseudo-random 
sequence. 

One of the important features of good PRG is unpredictability. 
There are the some PRGs which can be used in other areas but are weak 
for cryptography because they are predictable. Let consider one 
example of such weak PRG - linear congruential generator. 

Linear congruential generators are generators defined like: 
xj=axj-1+b mod n 

Variables a, b and n are constants. Value 𝑥𝑥0 is supposed to be a 
seed. Period of such generator is not larger than n. These generators are 
very fast but unfortunately can not be used in cryptography.  

Linear Feedback Shift Register (LFSR) 
Linear feedback shift registers are useful tools in both coding 

theory (error checking and correction) in cryptography (generation of 
pseudo-random numbers). LFSRs are very fast PRGs and need very 
little hardware. Generating the pseudo-random numbers only requires a 
right-shift operation and an XOR operation. They have nice statistical 
properties and a well developed theory. 
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In fact, LFSR contains memory cells or stages each holding one bit 
of information. The content of cells is referred to as state of register. 
Each time the contents of several predefined cells are fed to the input of 
feedback function. It would be reasonable to use non-linear function as 
feedback. However, it is difficult to implement, that is why linear 
feedback function is used in practice. The most commonly used linear 
function of single bits as was said earlier is exclusive-or (XOR). 

Fig.2.5 illustrates how LFSR works.  
Both feedback coefficients a1a2,…an-1,an and values of register 

state are elements of finite field GF(2). Number n is called length of 
LFSR. The values 𝑠𝑠𝑛𝑛−1, sn−2, sn−3, … , sl, s0 initially loaded into register 
specify the initial state. The initial state of register actually represents a 
seed and can be chosen arbitrary. 

 

 Fig.2.5 A general Linear Feedback Shift Register 
 
Register works in discrete time moments in such a way that: 
– Output the most right bit of the register s0. 
– Shift the content of s𝑖𝑖 to the cell s𝑖𝑖−1,   𝑖𝑖 = 1, 𝑛𝑛 − 1���������� 
– New value of the most left cell is the feedback bit computed 

as exclusive OR of values 𝑠𝑠𝑛𝑛−1, sn−2, sn−3, … , sl, s0 
multiplied by a1a2,…an-1,an 

If some coefficients a1a2,…an-1,an equals to zero then 
correspondent taps are removed from the scheme. The set of the taps 
with coefficients “one” is called tap sequence. 

Mathematically the sequence si 𝑖𝑖 = 1, 𝑁𝑁����� generated by a shift 
register is just a sequence satisfying the n-term recursion 
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sn+t=a1sn+t-1⨁a2sn+t-2⨁…⨁an-2st+2⨁an-1st+1⨁anst= � aj

n

j=1

sn+t-j 

The last formula describes the feedback function. It is called the 
recursion law which generate the sequence. 

Output sequence of LFSR can be uniquely defined by feedback 
polynomial and initial state of register. 

LFSR of length n  with coefficients a1a2,…an-1,an has feedback 
polynomial: 

P(x)=1⨁ � ai

n

j=1

xi=xn⨁a1x⨁a2x2⨁…⨁an-1xn-1⨁anxn 

Alternatively register output can be defined by characteristic 
polynomial of LFSR.  

P*(x)=xn⨁ � ajxn-j
n

j=1

=xn⨁a1xn-1⨁a2xn-2⨁…⨁an-1x⨁an 

The polynomial degree is defined by register length. 
LFSR shown in Fig.2.6 has feedback polynomial P(x)=1+x3+x4, 

characteristic polynomial P*(x)=1+x+x4, recursion law 
s4+t=st+1+st. 

 

Fig.2.6 The example of LFRS 
 
The register states in different time moments are given in 

following table: 
 S3 S2 S1 S0 
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t=1 1 1 1 0 
t=2 1 1 1 1 
t=3 0 1 1 1 
t=4 0 0 1 1 
t=5 0 0 1 1 
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The output sequence is 1011110001001101 
The LFRS sequence with maximal period is called m-sequence. 

Sequences of maximal period are of special interest. They can be 
produces only by specific polynomials called primitive. 

LFSR have long been used as pseudo-random number generators 
for use in stream ciphers. Note that stream ciphers need pseudorandom 
sequences with a very large period. It is not trivial task to find a 
primitive polynomial with sufficiently large degree. Moreover, a stream 
cipher based on one LFSR which is a linear system is vulnerable to 
certain attacks. 

Three general methods are employed to reduce this problem in 
LFSR-based stream ciphers: 

– A filter generator composed of single LFSR whose output is a 
non-linear combination of several bits from the LFSR state; 

– A combination generator is composed of several LFSRs 
whose outputs are combined by non-linear boolean function;  

– LFSRs with irregular clocking (Stop and Go generator or 
Step1-Step2 generator). The keystream is produced by one or 
several LFSRs, but some LFSR bits decide which LFSR to 
clock and how often. 

Important LFSR-based stream ciphers include A5/1 and A5/2, 
used in GSM cell phones. 

A5 stream cipher 
A5/1 is used in most European countries, whereas a weaker cipher, 

called A5/2, is used in other countries. There also exists A5/3 
modification approved for 3G networks 

Let describe the first of all A5 algorithms - an algorithm A5/1. 
The description of A5/1 was first kept secret but its design has 

been finally published in Internet. 
А5 contains of three LFRS with lengths 19, 22 і 23, which 

described by following feedback polynomial: 
P1(x)=x19+x18+x17+x14+1 

P2(x)=x22+x21+1 
P3(x)=x23+x22+x21+x8+1 

 



The output is the XOR of all three registers. 

Fig.2.7 The structure of A5/1 
 

For each frame transmission, the three LFSRs are first initialized 
to zero. Then, at time t= 1,...,64, the LFSRs are clocked, and the secret 
key bit Kt is XORed to the feedback bit of each LFSR. For t= 65,...,86, 
the LFSRs are clocked in the same fashion, but the (t-64)-th bit of the 
frame number is now XORed to the feedback bits. 

After these 86 cycles, the generator runs as follows (by principle 
Stop and Go): 

– Each register has a clocking tap 
τ1=s10 (LFSR1), τ2=s11(LFSR2), τ3=s12(LFSR3), which 
are inputs for block B. 

– At each unit of time, the majority value of the 3 clocking bits 
is computed. A LFSR is clocked if and only if its clocking bit 
is equal to F=τ1⋀τ2⨁τ1⋀τ3⨁τ2⋀τ3. Minimum two registers 
are working in each moment. 
o If 𝜏𝜏𝑖𝑖 = 𝜏𝜏𝑗𝑗 ≠ 𝜏𝜏𝑘𝑘    1 ≤ 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ≤ 3, then 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗 = 1, 𝑐𝑐𝑘𝑘 = 0 
o If 𝜏𝜏𝑖𝑖 = 𝜏𝜏𝑗𝑗 = 𝜏𝜏𝑘𝑘     1 ≤ 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ≤ 3, then 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗 = 𝑐𝑐𝑘𝑘 = 1 

– Output bit of keystream is the XOR  output registers bits. 

ɣ𝑖𝑖 B 

S0 S1 S2 S5 S10 S18 

С0 

S0 S1 S11 S21 

С1 

S0 S1 S12 S22 

С3 

S2 S15 

 



Famous cryptanalyst at Cambridge Ian Cassells said 
“Cryptography is a mixture of mathematics and muddle, and without 
the muddle mathematics can be used against you” He meant that to 
study and to proof the secrecy of ciphers we need to base on strong 
mathematical structures. At the same time to make ciphers stronger to 
attacks we need to add nonlinear muddle. This is true with respect to 
both stream and block ciphers. 

 
2.5 Block ciphers 
 
Stream ciphers are much faster than their closest competitors - 

block ciphers but only in the case if stream encryption is implemented 
in hardware. Block ciphers are easier to implement in software, since 
we can avoid significant manipulation of bits and operate data blocks 
which are more convenient for computers.  

DES (Data Encryption Standard) 
In 1974 the National Bureau of Standards (NBS) solicited the 

American industry to develop a cryptosystem that could be used as a 
standard in unclassified U.S. Government applications. IBM developed 
a system called LUCIFER. NBS involved National Security Agency 
(NSA) to review and assess this cipher. After being modified and 
simplified during review time, this system became the Data Encryption 
Standard (DES) in 1977. 

DES parameters: 
– Length of plaintext and ciphertext block is 64 bits. 
– Key length is 64 bits, but the least significant bit of each key 

byte is used for parity check and could be ignored. Effective keysize is 
56 bits 

– Number of rounds is 16.  
DES is an example of a Feistel cipher. Horst Feistel was one of the 

inventors of cipher LUCIFER – DES predecessor. A Feistel network 
works by splitting the data block into two equal pieces and applying 
encryption in multiple rounds. Each round implements permutation and 
combinations derived from the primary function or key. The number of 
rounds varies for each cipher that implements a Feistel network.  

The structure of  DES is given in Fig.3.8. 

 



 
Fig.2.8 The general structure of DES 

 

IP stands for an initial permutation, IP-1 stands for final 
permutation which is inverse to initial one. The initial and final 
permutations are straight permutation boxes, illustrated in Fig.2.9.  

 

 

Fig.2.9 How IP and IP-1 work 

 



IP and IP-1 have no cryptographic significance in DES 
The block of 64 input bits is divided into two halves: the 32 

leftmost bits form L0 and the 32 rightmost bits form R0. DES consists of 
16 identical rounds. In each round, new contents of Li and Ri are 
defined by formula 

Li=Ri-1    Ri=Li-1⨁F(Ki,Ri-1) 
Ki stands for round key, derived from main secret key K.  
The heart of this cipher is the DES pseudo random function F. The 

DES function takes 48-bit key and 32 rightmost bits to produce a 32-bit 
output (see Fig.2.10 for details). 

 
Fig.2.10 DES round function 

 
Expansion Permutation Box − Since right input is 32-bit, we first 

need to expand right input to 48 bits to XOR then with 48-bit round 
key. Permutation logic is graphically depicted in the following 
illustration. 

 
Substitution Boxes − The S-boxes carry out the real mixing 

(confusion). DES uses 8 S-boxes, each with a 6-bit input and a 4-bit 
output. Refer the following illustration – 

 
 

 



S-blocks are provided in a form of lookup tables of size 4х16. The 
numbers from 0 to 15 are written in each row in some specified order. 
Six input bits define the number of row (the first and sixth bits) and 
column (four middle bits). The output is binary representation of 
number which stands in intersection of predefined row and column.  

Straight Permutation Box – The 32 outputs from the S-boxes are 
rearranged according to a fixed permutation, often called the P-box. 

The last but not the least thing left is to describe the procedure of 
round key generation. 

Round key schedule 
DES uses  its key schedule in this way. Initially, 56 significant bits 

of the key are selected from the initial 64 and permuted. Then 56-bit 
key is split into two parts. In successive rounds, both halves are 
cyclically shifted left by one or two bits (specified for each round), and 
then 48 subkey bits are selected by final Permuted Choice. 

A cryptographic system based on Feistel cipher structure uses the 
same algorithm for both encryption and decryption. Feistel network is a 
design model from which many different block ciphers are derived, not 
only DES. 

Many people have criticized the decision to make DES a standard. 
The two main objections were: 

– The effective keysize (56 bits) is too small for an organization 
with sufficient resources. An exhaustive keysearch is, at least in 
principle, possible. 

– The design criteria of the tables used in the f-function are not 
known. Statistical tests however show that these tables are not 
completely random. Maybe there is a hidden trapdoor in their structure. 

During the first twenty years after the publication of the DES-
algorithm no effective way of breaking it was published. However, in 
1997, for the first time, a DES challenge has been broken by a more or 
less brute-force attack. [1] 

AES (Advanced Encryption Standard) 
After breaking DES in 1997, same year NIST (National Institute of 

Standards and Technology) announced Advanced Encryption Standard 
(AES) competition to replace the Data Encryption Standard (DES). The 
final requirements specified a block cipher with 128-bit block size and 
support for 128, 192 or 256-bit key sizes. Evaluation criteria included 
security, performance on a range of platforms from 8-bit CPUs (e.g. in 

 



smart cards) up, and ease of implementation in both software and 
hardware. In 2000 the Rijndael was announced to be a winner. It was 
designed by two Belgians, Joan Daemen and Vincent Rijmen. It is an 
iterated block cipher, but not a Feistel cipher; the overall structure is an 
substitution-permutation network. Nonlinearity is obtained by mixing 
operations from different algebraic groups.  

Rijndael parameters 
– Length of plaintext and ciphertext block is 128, 192, 256 bits. 
– Key length is 128, 192, 256 bits. 
– Number of rounds (Nb) is 10,12,14 (see table 2.2). 
 
Table 2.2 Dependence of key and plaintext blocks lengths [2] 

        Text 
Key   

128 192 256 

128 10 12 14 
192 12 12 14 
256 14 14 14 

 
Let consider the easiest case AES-128 where length of plaintext 

and ciphertext block equals to 128 bits. Number of rounds equal to 10. 
AES operates on a 4 × 4 column-major order matrix of bytes, 

termed the state. 16 bytes (128 bits) of plaintext are used to initialize 
the state table by being written column by column. 

 
m0 m4 m8 m12  S0,0 S0,1 S0,2 S0,3 

m1 m5 m9 m13 S1,0 S1,1 S1,2 S1,3 

m2 m6 m10 m14 S2,0 S2,1 S2,2 S2,3 

m3 m7 m11 m15 S3,0 S3,1 S3,2 S3,3 
 
Encryption in AES is performed iteratively using following 

operations: 
1. SubBytes – byte substitution table – nonlinear transformation 

(s-block) 
In the SubBytes step, each byte si,j is substituted with si,j

*   by 
looking up a fixed table (Rijndael S-box) given in design. This 
operation provides the non-linearity in the cipher. The S-box used is 

 



generated by combining the inverse function (the multiplicative inverse 
over GF(28)) with an invertible affine transformation. The result is in a 
matrix of four rows and four columns. 

2. ShiftRows – table transformation – cyclic shift each row of 
state by a fixed amount  

The ShiftRows step operates on the rows of the state; it cyclically 
shifts the bytes in row n by (n-1) bytes. (For AES, the first row is left 
unchanged. Each byte of the second, third and fourth row is shifted by 
offsets of one, two and three respectively.  

 
3. MixColumns – table transformation – data mixture in each 

column of state 
Each column of four bytes is now transformed using a special 

mathematical function. This function takes as input the four bytes of 
one column and outputs four completely new bytes, which replace the 
original column.  

4. AddKey – Cryptographic transformation – adding by modular 2 
the round key and current state. 

At the beginning we use the first key to randomise the state by 
operation XOR, then 9 same iterations performed. The last round (no 
MixColumns) is a bit different. The general algorithm is given on 
Fig.2.11. 

 



 
Fig.2.11 The general algorithm of AES 

 
Key expansion procedure  
Initially key in written into table like plaintext  

w0 w1 w2 w3 
K0,0 K0,1 K0,2 K0,3 
K1,0 K1,1 K1,2 K1,3 
K2,0 K2,1 K2,2 K2,3 
K3,0 K3,1 K3,2 K3,3 

First round key is the real AES key. All other round keys are 
generated recursively by the rules: 

– If number і is not multiple of 𝑁𝑁𝑏𝑏, then  

 



wi = wi-1⨁𝑤𝑤𝑖𝑖−𝑁𝑁𝑏𝑏 
– If number і is multiple of 𝑁𝑁𝑏𝑏 (i ⋮ Nb), then  

wi = SubBytes(ShiftCol(wi-1)⨁Ri)⨁𝑤𝑤𝑖𝑖−𝑁𝑁𝑏𝑏 
The procedure Subbytes means usage of cipher S-block to each 

byte of key, operation ShiftCol is a cyclic shift up by one position. 𝑅𝑅𝑖𝑖 is 
a round constant. 

Unlike the Feistel Cipher, the encryption and decryption 
algorithms needs to be separately implemented, although they are very 
closely related. All transformations which used for decryption are 
inverse to correspondent encryption transformation. Each round 
consists of the four processes conducted in the reverse order with 
relevant round keys. 

– Add round key. 
– Inv Mix columns – mixture of the byte in column using the 

inverse matrix. 
– Inv Shift rows – cyclic shift bytes to the right. 
– Inv Byte substitution – substitution operation that used inverse 

table SubBytes-1. 
 

2.6 Foundations of Public Key Encryption 
 
Symmetric cryptography has few following serious drawbacks: 

– the key management problem (too many keys); 
– the key exchange problem (the necessity of usage the 

secure channel prior communication);  
– the trust problem (authenticity problem). 

Public key cryptography was originally invented to solve given 
problems. The concept of public key cryptography was first  presented 
in the paper of Diffie and Hellman entitled “New Directions in 
Cryptography” in 1976 [4]. The idea behind public-key cryptosystem is 
to replace two identical keys for encryption and decryption with two 
types of keys. Public key is used for encryption and could be published 
in some directory to be seen by everyone; secret (private) key is used in 
decryption scheme by its personal owner. Two keys are linked in a 
mathematical way, such that public key tells nothing about private key. 
More formally, it could be described in terms of one-way functions 
which are central to public-key cryptography. 

 



f(x) is called to be one-way function if for given x it is easy to 
compute f(x), but given f(x) it is hard to compute x. Here, "easy" and 
"hard" are to be treated in the sense of computational complexity 
theory, specifically the theory of polynomial time problems. 

Diffie and Hellman invented key exchange protocol which allowed 
to establish one common secret key between two parties by exchanging 
some  nonclassified  information. This protocol uses same named one-
way function 𝑦𝑦=𝛼𝛼𝑥𝑥 𝑚𝑚𝑜𝑜𝑑𝑑 𝑝𝑝, where p is a large prime number, α is a 
primitive root modulo p. 

Alice and Bob have to declare 𝛼𝛼 and p as public parameters. Then 
Alice chooses her secret xa and Bob selects his secret number xb. They 
transmit over public channel to each other computed values: 
ya=αxa  mod p  and yb=αxb  mod p . The common secret key can be 
computed by both sides as 𝑦𝑦𝑎𝑎𝑏𝑏 = 𝑦𝑦𝑎𝑎

𝑏𝑏 𝑚𝑚𝑜𝑜𝑑𝑑 𝑝𝑝 or 𝑦𝑦𝑎𝑎𝑏𝑏 = 𝑦𝑦𝑏𝑏
𝑎𝑎  𝑚𝑚𝑜𝑜𝑑𝑑 𝑝𝑝. This 

scheme is illustrated on fig.2.12. 
 

Fig. 2.12 Diffie-Hellman protocol 
 
Despite of the fact that one-way functions have a wide application 

(cryptography, personal identification, authentication, e-commerce, e-
banking and so on), a message encrypted with the one-way function is 
not useful; no one could decrypt it.  

A trapdoor one-way function is a special type of one-way function, 
one with a secret trapdoor. It  is easy to compute f(x) given x, and hard 
to compute x given f(x). However, there is some secret information, k, 
such that given f(x) and k it is easy to compute x. 

Although Diffie and Hellman invented the concept of trapdoor 
one-way function, it was not until a year or so later that the first (and 
most successful) system, namely RSA, was invented. RSA is named 
after the three inventors—Ron Rivest, Adi Shamir, and Leonard 

𝑦𝑦𝑎𝑎 = 𝛼𝛼𝑥𝑥𝑎𝑎   𝑚𝑚𝑜𝑜𝑑𝑑 𝑝𝑝 

𝑦𝑦𝑏𝑏 = 𝛼𝛼𝑥𝑥𝑏𝑏   𝑚𝑚𝑜𝑜𝑑𝑑 𝑝𝑝 

𝑘𝑘𝑎𝑎𝑏𝑏 = 𝑦𝑦𝑏𝑏
𝑥𝑥𝑎𝑎 𝑘𝑘𝑎𝑎𝑏𝑏 = 𝑦𝑦𝑎𝑎

𝑥𝑥𝑏𝑏 

 



Adleman. Security of RSA is based on the difficulty of factoring large 
numbers. 

RSA algorithm can be briefly described by following steps [3]: 
1. To generate two large prime numbers p and q. 
2. To compute n=p∙q. 
3. To select randomly integer e such that greatest common 

divisor of e and (p-1)(q-1) equals to 1 (e and (p-1)(q-1) are 
relatively prime). 

4. Using extended Euclidean algorithm to compute the 
decryption key d such that e∙d≡1 mod (p-1)(q-1). 
In other words d=e-1 mod (p-1)(q-1). 

5. The numbers (n,e) are public key 
The numbers (p,q,d) are used as secret key. 
Numbers p and q are not need anymore but should be kept in 
secret. 
The simple formula C=Me mod n, M<n can be used for 
encryption now. To decrypt the message we can use formula 
M=Cd mod n.  

It is obvious that both symmetric and asymmetric methods have a 
great impact on development of computer networks, internet and other 
communication means.  

 
2.7 Resilient cryptography 
 
In traditional cryptography, primitives are treated as mathematical 

objects with a predefined (well-restricted) interface between the 
primitive and the user/adversary. Based on this view, cryptographers 
have constructed a plenty of cryptographic primitives (CPA/CCA 
secure encryption schemes, identification schemes, unforgeable 
signatures, etc.) from various computational hardness assumption. 

Cryptography, however, should be developed for actual 
deployment in real-world applications and not solely for theoretical 
purposes. In this new setting, the actual interaction between the 
primitive and the adversary depends not only on the mathematical 
description of the primitive, but also on its implementation and the 
specifics of the physical device on which the primitive is implemented. 
The information about the primitive leaked to the adversary goes well 

 



beyond that predicted by the designer and, accumulatively, can allow 
the adversary break an, otherwise secure, primitive. Let consider some 
attacks based on physical attributes of a computing device which can 
reveal some information about internal secret key.  

Types of Side Channel Attacks 
Timing Attacks are one of the first type of such attacks which uses 

the running time of the execution of a protocol in order to obtain 
confidential information of user. The adversary knows a set of 
messages as well as the running time the cryptographic device needs to 
process them. He can use these running times and potentially (partial) 
knowledge of the implementation in order to derive information about 
the secret key. This attack was presented by Paul Kocher in  [5], where 
he describe the results of experiment of timing attack on modular 
exponentiation and multiplication in RSA on the example of smart 
cards. The results of the experiment for implementing RSA on a smart 
card were reported by Schindler and others [6] 

OpenSSL is a well-known open source cryptographic library that 
is often used on Apache web servers to provide SSL functionality. 
Brumley and Boneh [7] demonstrated that time attacks can reveal RSA 
private keys from a Web server based on OpenSSL over a local area 
network. 

Power Analysis Attacks: In this kind of attacks, the adversary gets 
side information by measuring the power consumption of a 
cryptographic device. Power analysis attack is especially effective in 
attacks on smart cards or other special embedded systems storing a 
secret key. In cryptographic implementations where the execution path 
depends on the processed data, the power trace can reveal the sequence 
of instructions executed and hence leak information about the secret 
key. Various examples of power analysis attacks were demonstrated 
firstly by Kocher in [8]. Power analysis attacks were demonstrated as 
very powerful attacks for the simplest implementations of a symmetric  
and asymmetric ciphers in more than 200 papers. 

Fault Injection Attacks: These attacks fall into the broader class of 
tampering attacks. The adversary forces the device to perform 
erroneous operations (i.e. by flipping some bits in a register). Generally 
speaking the fault injection attack requires two main steps: the injection 
of a fault and usage of steps with erroneous operations. If the 

 



implementation is not robust against fault injection, then an erroneous 
operation might leak information for the secret key. The most common 
methods of influence are described in [9]. For instance, failures in a 
smart card can be caused by an impact of environment and placing it in 
an emergency condition. 

Memory Attacks: This type of attack was recently introduced by 
Halderman in [10]. It is based on the fact that DRAM cells retain their 
state for long intervals even if the computer is unplugged. Hence an 
attacker with physical access to the machine can read the content of a 
fraction of the cells and deduce useful information about the secret key. 
Halderman et. al. studied the effect of these attacks against DES,AES 
and RSA. In October 2005, Dag Arne Osvik, Adi Shamir and Eran 
Tromer presented a paper demonstrating several cache-timing attacks 
against AES [11].  

There are some more less known side channel attacks but  leakage-
resilient cryptosystems should remain secure even if the attacker learns 
some arbitrary partial information about their internal secret key 
through the physical or other leakages. There are some 
countermeasures can be applied in order to make cryptosystem resilient 
to side-channel attacks: adding noise, aligning the running time, 
balancing energy consumption, masking or blinding computing.  

 
Questions to self-checking 
1. Classify the cryptographic methods. 
2. List types of cryptographic attacks. 
3. What a difference between perfect and computational secrecy? 
4. Give an example of cipher with perfect secrecy. 
5. How to describe LFSR? 
6. A5/1 – stream cipher based on LFSR. 
7. Data encryption standard (DES). 
8. Main operations in AES. 
9. Advantages and disadvantages of symmetric cryptography. 
10. What Diffie-Hellman protocol can be used for? 
11. RSA as one of the best algorithms of asymmetric 

cryptosystem. 
12. List types of side-channel attacks. 
13. Describe the notation of resilient cryptography. 

 



 
References 

1. Henk C.A. van Tilborg, Sushil Jajodia (editors) Encyclopedia 
of Cryptography and Security. Second edition– Springer, 
Netherlands 2005. – 1T6841T p. 

2. Nigel Smart. Cryptography Made Simple. – Springer, 2016. – 
481 p. 

3. Gorbenko I.D., Gorbenko Yu.I. Applied Cryptology . Theory. 
Practice. Application, Kharkiv, Ukraine, Fort Publisher, 2012. 
– 880 p. 

4. Diffie W.; Hellman M. New Directions in Cryptography // 
IEEE Transactions on Information Theory, Vol. IT-22, No. 6, 
November 1976. – pp.644-654 

5. Paul C. Kocher. Timing attacks on implementations of Diffie-
Hellmann, RSA, DSS, and other systems // Advances in 
Cryptology – CRYPTO '96 :– Springer, 1996. – Vol. 1109. – 
pp.104–113. 

6. 20TW. Schindler. A timing attack against RSA with the 
Chinese 20TRemainder20T Theorem // Proc. of Cryptographic  
Hardware  and  Embedded  Systems  (CHES 
2000), 20TSpringer, 2000, LNCS 1965 20T. – pp.109-124 

7. D. Brumley, D. Boneh. Remote Timing Attacks are Practical // 
Proceedings of the 12th Usenix Security Symposium (August 
4–8, 2003), 2003. – pp. 1-13. 

8. P. Kocher, J. Jaffe, B. Jun. Differential power analysis. 
CRYPTO’99,LNCS 1666, 1999. – pp.388-397. 

9. Jean-Jacques Quisquater, Francois Koeune (2010-10). Side 
Channel Attacks. State-of-the-art // CRYPTRECK 2002. –  
pp. 12-13 

10. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William 
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. 
Feldman, Jacob Appelbaum, and Edward W. Felten. Lest We 
Remember: Cold Boot Attacks on Encryption Keys. In Paul C. 
van Oorschot, editor,USENIX Security Symposium,2008. – pp. 
45–60 

11. Dag Arne Osvik; Adi Shamir; Eran Tromer Cache Attacks and 
Countermeasures: the Case of AES // Proceeding CT-RSA'06 

 



Proceedings of the 2006 The Cryptographers' Track at the 
RSA conference on Topics in Cryptology. – pp.1-20 
 

 
 

 



 

3 POST-QUANTUM CRYPTOGRAPHY 
 
3.1 Quantum computers and their impact on cryptography 

 
Quantum computers, obeying the laws of quantum mechanics, can 

calculate things in ways that are unimaginable from the perspective of 
people’s regular day-to-day experiences. In classical computing, 
information is stored in fundamental units called bits, where a bit can 
hold a binary digit with the value of 0 or 1. In quantum computing, the 
fundamental unit can hold both a 0 and a 1 value at the same time; this 
is known as a superposition of two states. These quantum bits are 
known as qubits and measuring the state of a qubit causes it to select or 
“collapse into”, being a 0 or a 1. Interestingly, if you prepare a string of 
qubits of the same length in the same way, the resulting bit string will 
not always be the same. This gives quantum computers the advantage in 
form of the ability to perform very rapid parallel computations. Using 
these properties, a quantum computer is able to solve certain problems 
like searching and factoring much faster than a classical computer [1]. 

The most widespread asymmetric cryptosystems, like RSA and 
ElGamal ciphers, digital signature schemes (for example, DSA, 
ECDSA, etc.) and key-exchange protocols, which include 
Diffie-Hellman and ECDH schemes, are built on top of the 
mathematical complexities of integer factorization and discrete 
logarithms, which are considered to be NP-problems for classical 
computers. The algorithms for quantum computer, proposed by 
mathematician Peter Shor, are able to solve these problems in 
polynomial time. Thus, a large-scale quantum computer would be able 
to break all the mentioned above cryptosystems [1]. 

Shor's algorithm for integer factorization includes the five steps, 
among which only the second one requires performing quantum 
computations. The other steps are intended for execution on a classical 
computer. According to this algorithm, factorization of the positive 
composite integer N includes the following operations [2]: 

1. Random choice of integer m which is strictly between 1 and N. 
Computation of the greatest common divisor gcd(m, N) of m and N 
using the polynomial time Euclidean algorithm. If gcd(m, N) ≠ 1 then a 
non-trivial factor of N has been found and algorithm returns gcd(m, N). 

2. Determination of the period p of the function f(x) = mx mod N 
by means of quantum computer. Shor's algorithm solves this problem in 

1  



 

polynomial time. 
3. If p is odd, the go to the first step. The probability of this is 0.5k 

where k is the number of distinct prime factors of N. 
4. Since p is even mp - 1 = (m0.5p - 1)(m0.5p + 1) = 0 (mod N). If 

m0.5p mod N = -1 then go to the first step. The probability of going 
backward is less than 0.5k-1, where k denotes the number of distinct 
prime factors of N. 

5. Return of gcd(m0.5p - 1, N) which is computed by the Euclidean 
algorithm. Since m0.5p mod N = -1, it can be shown that the returned 
value is a non-trivial factor of N. 

Shor's algorithm for discrete logarithm is able to solve the problem 
of finding the least integer x such that gx mod p = n, where p is a large 
prime integer, g is a generator of the multiplicative group modulo p and 
n is positive integer which is less the p. In this case the bivariate 
function f(a, b) = ga · n-b mod p is being considered. This function has 
two-dimensional period, which equals (x, 1), because f(a + x, b + 1) = 
= ga+x · n-b-1 mod p = ga · n-b · gx · n-1 mod p = f(a, b). The considered 
algorithm uses a quantum computer to find this period in polynomial 
time and thus determine the value of x [3]. 

The experts in field of cryptography are starting to catch sight of 
quantum computing being a matter of near future. A large number of 
major cryptography specialists in IT industry are of opinion that a fully 
fledged quantum computer can be constructed in less than 10 years [4]. 
Moreover, the security of information, which was encrypted by 
quantum-unsafe cryptosystems, can be achieved only if the time period, 
during which these data must be kept in secret, is ended before creation 
of large-scale quantum computer [1]. These circumstances increase the 
actuality of post-quantum cryptography. 
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Figure 3.1 History of public key cryptography [5].
 



 

3.2 Post-quantum cryptography concept 
 
Post-quantum cryptography is a variety of cryptographic 

algorithms resistant to attacks using quantum computations. The 
development of such cryptography requires the investigation of 
computational problems which cannot be solved in polynomial time by 
both classical and quantum computers. The main classes of such 
problems stem from the fields of lattice theory, coding theory and the 
study of multivariate quadratic polynomials. Each of these classes 
offers new possible frameworks within which to build public key 
cryptography. The quantum-safe ciphers that are built on these methods 
do admittedly present some challenges. Typically, they suffer from 
large key sizes when compared to popular, current public key 
algorithms that are not quantum-safe. However, in terms of 
performance, some quantum-safe algorithms are competitive with – or 
even faster than – widely used public key algorithms such as RSA or 
elliptic curve cryptosystems [1]. 

Some forms of symmetric-key cryptography are guaranteed to be 
quantum-safe. These primitives make no computational assumptions 
and are thus information-theoretically secure. An example of this is 
Vernam’s One Time Pad, which has been proven to have perfect 
unconditional security against arbitrarily powerful eavesdroppers. 
Wegman-Carter Authentication is also known to be resistant against 
quantum attacks [1]. 

There are also other types of symmetric key cryptography that are 
believed (but not proven) to be quantum-safe. For example, generic 
quantum search only provides a quadratic speedup over classical search, 
indicating that quantum computers could not perform a brute force 
search to find symmetric keys much faster than could classical 
computers. Thus, unless the symmetric key algorithm happens to have a 
particular structure that can be exploited by a quantum computer, the bit 
security of a symmetric cipher can be retained in the presence of a 
quantum adversary by simply doubling the key length. Since quantum 
search does not provide exponential speedups, symmetric key 
encryption like AES is believed to be quantum-safe. The similar can be 
stated about good hash functions [1].    

Post-quantum asymmetric cryptosystems, which do not use the  
quantum properties, include the following classes: 

1. Code-based cryptosystems where the security depends on the 
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difficulty of solving a decoding problem in a linear code [6]. While 
there have been some proposals for code-based signatures, code-based 
cryptography has seen more success with encryption schemes [7]. The 
classic example is McEliece’s public-key encryption system based on 
the hidden binary Goppa codes [8]. 

2. Multivariate cryptosystems where the security depends on the 
difficulty of solving a system of multivariate polynomial equations over 
finite fields [6]. While there have been some proposals for multivariate 
encryption schemes, multivariate cryptography has historically been 
more successful as an approach to signatures [7]. One of many 
interesting examples is Patarin’s “HFEv−” public key signature system 
which generalizes a proposal by Matsumoto and Imai [8]. 

3. Lattice-based cryptosystems where the security depends on the 
difficulty of solving a short or close vector problem in a lattice [6]. 
Most lattice-based key establishment algorithms are relatively simple, 
efficient, and highly parallelizable [7]. The example that has perhaps 
attracted the most interest, not the first example historically, is the 
Hoffstein–Pipher–Silverman “NTRU” asymmetric cryptosystem [8]. 

4. Hash-based signatures where the security depends on the 
difficulty of finding collisions or preimages in cryptographic hash 
functions [6]. Many of the more efficient hash-based signature schemes 
have the drawback that the signer must keep a record of the exact 
number of previously signed messages, and any error in this record will 
result in insecurity. Another of their drawbacks is that they can produce 
only a limited number of signatures. The number of signatures can be 
increased, even to the point of being effectively unlimited, but this also 
increases the signature size [7]. The classic example is Merkle’s hash-
tree public-key signature system (1979), building upon a one-message-
signature idea of Lamport and Diffie [8]. 

5. Isogeny-based cryptosystems where the security depends on the 
difficulty of finding an unknown isogeny between a pair of 
supersingular elliptic curves. They have good properties such as small 
key sizes and forward security. These cryptographic schemes are a new 
research field with relatively few active research groups or publications 
and deserve more academic scrutiny to establish a consensus on their 
security properties. The classic example is Jao-De Feo key agreement 
protocol [6]. 
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3.3 Code-based cryptography 
 
The main advantage of this class of cryptosystems besides the 

quantum resistance is high performance. Its biggest drawback is a large 
key size which is the reason of less prevalence of these cryptosystems 
in comparison with RSA and ElGamal schemes [1]. 

Classical code-based ciphers, like the McEliece and Niederreiter 
schemes, can be built on top of different linear error-correction codes, 
but not all of them are suitable to achieve proper security of the 
obtained cryptosystems. As an example the Niederreiter scheme based 
on generalized Reed-Solomon codes can be given, which was broken 
by Sidelnikov and Shestakov with a structural attack. Nevertheless, 
these cryptosystems based on the hidden binary Goppa codes are secure 
against attacks by both classical and quantum cryptanalysis [9]. 

The binary Goppa codes play an important role in ensuring the  
cryptographic strength of the McEliece and Niederreiter ciphers. 
Breaking these cryptosystems requires decoding of arbitrary public 
linear code which was obtained by random transformation of some 
quickly decodable hidden one. This is an NP-complete problem [9]. 

There is no known efficient algorithm which allows to distinguish  
between the binary Goppa code and a binary random one [10]. The  
number of inequivalent binary Goppa codes  grows  exponentially  with  
the increase of their length and dimension [11]. These circumstances  
make  impossible  to recover  in  polynomial  time  a  hidden  code  and  
reduce the subsequent stage of break of the McEliece and Niederreiter 
cryptosystems to an effective decoding of the restored code [9]. 

 
3.3.1 The McEliece cryptosystem 
 
This cryptosystem has been developed by Robert McEliece in  

1978 and become the first probabilistic encryption scheme [12]. This 
cipher uses the mathematical apparatus of matrices and vectors over a 
field GF(2) and binary linear codes. 

The key pair generation includes the following actions [9]: 
1. Random choice of a binary linear (n, k)-code С with k × n 

generator matrix G. This code must be able to correct no less than t 
errors and have an efficient decoding algorithm.  

2. Random generation of n × n permutation matrix P and 
nonsingular k × k matrix S. 
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3. Computation of k × n matrix E = S • G • P. 
4. Creation of a pair of public and private keys in the form of 

tuples (E, t) and (S-1, G, P-1), respectively. 
The encryption consists of the following steps [9]:  
1. Representation of a message as k-dimensional vector m.  
2. Calculation of a vector v = m • E.  
3. Choice of a random n-dimensional vector z of weight t.  
4. Forming of a ciphertext by the formula c = v + z. 
The decryption requires the following operations [9]:  
1. Computation of n-dimensional vector u = c • P-1.   
2. Obtainment of vector d as a result of decoding of u with C.   
3. Forming of a decrypted message vector m′ = d • S-1. 
The correctness of this cipher can be proved as follows: 
1. A vector u equals c • P-1 = (m • E + z) • P-1 = m • S • G + z • P-1. 

Since G is a generator matrix of the linear code C, a vector m • S • G is 
a word of С. A vector z • P-1 is of weight t, because P is a permutation 
matrix. Thus, a vector u is a result of distortion of t symbols in a word 
of С, which was obtained by encoding of a message m • S.  

2. A vector d, which is a result of decoding of u with С, has a value 
m • S as this code allows to correct no less than t errors. 

3. A decrypted message vector m′ equals d • S-1 = m. 
 
3.3.2 The Niederreiter cryptosystem 
 
This cryptosystem has been proposed by Harald Niederreiter in 

1986. Unlike the McEliece cryptographic scheme, it is deterministic, 
but has a higher speed of encryption and can be used to create a digital 
signature [13]. However, the generation time for such signatures is 
more than for other quantum-safe ones [1]. This cipher uses the same 
mathematical apparatus as the McEliece cryptosystem. 

The key pair generation consists of the following steps [9]:  
1. Random choice of a binary linear (n,  k)-code С with (n – k) × n  

parity check matrix H. An efficient decoding algorithm for C must be 
known. The error correction capability of C should be no less than t.  

2. Random generation of n × n permutation matrix P and 
nonsingular (n – k) × (n – k) matrix S.  

3. Calculation of (n – k) × n matrix E = S • H • P.  
4. Creation of a pair of public and private keys in the form of 

tuples (E, t) and (S-1, H, P-1), respectively. 
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The encryption requires the following operations [3]: 
1. Representation of an initial message as n-dimensional vector m 

of weight t. 
2. Forming of a ciphertext by the formula с = E • mT.  
The decryption includes the following actions [3]: 
1. Computation of (n – k)-dimensional vector u = S-1 • c.  
2. Determination of a variable d as a transposed error vector which 

corresponds to a syndrome u in the error correction procedure of C.  
3. Forming of the decrypted message vector m′ = (P-1 • d)T. 
The correctness of this cipher can be justified as follows: 
1. A vector u equals S-1 • c = S-1 • E • mT = H • P • mT. The weight 

of a column vector P • mT equals t, because P is a permutation matrix. 
Since H is a parity check matrix of the linear code C, u is a syndrome of 
an error vector (P • mT)T, which has a weight t. 

2. A vector d, which is the result of calculation of the transposed  
error vector which corresponds to a syndrome u in the error correction 
procedure of the code C, is equal to P • mT, because С is able to correct 
no less than t errors. 

3. A decrypted message vector m′ has a value (P-1 • d)T = m. 
 
3.4 Multivariate cryptography 
 
The primary application field of this class of cryptosystems is 

digital signature schemes [7]. The main advantages of the multivariate 
signature schemes are very short signatures and high performance [14]. 
Their biggest shortcoming is a large key size [8]. 

To break these cryptosystems one must find a solution of arbitrary 
public system of multivariate quadratic equations over a finite field. In 
general, this problem is NP-hard. In multivariate cryptographic schemes 
the public equation system is obtained by two hidden random linear 
transformations of some private vector-valued quadratic map, which is 
easy to invert. Different families within this class of cryptosystems 
correspond to several approaches to construction of the aforementioned 
private map [14]. 

The first multivariate cryptosystem was C* scheme, which has 
been designed by Matsumoto and Imai in 1985. An approach to break it 
has been proposed by Patarin in 1995. Other well-known cryptosystems 
of this class include HFE, UOV, Rainbow and IFS. Some multivariate 
schemes were broken, but other remain secure both in classical and 

8  



 

post-quantum senses [14]. 
The key pair generation includes the following actions [14]: 
1. Random choice of a central map Q which must be an easily 

invertible quadratic map between vectors over finite field F. Each 
n-dimensional vector over F must be mapped by Q to m-dimensional 
vector over the same finite field. The central map can be represented as 
m-tuple of n-variate polynomials qi(x1,...,xn) where only quadratic 
terms are present. The mapping of (v1,...,vn) to (u1,...,um) can be 
performed according to the formula ui = qi(v1,...,vn). 

2. Random choice of initial and final maps S and T, which must be 
affine maps between vectors over F. The dimensions of mapped vectors 
are n for S and m for T. The initial map can be represented as n-tuple of 
linear n-variate polynomials si(x1,...,xn). The mapping of (v1,...,vn) to 
(u1,...,un), which corresponds to S, can be performed by the formula  
ui = si(v1,...,vn). The similar holds true for the final map. The mapping 
formula for T is ui = ti(v1,...,vm) where ti(x1,...,xn) are polynomials of 
m-tuple representation of the final map. 

3. Representation of a map composition P, which equals T ◦ Q ◦ S, 
as m-tuple of n-variate quadratic polynomials pi(x1,...,xn). The mapping 
of (v1,...,vn) to (u1,...,um), which corresponds to P, is described by the 
formula ui = pi(v1,...,vn). The coefficients of the polynomials in the 
aforementioned m-tuple can be obtained from the identity pi(x1,...,xn) =  
= ti(q1(s1(x1,...,xn), ..., sn(x1,...,xn)), ..., qm(s1(x1,...,xn), ..., 
sn(x1,...,xn))). 

4. The public key is created in the form of mentioned above 
polynomial representation of P. The private key must is represented by 
the tuple (T-1, Q-1, S-1), where the elements correspond to inverse maps. 

The message encryption or verification of digital signature can be 
performed as follows [14]: 

1. An initial message or a digital signature is represented as 
n-dimensional vector d over F. 

2. A vector r is obtained as the result of applying of P to d. A 
ciphertext is represented by r if an encryption is performed. In case of 
verification a signature is considered invalid if r does not represent the 
hash of signed message. 

The decryption or signing of message consists of the following 
operations [14]: 

1. A ciphertext or a hash of signed message is represented as 
m-dimensional vector r over F. 

9  



 

2. A vector d is computed as the result of applying of map 
composition S-1 ◦ Q-1 ◦ T-1 to r. A decrypted message or digital signature 
is represented by d. 

The correctness of these cryptosystems can be proved as follows. 
The decryption of ciphertext with a correct private key yields the result 
of applying of a map composition S-1 ◦ Q-1 ◦ T-1 ◦ P to an initial message 
vector. Since S-1 ◦ Q-1 ◦ T-1 ◦ P = S-1 ◦ Q-1 ◦ T-1 ◦ T ◦ Q ◦ S, the 
aforementioned map composition is equal to an identity map. Thus, the 
decryption produces an initial message vector if a corresponding private 
key is used. The similar approach can be applied to prove that a 
signature, which was created with a correct private key, is considered 
valid by the verification procedure. 

 
3.5 Comparison of post-quantum and classical cryptosystems 
 
The following tables, which were given in the referred ETSI White 

Paper, compare the practical factors between public key cryptography 
schemes that are popular, but vulnerable to quantum attack, and 
quantum-safe public key schemes. The important factors being 
compared include key generation time, signing time, verification time, 
encryption time, and decryption time. The data represented in the tables 
is not benchmark data, but instead are values that are relative to an RSA 
signing operation where 1 unit of time is equivalent to producing an 
RSA signature using a 3072 bit private key [1]. 

The time values are extrapolated from ECRYPT Benchmarking of 
Cryptographic Systems and the papers specifying the schemes, which 
were selected for comparison in the aforementioned ETSI document. In 
addition to comparing the time taken to perform cryptographic 
operations, the key sizes of the public key and private key, and the size 
of the resulting the cipher text are shown. These comparisons all 
assume an equivalent effective symmetric key strength of 128  bits and 
are represented by the value k (i.e. k = a key that is as strong as a 128 
bits of symmetric key). The time scaling and key scaling columns 
describe the rate at which operation time increases and the size of keys 
increase in order to increase the security level [1]. 

Hash tree based signatures are unique in that their keys can only be 
used to produce a limited number of signatures.  The maximum number 
of signatures for a hash tree scheme needs to be chosen at the time of 
key generation. For the purpose of comparisons below, hash tree 
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scheme keys are set at a fixed 220 signatures [1]. 
The following table comparisons are not exact and are intended for 

illustration only. Currently, the actual implementation benchmarks for 
these quantum-safe schemes are not generally available. The data on 
performance provided in Table 1 and Table 2 is based on estimations to 
obtain approximate scaling about the performance and is not the result 
of tests conducted in the same controlled environment. Thus, the 
performance data should not be considered as a precise comparison [1]. 

Based on Table 1, the key pair generation of the selected 
quantum-safe schemes are far better than RSA, but not as good as DH 
and ECDH. Thus, using a one-time key pair to achieve perfect forward 
secrecy is possible during a key establishment scheme, however, it will 
be slower than an ephemeral Diffie-Hellman key agreement [1]. 

For the selected signature schemes, XMSS has the asymmetry 
property of RSA, i.e. verifying is faster than signing.  Likewise, for the 
selected encryption schemes, the McEliece variants also share this 
property of RSA, i.e. encryption is faster than decryption [1]. 

The selected quantum-safe schemes generally have performance 
comparable to or better than pre-quantum schemes of the same security 
level. However, key, message, and signature sizes are generally larger.  
In the cases of McEliece and Rainbow, key sizes are a lot larger. Also, 
quantum-safe schemes have not been studied as thoroughly as the listed 
pre-quantum schemes [1]. 

 
Table 3.1 Comparison on encryption schemes [1]. 
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Table 3.2 Comparison on digital signature schemes [1]. 

 

 
 
Lattice-based schemes offer good security, relatively short keys, 

fast key generation for forward security and the flexibility to provide 
key agreement, key transport and key pre-distribution schemes [6].  

Code-based schemes based on binary Goppa codes are well 
established and offer good security as basic key transport schemes. 
They are somewhat less flexible than lattices and may need 
supplementing to provide forward security or other features. The 
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various proposals to reduce key sizes for code-based schemes are very 
interesting but would benefit from more academic assessment [6]. 

Multivariate signature schemes uniquely offer very short 
signatures, which might be good for some use cases [6]. 

Hash-based signature schemes offer good security but their 
practical requirements for bookkeeping and limits on the number of 
signatures available mean that they are not suitable for general-purpose 
applications [6]. 

 
3.6 Application in security protocols 
 
The majority of contemporary security protocols use asymmetric 

cryptosystems which are vulnerable to attacks performed on quantum 
computers. Thus, to achieve the quantum-safe implementation of these 
protocols, they should be rebuild on the basis of post-quantum 
cryptography. However, this task may be complicated because 
non-security issues such as adoption rates, backwards compatibility and 
performance characteristics must also be considered. Some protocols 
are too rigid and require fundamental messaging and data structure 
changes to safeguard them from quantum threats [1]. 

 
3.6.1 X.509 certificates 
 
The X.509 standard specifies a common format for public key 

certificates, mechanisms for managing and revoking certificates, a set 
of valid attributes of certificates, and an algorithm for validating the 
certificates. X.509 is not a protocol but rather a suite of data formats 
and algorithms that collectively constitute a public key infrastructure. 
These certificates play a central role in the use of SSL/TLS on the 
Internet, as servers are authenticated to clients using X.509v3 
certificates. Every web server supporting TLS must have a certificate, 
the vast majority of which are issued by one of the several hundred 
commercial certificate authorities that are recognized by major web 
browsers. X.509v3 certificates are also used in other contexts, including 
secure email (S/MIME), web services (XML Digital Signatures), and 
code signing [1]. 

Using quantum-safe algorithms and public keys in X.509 
certificates does not require a change to the standard. The structure of 
these certificates is extensible and can be made to support quantum-safe 
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algorithms with relative ease. However, X.509 is a standard that is used 
in many other standards that would require an update to support the 
newly defined quantum-safe algorithm identifiers. For example, TLS 
would require new ciphersuites to be introduced [1]. 

 
3.6.2 Internet Key Exchange (IKE) version 2  
 
Internet Key Exchange is a protocol used to establish keys and 

security associations for the purpose of setting up a secure virtual 
private network connection that protects network packets from being 
read or intercepted over a public Internet connection. This allows a 
remote computer on a public network to access resources and benefit 
from the security of a private closed network without compromising 
security [1].     

The IKE protocol standard is rigid and does not permit VPN 
designers to choose beyond a small set of cryptographic algorithms. At 
present, none of the permitted algorithms are completely quantum-safe. 
Thus, any option to make IKE quantum-safe would require a change to 
the standard [1]. 

 
3.6.3 Transport Layer Security (TLS) version 1.2 
 
The Transport Layer Security protocol, earlier versions of which 

were called the Secure Sockets Layer (SSL) protocol, establishes a 
protected tunnel between a client and server for transmission of 
application data. The handshake sub-protocol is used to perform 
server-to-client and optional client-to-server authentication, and to 
establish shared secret keys. Shared secrets are subsequently used in the 
record layer sub-protocol to encrypt and authenticate application 
data [1].  

TLS is used to secure a variety of applications, including web 
traffic (the HTTP protocol), file transfer (FTP), and mail transport 
(SMTP). The design of TLS is largely independent of cryptographic 
algorithms, and allows for parties to negotiate ciphersuites 
(combinations of cryptographic algorithms to use). As of TLSv1.2, all 
cryptographic components (public key authentication, key exchange, 
hash functions, bulk encryption) can be negotiated, although generally 
all must be negotiated at once in a single ciphersuite rather than 
independently. Thus, any option to make TLS quantum-safe would 
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require a change to the standards by introducing new ciphersuites. Also, 
quantum-safe algorithms with large public keys or signatures may 
require additional changes to the standard to allow certificates with size 
exciding 16 MB be used [1]. 

 
3.6.4 Secure/Multipurpose Internet Mail Extension (S/MIME) 
 
Secure/Multipurpose Internet Mail Extension is a standard for 

digital signatures and public-key encryption used to securely send email 
messages. It offers origin authentication, non-repudiation, data 
integrity, and confidentiality through use of digital signatures and 
message encryption. This standard is widely adopted throughout 
government and enterprise. S/MIME, and a similar scheme called 
OpenPGP, allow email to remain encrypted during the entire path from 
sender to recipient, meaning that at the email servers of both the sender 
and receiver, as well as the links between sender, sender's email server, 
recipient's email server, and receiver, the plaintext cannot be read or 
modified by an adversary. This contrasts with other protocols like 
SMTP over TLS and IMAP/POP3 over TLS which are used to secure 
the individual links between intermediate mail servers, but do not 
preserve end-to-end confidentiality and data integrity [1]. 

The S/MIME protocol has the potential to transition to 
quantum-safe cryptography. The S/MIME Capabilities attribute (which 
includes algorithms for signatures, content encryption, and key 
encryption) was designed to be flexible and extensible so that other 
capabilities added later would not break earlier clients. However, some 
very early versions of S/MIME may present backward-compatibility 
issues [1]. 

 
3.6.5 Secure Shell (SSH) version 2 
 
Secure Shell version 2 is a cryptographic network protocol used to 

encrypt information sent over an insecure network such as the Internet. 
In essence, it relies on a client-server model to allow a user on one 
computer to remotely log-in, send commands, and transfer files on 
another computer, without compromise of data integrity or 
confidentiality. It has a wide range of uses, with some implementations 
of SSH (namely OpenSSH) enabling users to create fully encrypted 
VPNs. This allows users to treat a public network such as the Internet as 

15  



 

if it were a more secure, private network [1].  
SSH is a secure remote-login protocol. It has pervasive and diverse 

applications, and can be used for a variety of purposes, including the 
construction of cost-effective secure Wide Local Area Networks, secure 
connectivity for cloud-based services, and essentially any other 
enterprise process that requires secure remote access to a server [1]. 

The SSH protocol was specified with a high level of cryptographic 
agility and allows servers and clients to negotiate the algorithms used 
for encryption, data integrity, authentication and key exchange. The 
addition of quantum-safe controls will not require significant changes to 
the base SSH protocol [1]. 

 
 
 
3.7 Conclusions 
 
The rapid progress in building of quantum computers threatens the 

most widespread public key cryptographic schemes. The mathematical 
problems, which underlie their security, can be solved by quantum 
algorithms in polynomial time. For example, Shor's algorithms for 
integer factorization and discrete logarithm allow breaking such 
cryptosystems as RSA, DSA and Diffie-Hellman schemes. These 
circumstances increase the actuality of post-quantum cryptography, 
which is a variety of cryptographic algorithms resistant to attacks using 
quantum computations. 

Symmetric key encryption and good hash functions are believed to 
be quantum-safe. Asymmetric post-quantum cryptosystems, which use 
only classical computing, include such classes as code-based, 
multivariate, lattice-based, hash-based and isogeny-based cryptographic 
schemes. Their main advantage is high performance, however, these 
cryptosystems typically suffer from large key sizes. 

Multivariate cryptographic schemes are more successfully used to 
create digital signatures, which in this case are very short. Code-based 
cryptosystems are primarily applied for encryption. Hash-based 
cryptography provides an approach only for obtaining digital 
signatures. Lattice-based cryptosystems have fast generated keys of 
relatively small size and so are suitable to be used for key agreement. 
Isogeny-based cryptographic schemes, which are a new research field, 
possess a significant advantage in the form of very short public key. 
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The majority of security protocols use quantum-unsafe asymmetric 
cryptosystems and so should be rebuild on the basis of post-quantum 
cryptography. However, this task may be complicated because 
non-security issues such as adoption rates, backwards compatibility and 
performance characteristics must also be considered. 

The directions of further research in field of post-quantum 
cryptography include the investigation of security properties of 
relatively new quantum-safe cryptographic schemes and search of 
approaches to obviate the drawbacks of these cryptosystems. 

 
3.8 Questions 

 
1. What are the basic differences between quantum and classical 

computers? How does qubit differ from bit? 
2. What mathematical problems underlie the most widespread 

asymmetric cryptosystems? What quantum algorithms threaten such 
cryptography? 

3. What is a post-quantum cryptography? What advantages and 
drawbacks do quantum-safe cryptosystems typically have in 
comparison with widespread public key cryptographic schemes? 

4. What are the main classes of post-quantum asymmetric 
cryptosystems? What mathematical problems underlie their security? 

5. What of these cryptography classes are primarily applied for 
encryption? Which of them are more successfully used for obtaining 
digital signatures? 

6. Why do the binary Goppa codes have an important significance 
in code-based cryptography? 

7. What are the basic differences between the McEliece and 
Niederreiter schemes? What are the main advantages and drawbacks of 
these cryptosystems? 

8. What is the general approach for construction of equation 
system of a public key in multivariate cryptography? 

9. What is the primary application field of multivariate 
cryptosystems? What are their main advantages and drawbacks? 

10. What issues complicate the introduction of post-quantum 
cryptography into contemporary security protocols? Which of these 
protocols possess a low level of cryptographic agility? 

11. What is the role of ciphersuites in the cryptographic agility of 
TLS? How do they impact on the perspective of using the quantum-safe 
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cryptosystems in TLS? 
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4 SOFTWARE SECURITY AND TECHNOLOGIES 
FOR RESILIENT COMPUTING 

 
4.1 Understanding software security and resilient software 
 
It is difficult enough today to find a business that would not work 

on software which objectives and priorities of use differ from organiza-
tion to organization and client to client. But in any case you need relia-
ble and stable applications. The Institute of Electrical and Electronics 
Engineers (IEEE) Reliability Society defines reliability as «The target 
at which software designers have always aimed: perfect operation all 
the time» [1-2]. However, this does not mean that every element of the 
system will work reliably all the time, which gives us an understanding 
of the difference between reliability and resiliency. Resilience in this 
context means that failures must be compartmentalized [3]. 

 Why is resilient software so important and why not just say “fail-
safe” or “failure-resistant”?  In a literal sense, “failsafe” means that a 
system fails in a safe way. On the other hand, the resistive systems re-
turn to their original operating state. In most cases, the main way to 
restore functionality is to restart the entire system: the application, and 
then, if it did not work, the server, and also have to restart everything 
that depended on the failed component. On the contrary, a resilient sys-
tem automatically shuts down the failover components and reintegrates 
them as soon as they stop working. So when we talk about software, 
resilience is the capacity to resist and recover from deliberate attacks, 
accidents, artificial or natural threats. 

Software resilience is the ability of an application to react to trou-
bles in one of its components and still provide the best possible service. 
Resiliency has become more important as business continue to fast im-
plement software across multiple technology infrastructures [4-5]. In 
other words, if application is resilient it means that when faced with any 
of these changes or even with a combination of them, it must adapt it-
self while ensuring the observance of the safety criteria. 

In contrast to the challenges of integration of the hardware with 
software, the abilities of the “hacker” to undermine desired system be-
havior also create a significant challenge to application resilience. 

  



At the same time, most software development projects do not in-
clude any actions to ensure the security of software – threat modeling 
or safe developer training. Therefore, the two most common causes of 
violations of information security today are people and related pro-
grams. Most of the software is implemented without a real approach to 
building protection from the point of view of cyberattacks. This will 
continue until people are more aware of the risks that need to be taken 
into account at each stage of product development. It should be under-
stood that there is not one 100% safe software, but all software can be 
designed, developed and deployed in a safe manner by implementing 
secure software development. 

Secure software development includes certain actions and steps 
that need to be integrated into the life cycle of software development to 
create a safe and protected from malicious influences and software at-
tacks. The chart Fig. 4.1 shows an example of a common structured 
way of creating software that fully meets the needs of the end user, 
which includes the implementation of appropriate security measures 
[6]. The efficiency of resilient software depends on its ability to fore-
cast, absorb, fit to, and/or recover rapidly from a potentially disruptive 
event [7]. 

 

 

Fig. 4.1. Security in the SDLC process 

Disregard the basic principles that lead to safe and sustainable 
software can be catastrophic for the enterprise and using of insecure 

  



software can bring an organization to its knees. Because of fraudulent 
and computer crimes, companies around the world each year lose hun-
dreds of millions of dollars and bear direct financial losses. For the 
eighth consecutive year, hacking/skimming/phishing attacks were the 
leading cause of data breach incidents, accounting for 55.5 percent of 
the overall number of breaches (Fig. 4.2) [8,9]. 

 

 
 

Fig. 4.2. Data breach incidents by type of occurrence 
 

Just like software is everywhere, flaws in most of this application 
are everywhere too. Disadvantages in the software may threaten the 
security and safety of the systems on which they operate. These short-
comings are present not only on the traditional computers that we think 
about, but also on the most important devices we use, such as our cell 
phones and cars, pacemakers and hospital equipment, etc. 

Taking into account the definition of the software development life 
cycle, as well as the survey of existing processes, process models and 
standards, it seems to determine the following four focus areas of 
SDLC for the development of secure software: 

– security engineering activities; 
– security assurance;  
– security organizational and project management activities;  
– security risk identification and management activities. 

  



 
4.2 Designing applications for security and resilience 
 
Secure by design, in software engineering, means that the software 

has been designed from the ground up to be secure. When designing 
applications, a number of practices are applied that will help improve 
the security of the application. First of all, it reduces the surface area of 
possible attacks (Attack Surface Reduction) and threat modeling. De-
spite the close relationship of these two concepts, the first mechanism 
implies an active reduction of the attacker's ability to exploit unknown 
security breaches. To reduce the area of possible attacks, you can use 
layered protection mechanisms and the principles of least privilege. 
Modeling the threats in turn allows us to guess which components of 
the system can be considered as vectors of attack. A convenient tool for 
threat modeling is the Microsoft Thread Modeling Tool based on the 
STRIDE classification. 

At the design stage, you need to carefully study the security and 
privacy requirements associated with security issues and privacy risks. 
This process is called risk analysis. Risk analysis questions include the 
following [10]:  

– threats and vulnerabilities existing in the project environment or 
arising from interactions with other systems; 

– code created by external development groups in the source or ob-
ject form. It is very important to carefully evaluate any code from 
sources external to your team. Otherwise, there may be security vulner-
abilities that the project team does not know about; 

– threat models should include all obsolete codes if the project is a 
new version of an existing program. Such code could be written before 
much was known about software security and therefore probably con-
tains vulnerabilities;  

–  detailed confidentiality analysis to document the key aspect of 
the confidentiality of your project. 

The software safety community has produced a number of robust 
tools for providing automated support in the traceability of complex 
requirements for safety-critical systems. Examples include Praxis High 
Integrity Systems’ REVEAL, Telelogic’s DOORS, ChiasTek’s 
REQTIFY, Safeware Engineering’s SpecTRM, etc. 

  



Threat modeling is an iterative technique used to identify the 
threats. It starts by identifying the security objectives of the software as 
described in the security non-functional requirements (Fig. 4.3). 

 

 
 

Fig. 4.3 Threat Modeling Process 
 
Modeling is a well-known approach for detecting and studying-

software requirements. It provides the opportunity to present the work 
and interaction of the proposed software within its intended environ-
ment. The closer the model reflects the intended environment, the more 
useful the modeling approach. Thus, the security of software develop-
ment benefits from modeling, which explicitly includes security threats. 

The main problems of modeling are: 1) doing it well; 2) do it care-
fully enough; 3) knowing what to do with the results, for example, how 
to convert analysis in the metric and / or in other cases a useful decision 
point. There are few threat, attack, and vulnerability modeling tools and 
techniques. Microsoft, for example, has emphasized this type of model-
ing in its secure software initiative. 

The patterns were derived by generalizing existing best security 
design practices and by extending existing design patterns with securi-
ty-specific functionality. Rather than focus on the implementation of 
specific security mechanisms, the secure design patterns detailed in this 
report are meant to eliminate the accidental insertion of vulnerabilities 
into code or to mitigate the consequences of vulnerabilities [11]. They 
are categorized according to their level of abstraction: 

  



– architectural-level patterns; 
– design-level patterns; 
– implementation-level patterns. 
In order to withstand the attack, the software must be clearly de-

signed in accordance with the secure design principles. The following 
subset was suggested, which directly relates to software security [12]: 

1) Minimize Attack Surface – reduce entry points that can be ex-
ploited by malicious users; 

2) Least Privilege – just having enough access level to do the job; 
3) Separation of Duties – different entities have different roles; 
4) Defense in Depth – multiple layers of control make it harder to 

exploit a system; 
5) Fail Secure – limit amount of information exposed on errors en-

countered by a system; 
6) Economy of Mechanisms – keep things simple; 
7) Complete Mediation – access to all resources of a system are 

always validated; 
8) Open Design – security based on proven open standards; 
9) Psychological Acceptability – security implementation should 

protect a system but not hamper users of the system; 
10) Weakest Link – any system is only as strong as its weakest 

link; 
11) Single Point of Failure – consider adding redundancy to criti-

cal systems. 
In the process of developing software for modeling the various 

characteristics of software architectures, there are a number of notations 
and methods. UML and related technologies provide a popular ap-
proach to modeling at the present time. The modeling describes the ar-
chitecture from the point of view of various stakeholders and their 
problems. 

UML offers expansion mechanisms in the form of notations. They 
can be either stereotypes  or pairs of tag-values. Using profiles you can 
give specific content to simulated elements marked with these labels. 
The UMLsec extension to UML is used to use such solutions to express 
security requirements [13]. 

UMLsec consists of the following chart types that describe various 
system representations: a usage diagram, exercise diagram, class dia-
gram, sequence diagram, state chart diagram, and deployment diagram . 

  



Here is a combination of process-oriented, prioritized use with a 
goal-oriented approach. More specifically, it is necessary to develop a 
tree security goals along with the development of a system specifica-
tion. Safety objectives are improved in parallel, giving more system 
details at the next stages of design. The process is generally iterative. In 
order not to complicate the examples, relatively simple target trees are 
used. For instance, Fig. 4.4 discusses the Internet based on business 
applications. 

 
 

 
 

Fig. 4.4. Use case diagram with goal tree 
 
Since the formal UML fragment will be used, one can reasonably 

argue, for example, that this system is protected in exactly the same 
way as its individual components are protected. This way, you can re-
duce the security of the general system to the safety of the mechanisms 
used (for example, security protocols). The purpose is to show the con-
ditions under which protocols can be used safely in the context of the 
system. 

A purpose-oriented approach to requirements can work better for 
non-functional requirements than the approach of use cases. However, 
some studies point to the fact that the goal-oriented analysis and object-
oriented analysis complement each other. Thus, it is possible to com-
bine a tree of approaches to nonfunctional requirements using UML. In 
particular, it is proposed to combine an approach that focuses on op-
tions for use for functional requirements with an approach geared to-
wards security requirements. It takes into account the fact that security 
requirements (for example, privacy) are often applied to certain system 

  



functions, and not to the system as a whole, since application of the 
security requirement for the whole system may be impracticable. 

 
4.3 Secure Coding. Testing for Security 
 
Depending on the software development process or design ap-

proach used, as well as the design and development, coding and testing 
schedules, it can be performed several times, can be performed at dif-
ferent times for different parts of the software, or can be performed 
simultaneously with the actions of other phases. At the stage of soft-
ware coding, the following security issues should be considered: 

– selecting the programing language; 
– selecting the compiler, library, and runtime; 
– agreements and coding rules; 
– comments; 
– documentation of security-sensitive codes, designs and imple-

mentation solutions; 
– integration of non-development software; 
– required for filters and wrappers. 
Practically in all software methods testing is integrated into the 

coding phase with minimal debugging and modular testing. 
A lot of information on specific methods of writing secure code 

are published. Some of them are organized in a language or platform. 
Many of them are aimed at a mass audience and do not assume any 
knowledge about the creation of software. Those principles that are cit-
ed by most studies and that are in fact secure coding and secure archi-
tecture / design are presented, for example, in [14]. 

The secure coding standards offered by the CERT CMU are based 
on documented versions in the standard language. To date, CERT has 
published secure encoding standards for C (ISO / IEC 9899: 1999 / Cor 
3: 2007) and C ++ (ISO / IEC 9899: 1999 / Cor 3: 2007), with plans to 
publish additional standards for the Sun Microsystems API for Java2 
platform Standard Edition 5.0 Specification and programming language 
Microsoft C # (ISO / IEC 23270: 2006). 

Security analysis and software testing is performed regardless of 
the kinds of software functionality. Its function is to evaluate the securi-
ty properties of this software when interacting with external objects, 
such as users, the user environment, other software, and interacting 

  



with each other. The main purpose of software security analysis and 
testing is to verify that the software has the following properties [14]: 

– its behavior is predictable and safe and does not contain vulnera-
bilities; 

– its error handling and exception handling procedures allow you 
to maintain safe when encountering attack patterns or intentional errors; 

– it meets the requirements of non-functional security; 
– the source code contains mechanisms for opposing reverse engi-

neering. 
A range of security reviews, analyses, and tests can be mapped to 

the different software life cycle phases (Fig. 4.5). 
 

Requirements Security review of requirements and 
abuse/misuse cases 

Architecture/Product 
Design 

Architectural risk analysis (including external 
reviews) 

Detailed Design Security review of design. Development of 
test plans, including security tests. 

Coding/Unit Testing Code review (static and dynamic analysis), 
white box testing 

Assembly/Integration 
Testing 

Black box testing  
(fault injection, fuzz testing) 

System Testing Black box testing, vulnerability scanning 

Distribution/ 
Deployment 

Penetration testing (by software testing ex-
pert), vulnerability scanning, impact analysis 
of patches 

Maintenance/support (Feedback loop into previous phases), impact 
analysis of patches and updates 

 
Fig. 4.5. Security Reviews and Tests throughout the SDLC 

 
One of the key aspects of software management is the security of 

any software supplied by the organization. At the same time, insuffi-

  



cient attention is paid to testing program security and fixing vulnerabili-
ties at earlier stages of the development lifecycle, without waiting for 
testing for vulnerabilities of the finished application. Security code au-
dit is a structural testing of software to identify vulnerabilities, the im-
plementation of which can reduce the level of integrity, availability and 
confidentiality of the system. An important feature of security code se-
curity technologies is that the main task of the audit is to identify not all 
possible vulnerabilities, but only code vulnerabilities that can be ex-
ploited by an attacker.  

In general terms, code security auditing is an iterative process, in-
cluding planning, analysis, recommendations for finalizing the program 
and documentation, and developing methods and tools for identifying 
and analyzing vulnerabilities [15]. 

We list the main classes of these vulnerabilities: 
– overflow, read and write outside the buffer; 
– the output of calculations beyond a certain range when convert-

ing variables of a numerical type; 
– the formation of a negative value for the length of a string of 

bytes or the number of elements in the array; 
– incorrect casting; 
– lack of initialization of data; 
– leak, shortage, use of freed memory; 
– time and synchronization errors; 
– errors of locks in multithreaded environments, etc. 
These vulnerability classes can be used to perform denial of ser-

vice attacks or execute illegitimate code. 
There are several methods for auditing code security: 
– viewing (inspecting) the code manually; 
– static code analysis by template; 
– dynamic analysis of code execution. 
The first approach is considered the most effective in terms of 

completeness and accuracy of the checks. The shortcomings of the 
method include high labor intensity and requirements for qualifications 
and experience of experts. Static code analysis using a template consists 
in the use of automation tools for searching and analyzing potentially 
dangerous code constructs (signatures) in the source code of programs. 
This method is effective when searching for simple vulnerabilities and 
non-maskable bookmarks, such as buffer overflow, password constants 

  



or "logical bombs". The automated methods for carrying out the static 
method by template include vulnerability scanners for PREfix, PREfast, 
AK-Sun, UCA, FlawFinder, ITS4, RATS, FxCop. 

Modern code scanners allow to some extent automate: 
– search for buffer overflow vulnerabilities; 
– search for OS-injections (execution of arbitrary commands); 
– SQL injection search; 
– search for XSS queries (crossite scripting); 
– search for errors in input and output values; 
– carrying out a structural analysis of subprograms that implement 

protection functions. 
Numerous studies have shown that the cost of fixing vulnerability 

after the end of development can be several hundred times higher than 
the cost of solving the problem in an application that is still being de-
veloped. 

A penetration test (or pentest) is a practical way to show how 
much software is protected from threats to information security [16]. 
There is also the term ethical hacking. 

This method simulates a set of "hacker" attacks, the purpose of 
which is to penetrate the company's internal network infrastructure, 
steal and / or modify confidential data, and disrupt critical business 
processes. 

Unlike real intruders, the team of testers observes certain ethical 
rules in carrying out all works: any dangerous actions are committed 
only by prior agreement with the customer; the entire scanning process 
is transparent and planned. 

Conducting testing for the penetration of software systems requires 
professionals, in-depth knowledge of IT security, the ability to think 
outside the box, apply social engineering techniques, collect and ana-
lyze information, as well as creativity. 

There are both open and commercial methodologies for conduct-
ing penetration tests that are capable of ensuring a guaranteed quality of 
the service when the whole process is observed. However, in practice 
the use of only one methodology is not advisable, as a rule, they are 
used modularly with the necessary revision. 

The most popular methodologists of ethical hacking: 
– Information Systems Security Assessment Framework (OISSG); 
– The Open Source Security Methodology Manual (OSSTMM); 

  



– NIST SP800-115 Technical Guide to Information Security Test-
ing and Assessment; 

– ISACA Switzerland - Testing IT Systems Security With Tiger 
Teams; 

– The Information Systems Security Assessment Framework (IS-
SAF); 

– OWASP Testing Methodology; 
– BSI - Study A Penetration Testing Model; 
– Penetration Test Framework (PTF); 
Almost all methodologies provide the following scenario of pene-

tration testing (Fig. 4.6): 
– planning a penetration test; 
– collect information about target systems; 
– vulnerability scan; 
– penetration into the system; 
– writing and reporting; 
– cleaning systems from the effects of the test. 
 

 
 

Fig. 4.6. Typical scenario of penetration testing 
 
The penetration test is a complex project and can include several 

types of work, but at the outset, you should determine the approach to 
the test: the so-called white box, black box or gray box. 

It is important to note that any tool produces a certain number of 
false positives, such as detecting a false vulnerability or vice versa 
skipping vulnerability when it really exists. 

  



Since new vulnerabilities in software and technologies are detected 
almost daily, the penetration test is a complex and voluminous service 
that can show the current picture of the security of software products. 

 
4.4 Implementing security and resilience into software 
 
When the development of secure software is intended, the overall 

structure of the technological process is preserved, but at each step ad-
ditional security measures are taken. Thus, the process of developing 
secure software is a set of measures that are aimed at providing the re-
quired level of information security developed by the software product. 
There are many methods for developing secure software. The method-
ologies that consider the construction of secure software involve re-
sources that address particular phases or focus on specific platforms. 
Most of them are introduced by the largest software developers and 
various government organizations. The choice of methodology depends 
entirely on the desired result. 

The development of secure software is still closely related to rec-
ommendations, best practices and undocumented expertise. The ap-
proaches of modern practices provide guidance for specific areas, such 
as threat modeling, risk management or secure coding. It is important 
that they be integrated into a comprehensive development method. De-
spite some improvements in the definition of processes for the devel-
opment of secure software, these processes are conditioned by the expe-
rience of experts. Therefore, it is difficult for developers to evaluate 
them, assess their strengths and resist their weaknesses. An objective 
comparison of these methodologies is still an urgent task, and it is diffi-
cult for various stakeholders to make a measured decision about which 
one is more suitable for work. 

Next, consider several "ready-to-use" SDLC-methodologies with 
appropriate information resources that are designed specifically to cre-
ate secure software. A basic of characteristics will be discussed in order 
to describe their overall meaning. 

Comprehensive, Lightweight Application Security Process 
(CLASP) [17]. CLASP is the process of creating secure software and 
contains a set of 24 activities and additional resources that need to be 
adapted to the development process in use. 

Features of the methodology: 

  



– the main goal of CLASP is to support the creation of software 
primarily from a security perspective; 

– CLASP is defined as a set of independent actions that must be 
integrated into the development process and its working environment. 
However, this is not an integrated process. The frequency of implemen-
tation of activities is indicated on individual activities, which leads to 
complex coordination. Two road maps give some recommendations on 
how to combine actions into a single and ordered set; 

– CLASP defines roles and assigns actions to these roles. Roles 
can influence the security situation and are used as an additional per-
spective for structuring a set of actions; 

– CLASP provides a set of security resources, one of which is a 
list of 104 known types of problems. They determine the basis of secu-
rity vulnerabilities in the source code of the application. 

Security Development Lifecycle (SDL) [18]. 
SDL was created by Microsoft to solve security problems and in-

cludes a set of activities that complement the development process of 
Microsoft and is designed as an addition to the process of creating 
software. 

Features of the methodology: 
– SDL's main goal is to improve the quality of software-oriented 

software. Most often, this activity is related to the development on the 
basis of functionality. Because the architecture can primarily reduce 
security threats, threat modeling begins with architectural dependencies 
with external systems. However, little attention is paid to the imple-
mentation and integration of security mechanisms in the methodology; 

– the SDL process is well organized, and related activities are 
grouped in stages. Specific security stages are comparable with the 
standard stages of software development, and some activities are con-
tinuous in the SDL process (for example, threat modeling and educa-
tion). Support for revising and improving intermediate results is also 
present in the SDL process; 

– SDL well describes the methods for performing actions, which 
on average are specific and pragmatic. In particular, the use of 
flowcharts reduces the attack surface, and threat modeling is described 
as a more detailed process. Thus, performing some operations is possi-
ble even for less experienced developers. 

TSP-Secure [19, 20]. 

  



CMU’s SEI and CERT Coordination Center (CERT/CC) devel-
oped the Team  Software Process for Secure Software Development 
(TSP-Secure). The purpose of creating TSP-Secure was to reduce or 
eliminate software vulnerabilities that arise from design and software 
errors. An important problem is also the ability to predict the likelihood 
of vulnerability in the software. In doing so, TSP provides a systematic 
way for software developers and managers to learn how to implement 
methods in an organization. 

TSP-Secure implements security practices throughout the SDLC 
and provides approaches and methods for: 

– establishment of operational procedures, organizational policies, 
management oversight, resource allocation, training, planning and pro-
ject tracking; 

– analysis of vulnerabilities by type of defects; 
– establishment of safety-related forecasting indicators, control 

points and safety-related measurements; 
– risk management and feedback; 
– secure design, use of design patterns to avoid common vulnera-

bilities and develop security reviews; 
– quality management for secure programming, the use of secure 

language subsets and coding standards, static and dynamic analysis 
tools; 

– security checks, which include the development of plans for var-
ious types of security testing; 

– remove vulnerabilities from the software. 
Secure Software Engineering (S2e) [21]. 
SSDM is a unified model that combines some of the existing secu-

rity technologies with the software development process. 
The process of creating secure software is divided into five stages: 
– security training. The essence of security training is to provide 

training in security matters; 
– threat modeling. Since common security criteria may not be suit-

able for all software products, each software development must have its 
own threat model; 

– security specification (SS). This implies directing directions and 
procedures that guarantee the security of the software; 

– SS review. Assumes checking the compliance of software design 
content; 

  



– penetration testing. The capabilities of the software to prevent at-
tacks are tested. 

Secure Tropos [22].  
Tropos2 is a software development methodology focused on the 

agent, designed to describe the organizational environment of the multi-
agent system and the system itself. Three key aspects: 

– consider all stages of system development, adopting a uniform 
and homogeneous method based on the concept of agents: subjects, 
goals, objectives, resources and intentional dependencies; 

– Tropos pays great attention to early requirements, and also how 
the proposed system will meet its organizational goals; 

– the methodology is based on the idea of constructing a model of 
the system, which is gradually refined and expanded from the concep-
tual level to the executed artifacts. This allows developers to accurately 
check the development process, detailing the higher-level representa-
tions presented in the previous development stages. 

Using the Tropos2 methodology to address security and resilience 
issues at all stages of software development, the following three objec-
tives should be considered: 

– determine the requirements for system security; 
– develop a project that meets the specified safety requirements; 
– to approve the developed system in respect of safety. 
Thus, Secure Tropos provides a well-managed process that pro-

vides developers with security concerns through various modeling ac-
tivities. The use of the same concepts and designations at all stages of 
development acts as a key point in the methodology of Secure Tropos. 

Undoubtedly, there are more research results on the development 
of secure software than it was presented above, for example, [10, 14]. 

 
Conclusions 
 
Now that you have completed this webquest on Computer Security 

you are now aware of the possible security treats to computer systems. 
Not only that, but you are now better able to protect your computers as 
well as recommend security measures to others. 

 
 
 

  



Questions for self-control 
 
1. When designing a software architecture, which quality attribute 

do you value more: flexibility or resilience? 
2. What is difference between functional and non-functional re-

quirements in software designing? 
3. What is software resilience? 
4. What are the Software Development Life Cycle (SDLC) phases? 
5. Why is it important to create a threat model for each software 

product separately? 
6. Describe the main features Secure Software. 
7. According to SSDM what are the phases of creating secure soft-

ware? 
8. What is the main goal of CLASP? 
9. What is the purpose of creating TSP-Secure? 
10. Explain why does security is a non-functional requirements. 
11. What tool is using due to security requirements and test case 

generation? 
12. What can the result of buffer overflows exploitation? 
13. What are UMLSec notation diagrams? 
14. What is secure design pattern? 
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АННОТАЦИЯ 
 

В разделе актуализирована проблема информационной без-
опасности программных продуктов и освещено понятие резиль-
ентного программного обеспечения. 

Раздел содержит описания практик безопасного проектирова-
ния приложений и нотации UMLsec, которые используются для 
создания защищенных программных систем. 

В разделе рассмотрено типовые уязвимости программного 
обеспечения, техники безопасного кодирования, приёмы динами-
ческого и статического анализа кода, обосновано важность прове-
дения тестирования на проникновение.     

Также раздел содержит описание ключевых особенностей  
наиболее популярных методологий создания безопасного про-
граммного обеспечения. 

 

У розділі актуалізовано проблему інформаційної безпеки про-
грамних продуктів та висвітлено поняття резільєнтного програм-
ного забезпечення. 

Розділ містить опис практик безпечного проектування про-
грам і нотацій UMLsec, які використовуються для створення за-
хищених програмних систем. 

У розділі розглянуто типові вразливості програмного забезпе-
чення, техніки безпечного кодування, прийоми динамічного і ста-
тичного аналізу коду, обґрунтовано важливість проведення тесту-
вання на проникнення. 

Також розділ містить опис ключових особливостей найбільш 
популярних методологій створення безпечного програмного за-
безпечення. 

 

In the section the problem of information security of software 
products is actualized and the concept of resilient software is covered. 

The section contains descriptions of security application design 
practices and UMLsec notations that are used to create secure software 
systems. 

The section describes typical software vulnerabilities, secure 
encoding techniques, dynamic and static code analysis techniques, the 
importance of conducting penetration testing is justified. 

The section also describes the key features of the most popular 
methodologies for secure software development. 
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CHAPTER 5. INTRODUCTION TO FORMAL METHODS  
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5.1 What are Formal Methods? 

The term “formal methods” has come into common use (and abuse) 

during the past years. In this book we take a fairly liberal interpretation 

of the term. We include, for example, not only “mainstream” formal 

methods such as Event-B, Z, VDM, CSP and CCS, but also other 

programming and system design paradigms which are underpinned by 

discrete mathematics, for example code generation and transformation, 

techniques and tools for static analysis of programs, and programming 

languages with sound semantics [1-7]. 

A software specification and production method, based on a 

mathematical system, that comprises: a collection of mathematical 

notations addressing the specification, design and development phases 

of software production; a well-founded logical system in which formal 

verification and proofs of other properties can be formulated; and 

methodological framework within which software may be verified from 

the specification in a formally verifiable manner. 

This is a rather ambitious definition. Formal methods are attractive, 

but in practice most them in common use do not address the full 

spectrum of design, some supporting specification phases, some the 

construction phases, and others the analysis of systems. 

Typically, formal methods have three components: 

-  a notion of “program”; 

-  a means of expressing properties of the computation of 

programs; 

-  some method for establishing whether a program has some 

property. 

Each of these is rigorously mathematically defined. This is a fairly 

liberal description of a formal method. It covers things like the type 

inference system of some modern programming languages which 

“prove” programs have a well-formed type, to entirely general purpose 

theorem proving systems or proof assistants, or paper and pencil 

methods. The quality of evidence one gets from a formal method varies 

according to the method but generally it is highly accurate, is 

convincing to trained workers, and often has a rather narrow coverage 

because it abstracts from many detailed features of systems. 
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There is also a wide range of formality and rigour applied in the use 

of formal methods. A formal proof might consist of justifying a 

conjecture by deriving it from the basic axioms of the mathematics 

upon which the logical system in use is based. A rigorous argument 

looks more like an outline of how a proof might proceed, but would not 

supply all the intervening detail. Additionally, rigorous argument may 

draw upon a rich body of known results, but without the need for 

formally integrating them into a proof. Note that this is how engineers 

and mathematicians usually work—they customarily have a commonly 

understood context which obviates the need to descend into detail 

which obscures the main subject. However computer based proof tools 

do not have the insight of mathematicians, and cannot interpolate 

unstated detail between steps. Computer based proofs are therefore 

usually very detailed, and can be extremely obscure, although their 

validity is potentially less contentious than a rigorous argument [8-16]. 
The mathematical basis of formal methods may be an existing part 

of mathematics—for example the Z specification language has set 

theory at its heart—or can be developed anew for the method—the 

Calculus of Communicating Systems has a theory presented in an 

algebraic style, but specific to the Calculus. 
There is a large and growing variety of formal methods, of varying 

age and maturity. It must be realised that there is no “standard” formal 

method. Each technique has particular strengths and weaknesses and it 

may be that in the course of systems development it is appropriate to 

use a number of methods at different stages of the process. Just as in 

traditional engineering, no single theory encompasses all aspects of 

design and development. Many theoretical approaches are used—either 

explicitly or implicitly. “Stock answers” are often brought to bear and, 

even if these appear not to involve mathematics directly, they usually 

have a long history of mathematical analysis which has consolidated 

into a precise understanding of the nature and behaviour of a particular 

aspect of the component or structure. The interaction and compositional 

properties of such components are well understood and the properties 

of the whole (strength, weight, current, speed, loading, cost, time to 

construct, etc.) can all be predicted with much more accuracy than is 

now possible with comparable computer systems development. 
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The need for and impact of this use of theory is also well 

understood by managers, engineers’ licensors and procurers. 

Comparable use of methods or theories is currently not so diverse in the 

area of computer systems engineering and it is desirable that engineers 

cultivate a broad awareness of possible methods which are relevant to 

different aspect of systems design and develop the ability to assess the 

usefulness and applicability for particular applications of competing or 

complementary approaches. 
Just as there is no standard formal method, there is (as yet) no 

standard way of applying any particular formal method. As case study 

material and tools are developed to support the engineering domain, 

this may change. However until then it is likely that engineering 

application of formal methods will require to be open in nature with the 

partial success or failure of certain approaches expected and the results 

of this failure used to inform more successful application. 
As with other engineering disciplines, a body of “good practice” 

should provide guidance to engineers as to effective use of techniques 

within different contexts. Unfortunately with formal methods this 

material is sparse, of variable quality, and not well indexed. In due 

course this body of information will grow, in particular it is hoped that 

a range of texts and real-world case studies will be produced. 
Let us go on to present the capabilities and limitations of formal 

methods, and guidance for their uptake. 

5.2 The Nature of Formal Methods 

Software and systems engineering have a number of different life 

cycle models, however most break down into a number of phases of 

activity such as: requirements, specification, design, implementation 

and test [17-23]. 

A common view of the use of formal methods in this regime might 

expect the following. The customer interacts with the supplier closely 

over requirements. The supplier writes a formal specification, which is 

then successively refined as implementation detail is added until an 

implementation results. This is then subjected to test. The use of formal 

methods at the various stages of refinement can mean that the final 

implementation in some sense is proven to satisfy the top-level 

specification. The ‘proof of satisfaction’ is one of the documents which 
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may be required by the certification authority as part of any licensing 

procedure. 

Traditionally this kind of approach has been seen as the goal of 

formal methods research and there is still considerable academic 

investigation into approaches which aim to achieve this. However the 

level of “correctness” delivered must be interpreted within a broad 

engineering framework—the meaning of the word to the customer may 

be very different to that assumed by the designer. Absolute correctness 

is unattainable—it is not a concept that is familiar to (or sought by) 

engineers in other disciplines, they do however make extensive use of 

mathematics to model, design and analyse. 

In this hierarchy the requirement and specification layer generally 

say mostly what the system is required to do. The lower layers (and 

there is usually more than just one step at each level) contain increasing 

amounts of implementation detail how the system is to achieve its 

function. Correspondingly the amount of information at each level 

increases as we descend, usually very rapidly. 

Let us comment on and elaborate this model. There are several 

observations to be made. Note that many of these are not necessarily 

restricted to formal methods, but are often true of software engineering 

in general. 

Requirements are never right 

The symptom of the supplier delivering what he was asked for and 

the customer only then realising that the original requirements were 

wrong or ambiguous is common. This is one of the major problems in 

systems and software engineering. Close interaction between the 

customer and the supplier is desirable at all stages of development, but 

identifying problems as early as possible in the life-cycle is highly 

desirable. Use of formal methods at the requirements stage can increase 

the clarity of understanding and so reduce the scope for 

misinterpretation with the corresponding saving of wasted development 

effort, saving both time and money. 

One approach is to use a formal method that supports executable 

specifications. This does indeed allow experimentation with statements 

of requirements and can result in a significant “feel good” factor for the 

customer as they have something concrete (i.e. runable) in their hands 

early on. However, this can mean that implementation level decisions 
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(how rather than what) are made too early. Inappropriate use of such 

languages can restrict freedom at the design stage and can remove the 

possibility of simplification or generalisation of the system. It may be 

preferable to develop a prototype than to use an executable 

specification language. However any prototype should be developed 

from the point of view of informing the requirements analysis rather 

than guiding the implementation. 

It is important that formal languages for requirements or 

specification are used in the appropriate style and not as programming 

languages. Avoiding this trap can be difficult if one is moving existing 

programming staff into the use of formal specification languages. 

Real world problems are complicated 

In some cases it is possible nowadays to “verify” code against 

specifications for some systems of perhaps up to 20,000 lines of code. 

However most systems nowadays are much bigger than this and to 

apply the above paradigm to large systems we need to support the idea 

of decomposition as well as refinement (Fig.5.1). 

 
Figure 5.1. Decomposition and refinement of the specification  

In this model the implementations delivered at the bottom are 

linked formally only at levels above this. This means that we need an 

integrated theory of refinement and decomposition as well as an 

implementation language which supports the communication behaviour 

of these “modules” with respect to the higher level specification of 

decomposition. In practice this means the semantics of both the 
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specification language and the implementation language must be 

related formally so that the behaviour of the implementation is 

adequately proven to satisfy the higher level specification. 

An alternative approach is to use a single “wide spectrum” 

language. These are languages which support both specification and 

implementation activities. The term “wide spectrum” is used to refer to 

the spectrum of activities in system development. In some cases they 

provide mechanisms for verifying the code against specification, or 

support formal refinement of code from specifications. Although these 

exist in prototype form this area is still the subject of much research. 

One benefit of the approach in figure 5.1 is the separation of 

concerns possible under this model. It may be possible to isolate critical 

aspects of system behaviour in a small number of components. The use 

of formal methods to ensure integrity of these components can then be 

more focused. Traditional techniques may then be adequate for the 

remainder, although great care must be taken over interfaces. 

Formality is internal to the model above 

Even if the formal proof of correctness of implementation against 

specification exists this still only represents a part of the final system. 

The implementation will be expressed in some high level programming 

language. This will require to be compiled to object code, probably 

with the linking in of library components. This then runs on some 

hardware. It is possible to verify components such as compilers, library 

function and hardware, but these would generally use different 

techniques and to reason about the “correctness” of the composition of 

all of these is a considerable task requiring significant intellectual and 

economic investment. These kinds of activities usually require strategic 

sponsorship, and involvement of academic groups, although we can 

expect results of this work to become viable (technically and 

economically) in the industrial context during the next decade [24-28]. 

Other problems arise in that the resulting system has to interface 

with the environment which includes unpredictable entities like people 

or analogue components often in an asynchronous environment. Here 

the main problem is one of validation of the system with respect to its 

environment. Here again formal methods can help. One can model 

interfaces, and use these to explore the operating conditions of the 

plant, thus exposing the requirements on the operator, as well as the 
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system. One can exercise a formal specification of a system with 

respect to an environmental model such as a fault tree analysis (which 

itself may be expressed in a formal language). 

Even if code is verified with respect to a specification, it must then 

be compiled to execute on target platforms, nowadays the simplest of 

which have executives, and increasingly, full blown operating systems 

which support the application code. Nowadays these are intricate and 

highly specialised, and generally not amenable to formal verification. 

Unlike application code, however, compilers and operating systems 

may have a significant history of successful operation, and this can 

often be used to justify their use. Ultimately the system is executed on 

physical components (wire, glass, silicon etc.) which (at least in this 

context) are also analogue in nature. The behaviour of all of this 

combined is certainly impossible to model formally so one must 

ultimately call a halt to the process of full verification and decide what 

concrete benefit the application of formal methods can actually give. 

In practice one must choose from a range of approaches and it 

worth extending the model above with the idea of property oriented 

specification (Figure 5.2). 

Typically these properties will state some aspect of dependability 

required of the system, such as safety, security, reliability and 

performance. In a fully formal model of this kind one would expect 

properties for lower levels of specification to include higher level 

properties plus some more which are relevant to that level of 

implementation. For example, one would expect performance related 

properties only to be relevant for verification and validation purposes at 

the lower levels of specification or implementation [29-33]. 
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Fig 5.2 Decomposition and refinement of the property oriented 

specification 

 

Such approaches may require the replacement of much of existing 

systems engineering practice. 

It may be appropriate for a limited number of systems (or clearly 

delineated components) which are small enough and critical enough to 

consider “full” verification in conjunction with good testing practice. 

For most applications however this will not be appropriate. It would 

require a major change to systems engineering practice. Formal 

methods are by and large based upon technological approaches, 

whereas the successful management of the development of computer 

systems is as much a social problem. Much of the systems engineering 

research in the past two decades which has successfully been deployed 

in industry is focused around the management of people, activities and 

communication. “Traditional” formal methods do not fit well with these 

approaches with their strong focus on the technical object being 

produced (the program) rather than the teams doing the production (the 

programmers, designers, testers etc.). 

Application of formal methods is possible in ways which will 

integrate and provide complementary strengths to existing methods. By 

using this approach it is possible to evolve existing practice to integrate 

these new approaches. It also handles the risk problem well in that the 
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consequences of failure are localised and can usually be mitigated by 

reverting to already well known and understood good practice. 

5.3 Benefits in the use of Formal Methods 

As described above formal methods can be used to provide a high 

degree of assurance of a system’s correctness with respect to a 

specification. While in some applications the assurance that “ proof of 

correctness” itself is the main goal, in many other applications the 

primary benefit of formal approaches to system design is not the 

“proof”, but the increased understanding of the problem which the 

process of proving or formally specifying provides, and the increase in 

confidence in and support for the design process (and final product) 

[34-40]. 

In addition to the benefits of formal specification or proof of 

correctness there are many other ways in which use of formal 

approaches can be beneficial. Note that these are not achievable with 

every formal method, or with each application, but the benefits can 

include: 

To raise engineering understanding of the problem or 

application 

The process of thinking formally about a system will almost 

certainly force clearer thinking, and hence understanding, about the 

nature and purpose of the system being built. This benefit alone can 

justify the use of formal methods. 

To raise customer confidence in the product 

Delivering a faulty product can do enormous damage to your 

customer base. While formal methods are unlikely to remove all errors, 

they can be used to analyse critical aspect of system behaviour, and 

potentially eliminate specific classes of errors. 

To raise confidence in the development method 

This then supports the supplier in making clearer claims about the 

quality/cost/development time and effort of a product. 

To document the design process unambiguously 

This can help all those involved: the project manager, 

designer/engineer, certifier/validation and verification team, maintainer, 

customer. 

To reduce maintenance effort and cost 
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Much of the life-cycle cost of current systems is not in the original 

design, but in system support, modification and maintenance. The clear 

documentation produced when formal methods are used results in 

significant savings in this phase of the life-cycle. The cost of rectifying 

a fault once a system is in operation is orders of magnitude greater than 

correcting it at the design stage. In addition, some formal methods 

provide active support during maintenance stages by identifying the 

scope of alterations and thus limiting the retesting required of the 

modified system. 

To identify mistakes and omissions early 

Formal approaches tend to detect problems early in the design cycle 

when they are therefore much easier and cheaper to correct. 

To shorten the time to market 

Despite the fact that more effort needs to be invested in the 

specification phases when no deliverable code is produced, the 

resulting system should have fewer errors. Having to reengineer a 

product after being released and found to be faulty can cost enormous 

amounts in lost market share. Experience has shown that it is 

straightforward to produce code quickly and efficiently from formally 

produced specifications. Significant gains in programming team 

productivity is therefore possible. 

To market your product/service/company 

An ability with formal methods in your organisation may confer a 

significant competitive advantage in certain markets e.g. security or 

safety. Indeed in some sectors it may not be possible to tender without 

ability in formal methods. 

To protect yourself/company 

Product liability laws may leave you exposed to costly litigation in 

the event of disaster or non-performance, if you cannot demonstrate 

that you have adopted the best design and validation techniques 

available and appropriate. 

To aid the certification process 

The use of formal methods is increasingly being advised (and in 

some cases mandated) in standards and guidelines. Their use can 

therefore be a major aid in convincing a certifier that the system is safe 

to deploy. 
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5.4 Limitations to the use of Formal Methods 

It is important to realise limitations in the use of formal methods, as 

well as their benefits. Outlined below are some of the disadvantages or 

potential problems which may arise and should be taken into account in 

making a decision on whether to use formal methods. 

Formal methods can be expensive to do 

Perhaps more accurately—formal methods will be expensive the 

first time you try them. 

It is important to amortise start-up costs across a spread of projects 

and time and to start out with simple and easily achievable aims, 

ramping up as technical experience grows. This said, the use of 

experienced consultants in the early stages on use of formal methods 

will usually be a low risk and cost effective route to adoption. 

There is no formulaic approach 

Case study material is sparse. This will improve in time and with 

experience, but you must expect to view projects from an applied 

research perspective rather than established engineering practice. 

Appropriate risk management techniques must be used. The use of 

appropriately experienced consultants for early ventures in the field can 

reduce both cost and risk. 

Training time 

This varies by method, but it takes at least several months for even 

a well motivated engineer to become familiar with the use of formal 

methods in design. (Attaining a reading capability can be much quicker 

though). 

Difficulties of communications 

Using formal methods to communicate can increase accuracy, but 

does require a change in attitude, and some training. This can be a 

particular problem with customers and management who do not have 

the technical incentive to become familiar with them. Integrating 

formal methods into existing development methods, and proper use of 

interspersed text and engineering diagrams and notations, can mitigate 

the problem. 

The complexity/size problem 

Although formal methods are improving their range of application 

the problem of scaling up to larger examples can be problematic. 

Abstraction is a common approach in many engineering disciplines for 
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handling such complexity. In systems engineering however our 

understanding of approaches to abstraction is not well developed. 

Again the use of skilled consultants or staff can help here. 

Formal methods are weak on performance 

Research is improving in this area, for example in the development 

of timed calculi, and in integrating with more traditional performance 

approaches, but it will be some time before these mature. 

Poor formal infrastructure 

While principles of applications of formal methods are well 

understood, maximum benefit requires adequate formal infrastructure. 

For example almost all programming languages do not have a usable 

formal semantics. This makes the behavioural analysis of code difficult, 

even though formal methods might have been used earlier in the 

development cycle. Similarly no usable verified compilers exist, so 

how can one be sure of the “correctness” of object code. 

Cultural uncertainty surrounding formal methods 

Formal methods are a moving target. Which ones work in what 

domain? What is next year’s method going to be? Will I have to 

completely retrain? 

The validation problem 

Formal methods apply to abstractions. Real systems are too 

complicated to analyse fully. (This is true in traditional engineering as 

well though). Can I validate my model with respect to the expected 

behaviour of the whole system? What level of 

requirement/specification is appropriate? 

Lack of tools 

Although the situation is improving tool coverage is still poor, and 

doing formal methods by hand is time consuming, error prone and 

usually will require a higher level of expertise. It’s a bit like trying to 

write a program without a compiler. Even simple tools such as syntax 

and type checking tools can strongly support the use of formal methods. 

Formal methods do not substitute for creative thinking 

In fact even more is required to bring together traditional design 

capability with the new approach. It is important that existing expertise 

and practice are properly utilised with the introduction of formal 

methods. 

Advancement questions 
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1. What components do formal methods have? 

2. What does a formal proof mean? 

3. What are the formal methods designed for? 

4. What is a rigorous argument in context of the formal methods? 

5. What are the main problems in the construction of the formal 

methods? 

6. What are the formal language used for? 

7. What is the main idea of the decomposition and refinement 
of the specification? 

8. What is the main feature of the property oriented 

specification? 

9. What are the main benefits in the use of formal methods? 

10. What are the main limitations to the use of Formal Methods 
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6.1 Knowledge Acquisition for automated Specifications – Goal-

Oriented Requirements of the Security Engineering 

Van Lamsweerde in [1, 2, 3] has described Knowledge Acquisition 

for autOmated Specifications (KAOS) as a general approach for 

eliciting, analyzing and modeling functional and non-functional 

requirements of software systems based on first-order temporal logic. 

Van Lamsweerde in [4, 5] has then extended KAOS to handle security 

requirements. Knowledge Acquisition for autOmated Specifications is a 

requirement engineering method concerned with the elicitation of goals 

to be achieved by the envisioned system, the operationalization of such 

goals into specifications of services and constraints, and the assignment 

of responsibilities for the resulting requirements to agents such as 

humans, devices, and software [3]. KAOS employs some techniques 

based on a temporal logic formalization of goals and domain properties 

with the aim of deriving more realistic, complete, and robust 

requirements specifications. The key concept in KAOS is to handle 

exceptions at requirements engineering time and at the goal level, so 

that more freedom is left for resolving them in a satisfactory way. The 

KAOS framework supports the whole process of requirements 

elaboration, from the high level goals to be achieved to the 

requirements, objects, and operations to be assigned to the various 

agents in the composite system [6]. The methodology provides a 

specification language, an elaboration method, metalevel knowledge 

used for local guidance during method enactment, and tool support [7]. 

Concepts and Terminology 

KAOS specification language provides constructs for capturing 

various kinds of concepts that appear during requirements elaboration 

namely goals, constraints, agents, entities, relationships, events, actions, 

views and scenarios. There is one construct for each type of concept. 

The types are defined first followed by the constructs for specifying 

their instances [8]. 
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Objects: an object is a thing of interest in the domain whose 

instances may evolve from state to state [9]. They can be: 

-  agents: active objects; 

-  entities: passive objects; 

-  events: instantaneous objects; 

-  relationships: depend on other objects. 

Operations: an operation is an input-output relation over objects. 

Operation applications define state transitions. Operations are 

characterized by pre/post and trigger conditions [10]. A distinction is 

made between domain pre/post conditions, which capture the 

elementary state transitions defined by operation applications in the 

domain, and required pre/post conditions, which capture additional 

strengthening to ensure that the requirements are met [11]. 

Goal: it’s an objective for the system. In general, a goal can be 

AND/OR refined till we obtain a set of goals achievable by some 

agents by performing operations on some objects [12]. The refinement 

process generates a refinement directed acyclic graph. AND-refinement 

links relate a goal to a set of subgoals (called refinement); this means 

that satisfying all subgoals in the refinement is a sufficient condition for 

satisfying the goal. OR-refinement links relate a goal to an alternative 

set of refinements; this means that satisfying one of the refinements is a 

sufficient condition for satisfying the goal. Goals often conflict with 

others. Goals concern the objects they refer to [6]. 

Requisites, requirements and assumptions: the leaves obtained in 

the goal refinement graph are called requisites. The requisites that are 

assigned to the software system are called requirements; those assigned 

to the interacting environment are called assumptions [5]. 

Domain property: is a property about objects or operations in the 

environment which holds independently of the software-to-be. Domain 

properties include physical laws, regulations, constraints imposed by 

environmental agents, indicative statements of domain knowledge [13]. 

In KAOS, domain properties are captured by domain invariants 

attached to objects and by domain pre/post conditions attached to 

operations [14]. 
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Scenario: is a domain-consistent sequence of state transitions 

controlled by corresponding agent instances; domain consistency means 

that the operation associated with a state transition is applied in a state 

satisfying its domain precondition together with the various domain 

invariants attached to the corresponding objects, with a resulting state 

satisfying its domain post condition. 

Goals are classified according to the category of requirements they 

will drive about the agents concerned [15]. Functional goals result in 

functional requirements. For example, SatisfactionGoals are functional 

goals concerned with satisfying agent requests; InformationGoals are 

goals concerned with keeping agents informed about object states. 

Likewise, nonfunctional goals result in nonfunctional requirements. For 

example, AccuracyGoals are nonfunctional goals concerned with 

maintaining the consistency between the state of objects in the 

environment and the state of their representation in the software; other 

subcategories include SafetyGoals, SecurityGoals, PerformanceGoals, 

and so on [10]. 

Goal refinement ends when every subgoal is realizable by some 

individual agent assigned to it, that is, expressible in terms of 

conditions that are monitorable and controllable by the agent. A 

requirement is a terminal goal under responsibility of an agent in the 

software-to-be; an expectation is a terminal goal under responsibility of 

an agent in the environment (unlike requirements, expectations cannot 

be enforced by the software-to-be) [16]. 

The Specification Language 

Each construct of the KAOS specification language has a two-level 

generic structure: an outer semantic net layer for declaring a concept, 

its attributes and its various links to other concepts; an inner formal 

assertion layer for formally defining the concept [10]. The declaration 

level is used for conceptual modeling (through a concrete graphical 

syntax), requirements traceability (through semantic net navigation) 

and specification reuse (through queries). The assertion level is optional 

and used for formal reasoning [12]. 
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The generic structure of a KAOS construct is instantiated to 

specific types of links and assertion languages according to the specific 

type of the concept being specified. For example, consider the 

following goal specification for a secret message sending system [9]: 

Goal Achieve[RevelationSentToRElay] 

Concerns Spy, Revelation, Team, Message 

Refines RelayInformed 

RefinedTo 

RevelationTargetToTeam, TargetedRevelationSentToRelay 

InformalDef If a spy collects a revelation, he will send a message 

about it to his relay 

FormalDef sp1, sp2: Spy, re :Team 

Collecting (sp1,re) ^Member (sp1,te)^Relay(sp2,te) 

  h2 ( me : Message) Sending (sp1, me, sp2) ^About (me, re) 

 

The declaration part of this specification introduces a concept of 

type “goal”, named RevelationSentToRelay, stating a target property 

that should eventually hold (“Achieve” verb), referring to objects such 

as Spy or Revelation, refining the parent goal RelayInformed, refined 

into subgoals RevelationTargetedToTeam and 

TargetedRevelationSentToRelay, and defined by some informal 

statement. 

The optional assertion part in the specification above defines the 

goal Achieve [RevelationSent] in formal terms using a real-time 

temporal logic. In this document, the following classical operators for 

temporal referencing are used [6]: 
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  (in the next state) 
  (some time in the future) 

(always in the future) 
W (always in the future unless) 
B (always in the past back to) 

 (in the previous state) 
 (some time in the past) 

(always in the past) 
U (always in the future untill) 

S (always in the past since) 
 

Formal assertions are interpreted over historical sequences of states. 

Each assertion is in general specified by some sequences and falsified 

by some other sequences. The notation (H, i) |= P is used to express that 

assertion P is satisfied by history H at time position i (i € T), where T 

denotes a linear temporal structure assumed to be discrete for sake of 

simplicity. Let use the notation H |= P for (H, 0) |= P. 

States are global; the state of the composite system at some time 

position i is the aggregation of the local states of all its objects at that 

time position. The state of an individual object instance ob at some time 

position is defined as a mapping from ob to the set of values of all ob’s 

attributes and links at that time position. In the context of KAOS 

requirements, a historical sequence of states defines a behavior 

produced by a scenario [7]. 

The semantics of the above temporal operators is then defined as 

follows [3]: 
(H, i)=  P iff (H, next(i)) =P 

(H, i)=   P iff (H,j) =P for some j ≥i 

(H, i)= P iff (H,j) =P for all j ≥i 

(H, i)= PUQ iff there exists a j≠I such that (H, i)=Q and for every  k, i≤k<j, (H,k) =P 

(H, i)= PWQ (H,i) =PUQ or (H,i) = P 

(H, i)= PSQ iff there exists a j≤I such that (H, i)=Q and for every  k, i<k≤j, (H,k) =P 

(H, i)= PBQ (H,i) = PSQ or (H,i) = P 

Note that P amounts to PW false. Let use the standard logical 

connectives   (and),  (or),   (not),  (implies),   (equivalent),   

(strongly implies),   (strongly equivalent), with 
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Note thus that there is an implicit outer  operator in every strong 

implication. Beside the agent-related classification of goals, goals in 

KAOS are also classified according to the pattern of temporal behavior 

they capture: 

Achieve: C     T 

Cease: C      T 

Maintain: C   TWN, C   TWN 

Avoid: C TWN, C   T 

In these patterns, C, T, and N denote some current, target, and new 

condition respectively. In requirements engineering, it is needed to 

introduce real-time restrictions. Bounded versions of the above 

temporal operators are therefore introduced in the following style: 
≤ d  (some time in the future within deadline d) 

≤ d  (always in the future up to deadline d) 

To define such operators, the temporal structure T is enriched with 

a metric domain D and a temporal distance function dist: T x T   D, 

which has all desired properties of metrics. We will take: 

T: the set of naturals 

D: 
{d  there exists a natural n such that d=n×u}, where 

u denotes some chosen tin} 

dist(i,j): j-i × u 

Multiple units can be used – e.g., s (second), m (minute), d (day), 

etc; these are implicitly converted into some smaller unit. The o-

operator then yields the nearest subsequent time position according to 

this smallest unit. 

The semantics of the real-time operators is then defined 

accordingly, e.g., 
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(H, i)= ≤ d P iff (H,j) =P for some j ≠i with dist(i,j)≤d 

(H, i)= ≤ d P iff (H,j) =P for all j ≠i such that dist(i,j)<d 
In the above goal declaration of RevelationSentToRelay, the 

conjunction of the assertions formalizing the subgoals 

RevelationTargetedToTeam and TargetedRevelationSentToRelay must 

entail the formal assertion of the parent goal RevelationSent they define 

together. Every formal goal refinement thus generates a corresponding 

proof obligation [13]. 

In the formal assertion of the goal RevelationSentToRelay, the 

predicate Sending(sp1, me, sp2) means that, in the current state, an 

instance of the Sending relationship links variables sp1, me, and sp2 of 

sort Spy, Revelation, respectively. The Sending relationship and 

Revelation entity are defined in such a way: 

Entity Revalation 
           InformalDef    Secret information about the enemy 

           Has     Content: Text 
 

Relationship Sending 
            InformalDef  A spy is sending a message to another spy 

            Links Spy {Role Sends} 
                       Message {Role Sent} 

                       Spy{Role To} 
The Spy type might in turn be declared by 

Agent Spy  
           InformalDef  Person who is an employee of the a spy agency 

           Has  Name: Text 
In the declarations above, Name is declared as an attribute of the 

entity Spy. 

As mentioned earlier, operations may be specified formally by pre 

and post conditions in the state-based style, e.g., 
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Operation Send Relevation 
        Input              Spy {arg sp1, sp2}, Revelation {arg re} 

  Output           Message {res me}, Sending 
  DomPre          ( me: Message) Sending (sp1,me,sp2) 
  DomPost        ( me: Message) Sending (sp1,me,sp) 

The pre and post condition of the operation SendRevelation above 

are domain properties; they capture corresponding elementary state 

transitions in the domain, namely, from a state where no message is 

sent to a state where a message is sent. The software requirements are 

found in the terminal goals assigned to agents in the software-to-be, and 

in the additional pre, post and trigger conditions that need to strengthen 

the corresponding domain conditions in order to ensure all such goals. 

Assuming the RevelationSentToRelay goal is assigned to the spy 

collecting the revelation one would derive from the above formal 

assertion for that goal: 

Operation SendRevelation 
          … 

          ReqTrigFor  RevelationSent 
                                 Collecting (sp1, re) 

          ReqPreFor    RevelationSent 
                                 ( te: Team) Member (sp1, te) ^Relay (sp2,te) 

          ReqPostFor   RevelationSent 
                                  About (me,re) 

The trigger condition captures an obligation to trigger the operation 

as soon as the condition gets true and provided the domain precondition 

is true. The specification will be consistent provided the trigger 

condition and required precondition are together true in the operation’s 

initial state. 

The Elaboration Method 

Figure 6.1 outlines the major steps that may be followed to 

elaborate KAOS specifications from high-level goals. 
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Figure 6.1. KAOS requirements elaboration 

Goal elaboration. Elaborate the goal AND/OR structure by defining 

goals and their refinement links until assignable goals are reached. The 

process of identifying goals, defining them precisely, and relating them 

through refinement links is in general a combination of top-down and 

bottom-up subprocesses; offspring goals are identified by asking HOW 

questions about goals already identified whereas parent goals are 

identified by asking WHY questions about goals and operational 

requirements already identified [12]. 

Object capture. Identify the objects involved in goal formulations, 

define their conceptual links, and describe their domain properties by 

invariants [13]. 

Operation capture. Identify object state transitions that are 

meaningful to the goals. Goal formulations refer to desired or forbidden 

states that are reachable through state transitions; the latter correspond 

to applications of operations. The principle is to specify such state 

transitions as domain pre- and post conditions of operations thereby 

identified and to identify the agents that could perform these operations 

[3]. 
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Operationalization. Derive strengthened pre-, post-, and trigger 

conditions on operations and strengthened invariants on objects, in 

order to ensure that all terminal goals are met. A number of formal 

derivation rules are available to support the operationalization process 

[2]. 

Responsibility assignment. 1) Identify alternative responsibilities 

for terminal goals; 2) make decisions among refinement, 

operationalization, and responsibility alternatives, so as to reinforce 

nonfunctional goals e.g., goals related to reliability, performance, cost 

reduction, load reduction, etc; 3) assign the operations to agents that 

can commit to guarantee the terminal goals in the alternatives selected. 

The boundary between the system and its environment is obtained as a 

result of this process and the various terminal goals become 

requirements or assumptions dependent on the assignment made [38]. 

The steps above are ordered by data dependencies; they may be 

running concurrently, with possible backtracking at every step. 

Obstacle Analysis and Resolution 

Obstacles were first introduced in [2] as means for identifying goal 

violation scenarios. First-sketch specifications of goals, requirements, 

and assumptions tend to be too ideal; they are likely to be occasionally 

violated in the running system due to unexpected agent behavior. The 

objective of obstacle analysis is to anticipate exceptional behaviors in 

order to derive more complete and realistic goals, requirements, and 

assumptions. A defensive extension of the goal-oriented process model 

outlined above is depicted in Figure 6.2. During elaboration of the goal 

graph by elicitation and by refinement, obstacles are generated from 

goal specifications. Such obstacles may be recursively refined as 

indicated by the right circle arrow in Figure 6.2. 
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Figure 6.2. Obstacle analysis in goal-oriented requirements elaboration 

In declarative terms, an obstacle to some goal is a condition whose 

satisfaction may prevent the goal from being achieved. An obstacle O is 

said to obstruct a goal G in some domain characterized by a set of 

domain properties Dom if and only if  

{O,Dom}|=G  obstruction 
Dom |≠O    domain consistency 

Obstacle analysis consists in taking a pessimistic view at the goals, 

requirements and expectations being elaborated. The principle is to 

identify as many ways of obstructing them as possible in order to 

resolve each such obstruction when likely and critical so as to produce 

more complete requirements for more robust systems. Formal 

techniques for generation ad AND/OR refinement of obstacles are 

detailed in [2, 13]. 

The basic technique amounts to a precondition calculus that 

regresses goal negations G  backwards through known domain 

properties Dom. Formal obstruction patterns may be used as a cheaper 

alternative to shortcut formal derivations. Both techniques allow 

domain properties involved in obstructions to be incrementally elicited 

as well [3]. 
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Obstacles that appear to be likely and critical need to be resolved 

once they have been generated. Resolution tactics are available for 

generating alternative solutions, notably, goal substitution, agent 

substitution, goal weakening, goal restoration, obstacle prevention and 

obstacle mitigation [2]. The selection of preferred alternatives depends 

on the degree of criticality of the obstacle, its likelihood of occurrence 

and on high-priority soft goals that may drive the selection. The 

selected resolution may then be deployed at specification time, 

resulting in specification transformation, or at runtime through obstacle 

monitoring. Obstacle resolution results in a goal structure updated with 

new goals and/or transformed versions of existing ones. The new goal 

specifications obtained by resolution may in turn trigger a new iteration 

of goal elaboration and obstacle analysis. Goals obtained from obstacle 

res`olution may also refer to new objects/operations and require 

specific operationalizations [8]. 

6.2 Formal Analysis and Design for Security Engineering 

Background 

Security is a growing concern as the software community 

increasingly develops larger and more complex systems. These systems 

support ever more distributed and integrated capabilities in the public 

and private sectors. As society increasingly depends on software; the 

size and complexity of software systems continues to dynamically grow 

and evolve with ever-richer semantics making them more difficult to 

structure and understand. Trusted system requirements compound the 

problem by adding security and privacy dimensions to the mix, and 

most software efforts become untenable as software organizations 

attempt to bolt on security mechanisms. One of the major sources of 

security vulnerabilities has been poor- quality software [18]. Security 

aspects are usually applied to products late in the development cycle 

leaving systems vulnerable to attacks. This not only results in 

ineffective security capabilities as seen in the relentless barrage of 

cyber attacks, but also the integrity of software systems is placed at risk 
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as the engineering principles used to develop software systems are 

subverted by the subsequent burden of security requirements [4]. 

After three decades of adding security capabilities to software 

systems, two patterns arise. First is a heavy reliance on the latest 

security gadgets and post-development security evaluations [Common 

Criteria (CC) Security Evaluations] to provide confidence in trusted 

systems. The second is an unbalanced dependence on legal remedy for 

responding to security responsibility claims - citing “the corporation 

provided security measures that are inline with current practice”. This 

will not be much good when a national disaster is caused by system 

vulnerabilities that could have been averted by engineering for security. 

Engineering security requirements is a message that has recently 

received more attention from the research community [4] due to the 

losses caused by poorly secured software products that result from 

considering security as an afterthought of software development. 

According to Van Lamsweerde, there are three reasons for considering 

security requirements after the fact. First, early phases of software 

development raise the priority of analyzing and elaborating functional 

requirements over non-functional requirements such as security in order 

to obtain a functioning product in a short amount of time. The second 

reason is the lack of a constructive and effective mechanism for 

elaborating security requirements in a complete, consistent, and clear 

manner. The third reason is the lack of a precise and well-defined 

approach to produce design and implementation of security 

requirements that accurately achieve these requirements while ensuring 

proper handling of all requirements and allowing for requirements 

traceability at the different phases of development. The Formal 

Analysis and Design for Security Engineering (FADSE) approach [1] to 

engineer security requirements addresses these problems that hinder the 

consideration of security requirements at the various stages of software 

development. 

In Figure 6.3, Wing depicts a layered approach to build secure 

systems [19]. The cryptographic layer provides primitives for 

encryption, decryption, digital signatures, etc. The protocols layer 
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provides means for securing communication including authentication 

and exchange protocols. The systems and languages layer provides 

security services built in general-purpose programming languages such 

as C or Java. The applications layer include applications like online 

shopping, banking, etc. to guarantee some level of privacy and 

protection to users’ data [19]. 

 
Figure 6.3 A layered approach to build secure system by Wing 

a: System Layers; 3b: Security Guarantees 

Figure 6.3b illustrates an ironic observation of the inverse 

proportionality between the strength of what we can guarantee at each 

layer in the security-layered approach to the size of the layer (Figure 

6.3b). Wing suggests that there are significant results in cryptography, 

which can accurately tell us what we can guarantee and what we 

cannot. At the protocol level, formal methods have proven successful in 

providing guarantees for authentication protocols while at the systems 

and languages layer, commercial technology like Active X and Java 

provide different levels of security, but are still open to public attacks 

such as denial of service and spoofing. However, at the application 

layer in terms of security guarantees, there is not much to provide a 

reasonable level of security [19]. 

FADSE described excels in applications layer to fulfill the essential 

need for a formal security requirements elaboration method 

encapsulated in an uncomplicated interface and transformed to a formal 
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language to rigorously derive design specifications that maintain 

properties of the requirements model. 

Security requirements engineering entails developing methods and 

tools which support the construction of complete, consistent, and clear 

specifications describing what a software system under development is 

supposed to do [20]. Candidate solutions including semi-formal 

modeling notations centered on object-oriented analysis (OOA) 

techniques like UML and formal specification techniques have been 

proposed to address the requirements problem. 

The graphical notations provided with the semi-formal approaches 

are easy to use and communicate [3]. Further, the different kinds of 

diagrams may provide complementary views of the same system; such 

views can be related to each other through inter-view consistency rules 

[21]. However, semi-formal approaches to security engineering have 

limitations in that they can only cope with functional aspects; they 

generally support highly limited forms of specification and analysis; the 

semi-formal notation is most often fairly fuzzy since the same model 

may often be interpreted in different ways by different people [3]. 

Formal methods are complete and precisely defined, but need 

mathematical skills for effective use. Therefore most security 

specification tasks are still carried out with the support of informal 

specification methods, though this practice may lead to dangerously 

ambiguous, inconsistent, or incomplete specifications resulting in 

poorly secure software systems. Despite their advantages in solving 

security problems, formal methods are in fact still perceived as too 

cumbersome and complicated to be generally applied, and are relegated 

to the most critical sections of software development and software 

systems. Being a signification part of the critical aspects in software, 

security concerns are suitable candidates for development using formal 

methods. Nevertheless, a good chance for wider acceptance and use is 

given, if sufficient approach and tool support encapsulating and hiding 

the formal part become available. 

Employing formal methods in real systems is steadily growing from 

year to year [22]. Despite of the good news, traditional semi-formal 
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(unlike the goal-oriented Knowledge Acquisition for automated 

Specifications (KAOS) approach) modeling and formal specification 

techniques suffer from serious shortcomings that explain why they are 

not fully adequate for the critical phase of requirements elaboration and 

analysis. These shortcomings are outlined as follows [4]: 

-  limited scope: The vast majority of techniques focus on the 

modeling and specification of the software alone. They lack 

support for reasoning about the composite system made of the 

software and its environment; 

-  lack of rationale capture: Formal notations do not address the 

problem of understanding requirements in terms of their rationale 

with respect to some higher-level concerns in the application 

domain; 

-  poor guidance: Constructive methods for building correct 

models/specifications for complex systems in a systematic, 

incremental way are by large non-existent. The problem is not 

merely one of translating natural language statements into some 

semi-formal model and/or formal specification. Requirements 

engineering in general requires complex requirements to be 

elicited, elaborated, structured, interrelated and negotiated; 

- lack of support for exploration of alternatives: Requirements 

engineering is much concerned with the exploration of 

alternative system proposals. Different assignment of 

responsibilities among software/environment components yields 

different software-environment boundaries and interactions. 

Traditional modeling and specification techniques do not allow 

such alternatives to be represented, explored, and compared for 

selection. 
The above limitations have been overcome in the FADSE approach 

through the employment of goal-orientation during requirements 

analysis [4, 2, 23]. There are a number of goal-oriented approaches to 

requirements engineering. Knowledge Acquisition for automated 

Specifications (KAOS) and i* represent the state-of-the-art as mature 

approaches in the goal-oriented requirements engineering paradigm 
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[24]. KAOS, the more well- established of the two, uses first-order 

temporal logic as its formal infrastructure with good tool support [23]. 

Further, KAOS is unique in its conceptual ontology: lower level 

descriptions of the system-to-be are progressively derived from system-

level and organizational objectives using a framework that is essentially 

a taxonomy of concepts instantiated for a particular domain [25]. 

The KAOS security extension employed in FADSE to model and 

analyze security requirements meet a set of meta-requirements that 

make such model securely reliable as follows [4]: 

- early deployment: In view of the criticality of security 

requirements, the technique is applicable as early as possible in 

the requirement engineering process, that is, to declarative 

assertions as they arise from stakeholder interviews and 

documents (as opposed to, e.g., later state machine models); 

- incrementality: This technique supports the intertwining of 

model building and analysis and therefore allow for reasoning 

about partial models; 

- reasoning about alternatives: This technique makes it possible to 

represent and assess alternative options so that a “best” route to 

security can be selected; 

- high assurance: This technique allows for formal analysis when 

and where needed so that compelling evidence of security 

assurance can be provided; 

- security-by-construction: To avoid the endless cycle of defect 

fixes generating new defects, the requirements engineering 

process is guided so that a satisfactory level of security is 

guaranteed by construction; 

- separation of concerns: This technique keeps security 

requirements separate from other types of requirements so as to 

allow for interaction analysis. 

FADSE is the first to extend the goal-oriented KAOS framework to 

formal design and implementation, which brings the benefits of the 

goal-oriented paradigm to the software security domain. The 

employment of goal-orientation prior to stepping into formal design 
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paves the road for formal design through performing thorough 

reasoning about security requirements and organizing them into a well-

structured requirements model. Van Lamsweerde argues that goals 

offer the right kind of abstraction to address the inadequacies of formal 

and semi-formal methods for requirements engineering (especially for 

high assurance systems). These systems require compelling evidence 

that they deliver their services in a manner that satisfies safety, security, 

fault-tolerance and survivability requirements. 

Goal-oriented methods are adequate for requirements engineering 

that is concerned with the elicitation of goals to be achieved by the 

software-to-be (WHY issues), the operationalization of such goals into 

specifications of services and constraints (WHAT issues), and the 

assignment of responsibilities for the resulting requirements to agents 

such as humans, devices and software available or to be developed 

(WHO issues) [26]. Positive/negative interactions with the other system 

goals can be captured in goal models and managed appropriately [2]; 

exceptional conditions in the environment that might hinder critical 

goals from being achieved can be identified and resolved to produce 

more robust requirements [2]; the goals can be specified precisely and 

refined incrementally into operational software specifications that 

provably assure the higher-level goals [8, 7, 11]. Requirements 

implement goals much the same way as programs implement design 

specifications [4]. 

Most research efforts in the field of security requirements 

engineering have been devoted to the requirements specification facet 

of requirements engineering [14]. A large number of languages have 

been proposed for requirements specifications, some of which are 

popular formal languages like Z, VDM, or LARCH. However, these 

languages are not well suited for capturing requirements models 

because they are too restricted in scope; they address only the “what” 

questions [11]. Typically, the data and operations of the system 

envisioned are specified through first-order assertions like conditional 

equations or pre/postconditions and invariants. Another limitation is 

that such languages have no built-in constructs for making a clear 
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separation between domain descriptions and actual requirements [14]. 

Van Lamsweerde indicated that recent attempts to design semi-formal 

languages like KAOS support a wider range of requirements with the 

ability to address the “why”, “who”, and “when” questions in addition 

to the normal “what” questions [14]. 

FADSE addresses the limitations of the security requirements 

specification languages through employing KAOS to elicit security 

requirements that uses first order temporal logic to formally capture 

pre, post conditions and domain invariants. Moreover, KAOS models 

security aspects as goals resulting in a security goal graph in which the 

bottom level goals are either security requirements assigned to agents in 

the software-to-be (the software whose requirements are being 

modeled) or assumptions to be fulfilled by the interacting environment. 

This differentiation between requirements and assumptions clearly 

separates domain descriptions from actual requirements. Further, the 

bottom level goals of the graph are goals to be assigned to agents 

allowing the requirements model to extend beyond answering what 

questions to answer how questions and who is responsible for achieving 

these goals. 

Being a crucial aspect in system development, security must be 

thoroughly ensured during all development phases. While still mostly 

relegated to the implementation and testing phases, it should be 

enforced at earlier stages too, i.e. in the requirements elaboration phase 

since early detection of possible security vulnerabilities is a key factor 

towards developing secure systems that are cost effective. Again, 

FADSE is a requirements-driven approach that considers security very 

early in development while security vulnerabilities are analyzed and 

resolved. Moreover, the rest of the development phases are guided 

requirements model using the B formal method refinement mechanism 

that obtains its initial B model from automatically transforming the 

KAOS model to B. The employment of B as a design elaboration 

method to fully develop security-specific elements of software allows 

for the automatic verification of security implementation from more 

abstract properties represented in the requirements model. Further, the 
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derivation of acceptance test cases from the requirements model 

provides means to ensure compliance between the derived 

implementation and the initial set of security requirements. 

Automatic code generation from requirements facilitates the 

production of large systems with high- quality in a cost-effective 

manner. Therefore, it has been one of the objectives of software 

engineering almost since the advent of high-level programming 

languages, and calls for a “requirements-based programming” 

capability has become deafening [27]. Several tools and products exist 

in the marketplace for automatic code generation from a given model. 

However, they typically generate code, portions of which are never 

executed, or portions of which cannot be justified from either the 

requirements or the model [27]. Moreover, existing tools do not and 

cannot overcome the fundamental inadequacy of all currently available 

automated development approaches, which is that they include no 

means to establish a provable equivalence between the requirements 

stated at the outset and either the model or the code they generate. 

FADSE solves this problem by building a mature and formally 

analyzed security requirements model using KAOS and transforms this 

requirements model into B to fully develop security aspects. 

Discharging B proof obligations provides means to establish a provable 

equivalence between the security requirements model and the more 

specified models produced for design and implementation. 

While security-in-the-large encompasses development, deployment, 

and administration of trusted systems in their operational environments, 

this research focuses largely on the development process. We 

conjecture that purposefully engineering security principles into trusted 

systems during development reduces the risks of manifesting 

vulnerabilities during deployment, administration, and operation in the 

trusted environment. More concisely, while well understood security 

principles exist to guide organizations and security best practices exist 

for specific areas of development, there is no cohesive framework of 

security engineering principles that integrates development activities, 

artifacts, and practices, with relevant security principles. Lacking an 
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integrated software security engineering process that incorporates 

security principles from the onset, we continue to employ informal 

solutions that render many subsequent systems vulnerable to attacks. 

From the perspective of building a system devoid of security 

vulnerabilities, formal methods have been hoisted up as a reasonable 

solution. However, formal methods come with some challenges for 

large, complex systems. First, the application of formal methods entails 

substantial requirements formulation in a precise provable and correct 

representation, unambiguous, and consistent. Even for moderate 

systems, this goal is not readily achieved from a cost and time 

perspective. Secondly, once formal requirements set exists, translating 

them into a design that preserves the requisite security properties can be 

arduous and error-prone and arduous. Thirdly, the availability of 

engineers with the requisite experience to render a system definition 

and design specification formally is relatively low and they are often 

more expensive to employ. 

Combining the increasing need for secure systems and the 

challenges of formal methods-based solutions, we have a dilemma. Do 

we bite the bullet and apply formal methods to engineering secure 

systems or do we continue down the informal path and live with the 

resulting vulnerabilities? This approach leads us to believe that there is 

a rational middle ground. First, assuring that all vulnerabilities are 

covered is unrealistic both technically and economically unless we are 

willing to accept systems of low size and complexity. Secondly, 

requirements engineering with formal methods is precise and provides a 

good platform for better completeness, but it still lacks the guarantees 

that completeness is achieved. Therefore, the argument for 

completeness turns to a tradeoff between approaches for time taken for 

getting to an acceptable level of completeness before proceeding on to 

design. 

The requirements-driven goal-directed FADSE approach proposed 

as a step towards the development of highly secure software is less 

precise and formal than starting from a totally formal approach, but it 

has three key mechanisms that render near-formal results. First, it 
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employs KAOS (Knowledge Acquisition for autOmated Specifications) 

[4, 2], which is a proven goal-directed framework to elaborate security 

requirements. KAOS is natural for identifying and reasoning about the 

requisite requirements - making it an effective mechanism for 

facilitating completeness with additional formality in areas where it is 

essential. Second, the obstacle analysis mechanism of KAOS provides a 

good capability to reduce the presence of vulnerabilities by 

concentrating on the most appropriate alternatives for avoiding or 

eliminating the obstacles. Third, the test-case generation from the 

requirements model assures better alignment with the requirements and 

confidence in the specification from a verifiability perspective. 

FADSE might have a broader impact in two dimensions. The first is 

that it could enhance the infrastructure for research as some of the case 

studies used to demonstrate and verify the approach are industry-

oriented. This collaboration between the proposed work and industry 

broadens its impact and extends its applicability and practicality. The 

second dimension in which FADSE has a broader impact is that it 

widens dissemination to enhance scientific and technological 

understanding. This is achieved through the results obtained from 

verifying the approach through a controlled experiment, which are 

beneficial to software engineers in general and to security engineers in 

specific who lack a constructive and systematic approach to capture and 

develop security concerns in software products. 

State of the Art Survey 

FADSE is a security engineering approach employing formal 

methods to analyze, design and implement security-specific elements of 

software with the aim of producing highly secured software products. 

FADSE can therefore be positioned in the intersection of three areas of 

software research namely software engineering, security and formal 

methods as illustrated in Figure 6.4. This chapter surveys research 

efforts of employing formal methods to produce highly secured 

software, elaborating and modeling security requirements, deriving 

design specifications and implementation from requirements using 
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formal and semi-formal methods and checking consistency between 

requirements and design. 

Clarke, et. al. defined formal methods as “mathematically based 

languages, techniques and tools for specifying and verifying software 

systems” [28]. They have argued that using formal methods does not 

necessarily guarantee correctness, but they can significantly elevate our 

understanding of the system through detection of inconsistencies, 

ambiguities and incompleteness. Using formal methods for producing 

highly assured software has long been accepted and advised for secure 

systems [27]. Even contemporary security evaluation suggests formal 

specification and controlled transformation as evidenced in the 

Common Criteria Evaluation Assessment Levels (EAL) 5, 6 and 7 

requiring formalism. Yet, formal methods are rarely exercised in the 

domain of security engineering. 

 
Figure 6.4. FADSE Position in Software Research 

The Common Criteria (CC) is an international standard for 

evaluation of software security. It provides a framework for security 

users to specify their security requirements while software vendors 

implement and make claims about the security attributes of their 

products that are evaluated by the concerned parties like test 
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laboratories to verify the claims. The CC defines seven Evaluation 

Assurance Levels (EAL 1 to EAL 7) to measure the degree of 

compliance between the product and the claimed security functionality. 

Each EAL covers the complete development of a product with a given 

level of strictness with EAL 1 being the most basic and hence the 

cheapest to implement and evaluate and EAL 7 being the most rigorous 

and expensive [29]. The first four EAL levels of the CC do not require 

formal evidence for assuring the security functionality of the products 

while EAL levels 5, 6 and 7 have requisites of providing formal 

artifacts of development to assure the claimed security attributes. This 

means that products assured at EAL 5-7 provides more confidence to 

the users in the security claims of the product. 

EAL1 is applicable where some confidence in correct operation is 

mandated while security threats are not considered serious [29]. 

Evaluation at EAL1 should show evidence of compliance between the 

target of evaluation functions and its documentation using, for example, 

testing. EAL2 requires the interference of the developers in delivering 

design and test results and is applicable where low to moderate level of 

security is required. EAL2 provides security assurance by analyzing the 

security functions using requirements specifications, guidance 

documentation and the high-level design of the target of evaluation 

[29]. EAL3 thoroughly investigate the target of evaluation without 

substantial re-engineering. EAL3 provides security assurance using 

requirements specifications, documentation and the high level design; 

however, the analysis is supported by testing of security functions and 

evidence of the developer testing. EAL4 is applicable to moderate and 

high level security and it provides assurance through analysis of 

security functions using complete requirements specifications, 

documentation, high-level and low-level design, and subset of the 

implementation to understand security behavior [29]. 

EAL5 is the first assurance level requiring formal evidence of 

development to assure high-level security of the target of evaluation. 

EAL5 requires complete specification, documentation, high-level and 

low-level designs and all of the implementation. Assurance is further 
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gained through a formal model of the security policy and a semi-formal 

presentation of the requirements specifications and the high-level 

design and a semi-formal evidence of the compliance between the two. 

EAL6 gains assurance through a formal model of security, a 

semiformal presentation of the security requirements specifications, 

high-level and low-level designs and a semiformal evidence of the 

compliance between the specifications and the two designs. Further, a 

modular and layered design is required. EAL7 is applicable to 

extremely high-risk applications where the assets need maximum 

protection. EAL7 assures security through a formal model of the 

security policy, formal presentation of the security requirements 

specifications, high-level design, a semiformal presentation of the low-

level design and formal and semiformal evidence of compliance 

between specifications and both the high-level and low-level designs. 

These definitions imply that the software products developed with 

FADSE could be assured at EAL5, EAL6 and EAL7. These three 

evaluation assurance levels especially EAL6 require semiformal 

presentation of the requirements specifications, which are provided in 

FADSE in the semiformal form of the KAOS goal graph. Further, 

EAL6 and EAL7 require formal presentation of design, which is 

provided in FADSE using the B formal method and a semiformal 

evidence of compliance between specifications and design, which is 

provided in FADSE using the acceptance test cases generated from the 

specifications model (KAOS goal graph). The employment of formal 

methods in FADSE provides the required formal evidence of 

development for the assurance of the resulting target of evaluation at 

EAL5-7. 

There are a number of success stories for applying formal methods 

to security-critical systems at the application layer; however, there are 

few if any formal methods-based approaches that handle security- 

specific elements. Stepney used the Z formal language to construct a 

security requirements specifications model that has been further refined 

to derive design and implementation specifications for a money 

exchange system using smart cards [30]. Clarke surveyed several 
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applications of formal methods to security aspects [28]. Oxford 

University and IBM Hursley Laboratories collaborated in the 1980s on 

employing Z to formalize part of IBM’s Customer Information Control 

System (CICS), an online transaction processing system with thousands 

of installations worldwide [28]. IBM reported measurements collected 

throughout development to indicate an overall improvement in product 

quality, a reduction in the number of errors discovered, earlier detection 

of errors, and an estimated 9% reduction in total development cost. 

Sabatier and Lartigue reported on industrial smart card application in 

which they designed the transaction mechanism to provide secure 

means for modifying data that is permanently stored in smart cards 

[31]. They demonstrated how the use of the B method increased 

confidence and provided mathematical proof that the design of the 

transaction mechanism fulfills the security requirements. 

A number of approaches have been proposed in the literature for 

elaborating and modeling security requirements in a way comparable 

FADSE. Misuse cases that complement UML are able to capture 

attacker features at requirements engineering time. Misuse cases are 

defined as “the inverse of UML use cases specifying functions that the 

system should not allow” [32, 33]. Misuse cases refer to scenarios that 

result in loss for the organization or some specific stakeholder. The 

concept of mis-actor is associated with the misuse cases. A mis-actor is 

defined as “the inverse of a UML actor, who is someone-intentionally 

or accidentally initiates misuse cases and whom the system should not 

support in doing so” [32]. Misuse cases can be normally related to 

normal use cases through “includes”, “extends”, “prevents”, and 

“detects” relations. The relation of “includes” or “extends” from a 

misuse case to an ordinary use case indicates a misuse of one of the 

functions of the ordinary use cases. For example, a denial of service 

(DoS) attack needs not include illegal actions, just flooding the system 

with a heavy burden of publicly available registration requests. The 

“prevents” and “detects” have been introduced specifically for misuse 

cases, which relate ordinary uses cases to misuse cases outlining 

functions that prevent or detect misuse [32]. 



 

53 

 

 

 

 

Firesmith in [34] has differentiated between misuse cases and 

security use cases. Firesmith thinks that misuse cases provide means for 

analyzing security threats but are inappropriate for the analysis and 

specification of security requirements. Instead, security use cases 

should define possible threat scenarios from which the application 

should be protected. Figure 6.5 shows the functionality of both misuse 

cases and security use cases. Security use cases could then be integrated 

with the rest of UML artifacts such as class and interaction diagrams in 

order to provide a software engineering approach that captures security 

requirements early on and integrates them with the rest of the system 

development phases through UML [34]. 

Unlike FADSE, misuse cases and security requirements use cases 

handle security concerns only during the requirements and analysis 

phases while FADSE covers the different stages of development for 

security requirements to produce a complete implementation. Misuse 

cases and security use cases inherit the simplicity and popularity as well 

as the semantic inconsistencies of UML. Further, they lack the rigor 

and requirements traceability features in FADSE. 
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Figure 6.5. Misuse cases vs. security use cases [17] 

Liu et. al. have extended the i* agent-oriented requirements 

modeling language to handle security and privacy concerns [35, 36]. 

The i* is an agent-oriented framework for modeling and redesigning 

intentional relationships among actors that are strategic to the software 

being modeled [37]. The i* framework is concerned with the early 

phase of requirements engineering with the notion of strategic actor 

being a central concept. Actors have properties like goals, beliefs, 

abilities, and commitments. The framework focuses on analyzing the 

strategic implications that each actor is concerned with in order to meet 

that actors’ interests. This is achieved through modeling intentional 

relationships among actors, rather than input/output data flow, in which 

actors depend on each other to achieve goals, perform tasks, or employ 

resources. Modeling software from the agent perspectives has shown 

potential in extending the i* framework to model security aspects that 

originate from human concerns and intents; therefore, should be 

modeled through social concepts [35]. 

This i* security extension provides analysis techniques to deal with 

security requirements. The first technique is the attacker analysis that 
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identifies potential system attacks. The attacker analysis theme is that 

“all actors are assumed guilty until proven innocent” [35]. Ordinary 

system actors (roles, positions or agents) are considered among 

potential attackers to the system or to other actors. The second analysis 

technique is the dependency vulnerability analysis that detects 

vulnerabilities in terms of organizational relationships among 

stakeholders whose dependency relationships bring vulnerabilities to 

actually attack the system through the manipulation of their malicious 

intents. Detailed analysis of vulnerability with the i* dependency 

modeling capability to trace the potential failure of each dependency to 

a dependent and to its dependents. Countermeasure analysis proposes 

proactive actions to resolve vulnerabilities and threats. Finally, access 

control analysis fills in the gap between security requirements and their 

realization in implementation. Access control analysis uses i* models to 

embed a proposed solution to system design. The i* role-based 

requirements analysis with i* facilitates the transition from 

requirements to design since it fits naturally to the role-based access 

control methodology software design. 

The i* security extension is close in spirit to KAOS security 

extension employed in FADSE. The main difference is that the i* 

security extension starts with agents involved in the system rather than 

goals being threatened as in KAOS. Further, the i* security extension 

identifies insider attackers only, that is, system stakeholders that were 

identified before in the primal model and might be suspect while KAOS 

identifies possible attacks regardless they can be performed by insider 

or outsider attackers. In the i* security extension, the malicious goals 

owned by attackers are not modeled explicitly and the methodology 

provides no formal techniques for building threat models. On the other 

hand, the KAOS security extension provides a formal procedure for 

generating attacks and countermeasure to such attacks, which makes 

KAOS more reliable especially in the security requirements context. 

Both the KAOS security extension and the i* security extension 

provide constructs to effectively reason about security requirements. 

However, the KAOS security extension has been favored over the i* 
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one to employ in FADSE because the i* framework is not based on 

first-order predicate logic like KAOS making it difficult to transform to 

a formal language like B. 

There are a number of approaches proposed in the domain of 

deriving design from requirements both formally and semi-formally. 

Some of these approaches extended the KAOS framework for further 

stages in development like architecture and design. All the approaches 

that extended KAOS exploited the key features of goal-orientation 

namely the ability to explore alternatives in specifications, 

responsibility assignment, goal formalization, adapting different levels 

of formality, and modeling the software and its environment. However, 

the approaches that extended KAOS focused on the functional and non-

functional requirements of the system and none of them addressed the 

security aspects like FADSE. This distinguishes FADSE in being the 

first to employ goal-orientation for the design and implementation of 

security-specific aspects of software system. 

Nekagawa et. al. have proposed a formal specification generator 

that transforms KAOS requirements specifications into VDM++ 

specifications to develop software systems [38]. Requirements are 

elaborated and analyzed using KAOS resulting in the construction of a 

requirements model, which is given as an input to the generator to 

produce the VDM++ specification. Missing parts in the requirements 

model are commented during the generation process to prompt 

developers to augment the VDM++ specification. The generated 

specification contains implicit operations consisting of pre and post-

conditions, inputs, and outputs while the body of operations is left for 

developers to add to create an explicit specification. Test cases are 

developed to verify the formal specification using the VDM tools [38]. 

An overview of the VDM++ generator steps and artifacts is illustrated 

in Figure 6.6. Like FADSE, the VDM++ generator formally derives 

design from requirements modeled with KAOS. Nevertheless, the 

VDM++ generator only derives high level design with no specific focus 

on security aspects. 
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Figure 6.6. Overview of Development Process 

Jiang, et. al., presented a case study of a real world industrial 

application that produced several versions of conceptual schema design 

for a biological database during its evolution [26]. The case study 

compares two different methods for designing a database. The case 

study authors started with an analysis of the original conceptual schema 

and its evolving design. They then revisited the design process using 

KAOS in order to construct a goal model of the problem domain. The 

case study has been used as a proof of concept for the authors’ work in 

devising an extended database design methodology in which 

stakeholder goals drive the design process in a systematic way. This 

research direction has been motivated by the authors’ belief in goal-

oriented capabilities of making stakeholders’ goals explicit, and 

exploring a space of design alternatives that lead to a set of data 

requirements specifications, each of which corresponds to a particular 

choice to fulfill the top-level goals 

The comparison of the design choices for the biological database as 

originally made by its designers in successive versions and the design 
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recommendations suggested by the goal analysis shows that the goal- 

driven approach results in a design spaces that: 

- includes original schema built through the evolution of the 

application; 

- suggests additional alternatives that lead to more comprehensive 

design; 

- supports systematic evaluation of design alternatives; 

- generates schemas with rich and explicit data semantics. 

The authors’ interpretation to the above results is that goal analysis 

allows the cognitive process that took place in the actual design of the 

database to be explicit when goals are declared as opposed to being 

implicit in the traditional method [26]. This led to schema design that 

better responds to the purpose of the application. The schema resulting 

from the applying goal analysis provides justification for the design 

choices and suggests additional alternatives that lead to more 

comprehensive design in terms of the coverage of the stakeholder goals. 

Further, an important property of the goal model is that all the 

alternatives exist to be examined, regardless whether they are selected 

or not. Goal analysis provides a systematic way for evaluating design 

alternatives through use of soft goals that are goals without clear-cut 

criteria for their satisfaction and usually used to model non-functional 

requirements of a software system [26]. Design alternatives represent 

different information needs that may have positive or negative 

contributions to the fulfillment of the soft goals. Moreover, goal-

oriented database design provides direct trace from intentions to 

requirements to schemas. The knowledge captured during design can be 

used to attach explicit meaning to the elements in the schema and 

propagate to the data organized by the schema. The justification for the 

results has been demonstrated with examples from both the traditional 

schema and the goal-oriented one. 

Brandozzi and Perry proposed a method to transform the 

requirements specification for a software system into an architectural 

specification [39]. This approach has chosen KOAS as a goal-oriented 

requirements engineering methodology to specify requirements and 
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transforms such requirements specifications to APL (Architecture 

Prescription Language) in order to derive an architecture prescription 

from the KAOS requirements model. The authors justified their choice 

of KAOS by their belief that goal- oriented specifications, among all 

kinds of requirements specifications, are nearer to the way human 

thinks and are easy to understand by all stakeholders. Another reason is 

that goal-oriented specifications are particularly suitable to be 

transformed to formal languages like APL. The construction of 

requirements in the form of a directed-acyclic graph provides analytical 

capability to the requirements model and facilitates its transformation to 

a formal language. The approach tries to find a solution to the transition 

from requirements to architecture, which has been traditionally one of 

the most difficult aspects of software engineering [39]. Such 

transformation is difficult because it transforms the question of what we 

want the system to do into a basic framework for how to do it. 

This approach takes as input goal oriented requirement 

specifications and returns as output an architecture prescription. An 

architecture prescription lays out the space for the system structure by 

restricting the architectural elements (processes, data, and connectors), 

their relationships (interactions) and constraints that can be used to 

implement the system [39]. The main advantages of an architecture 

prescription over a typical architecture description are that it can be 

expressed in the problem domain language and it is often less complete, 

and hence less constraining with respect to the remaining design of the 

system. An architectural prescription concentrates on the most 

important and critical aspects of the architecture and these constraints 

are most naturally expressed in terms of the problem space (or business 

domain, the domain of the problem). An architecture description, on the 

other hand is a complete description of the elements and how they 

interface with each other and tends to be defined in terms of the 

solution space rather than the problem space (or in terms of components 

such as GUIs, Middleware, 

The rules for transforming KAOS constructs to APL constructs are 

as follows: each object in the requirements generally corresponds to a 



 

60 

 

 

 

 

component in the architecture. More specifically, and agent object, and 

active object, corresponds to either a process or a connector. By 

definition, a process (thread, task) is an active component. What might 

not be immediately apparent is that also a connector can be an active 

component. An example of this type of connector is a software firewall. 

A software firewall is an active entity that checks whether the processes 

that want to interact satisfy some conditions or not, and allows or 

denies the interaction among them accordingly. 

The events relevant to the architecture of the system are those either 

internal to the software system or those in the environment that have to 

be taken into account by the software system. The receiving of a 

message by a process is an example of internal event. The triggering of 

an interrupt by a sensor is an example of external event. An event is 

generally associated to a connector. 

An entity, or passive object, corresponds to a data element, which 

has a state that can be modified by active objects. For example, the 

speed of a train is a variable (entity) that can be modified by a 

controller (agent). A relation corresponds to another type of data 

element that links two or more other objects and that can have 

additional attributes. An example of relation data is a data structure 

whose attributes are the type of train, its current speed and its maximum 

speed (additional attribute). A goal is a constraint on one or more of the 

components of a software system. Additional components may be 

derived to satisfy a nonfunctional goal. An example of a constraint 

deriving from a goal is that a component of the software system of an 

ATM has to check if the password typed by the user matches the 

password associated in the system to the ATM card inserted. 

The transformation of KAOS to an architecture prescription is 

closely related to FADSE in that both approaches model requirements 

using the KAOS framework with FADSE being more focused on 

security requirements. However, FADSE achieves more in terms of 

software implementation since requirements are produced in an 

implementable form while the other approach transforms requirements 

to architecture only. Further, FADSE verifies that the derived 
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implementation maintain the security properties specified in the 

requirements through the correctness-by-construction guarantees 

associated with the B formal method. In the other approach, 

requirements are transformed to APL, which is an architectural 

prescription language with no such rigid formality that guarantees the 

fulfillment of the requirements specified in the requirements model by 

the generated architecture. 

Van Lamsweerde extended the KAOS framework to systematically 

derive architectural design from functional and non-functional 

requirements so that the compliance between architecture and 

requirements is guaranteed by construction [40]. Software 

specifications are first derived from the KAOS requirements model 

followed by deriving an abstract architectural draft from functional 

specifications. This draft is refined to meet domain-specific 

architectural constraints. The resulting architecture is then recursively 

refined to meet the non-functional goals modeled and analyzed during 

the requirements engineering process [40]. Van Lamsweerde provides 

means to bridge the gap between requirements and architecture using a 

rigorous architectural design process that relies on the use of precise 

descriptions of the software components and their interactions. 

Although this approach is still in its preliminary stages, Van 

Lamsweerde has specified some ideal meta-requirements on the 

derivation process in which the derivation should be: 

- systematic so that active guidance could be provided to 

architects; 

- incremental to allow for reasoning on partial models; 

- leading to (at best) provable or (at least) arguably “correct” and 

“good” architectures in order to demonstrate that the derived 

architecture indeed meets the functional requirements and 

achieves the non-functional ones; 

- highlighting different architectural views like a security view, a 

fault tolerance view, etc. 

The KAOS framework is used to formulate requirements in terms 

of objects in the real world of the software-to-be, and in a vocabulary 
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accessible to stakeholders. Required relations between objects are 

captured in order to model the environment in which these relations are 

monitored and controlled by the software. The next step after 

constructing the KAOS requirements model for the software is to 

derive software specifications that are formulated in terms of objects 

manipulated by the software, and in a vocabulary accessible to 

programmers while capturing required relations between input and 

output software objects. The derivation of software specifications from 

requirements follows the below rules: 

- all goals assigned to software agents are translated into the 

vocabulary of the software-to-be by introducing software input-

output variables; 

- relevant elements of the domain object model are mapped to their 

images in the software’s object model; 

- accuracy goals modeling non-functional requirements that 

mandate the mapping to be consistent are introduced, that is, the 

state of software variables and database elements must accurately 

reflect the state of the corresponding monitored/controlled 

objects they represent; 

- assign input/output agents to the accuracy goals introduced in 

step 3- typically, sensors, actuators or other environment agents. 

The derived software specifications are assumed to be non-

conflicting as conflicts have been managed upstream in the 

requirements engineering process [2]. The software specifications are 

used to obtain a first architectural draft from data dependencies among 

the software agents assigned to functional requirements. These agents 

become architectural components that are statically linked through 

dataflow connectors. The procedure for deriving dataflow architecture 

from the software specifications is as follows: 

- for each functional goal, a component is defined to regroup a 

software agent responsible; 

- for achieving the goal with the various operations 

operationalizing the goal and performed by the agent; 
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- the agent’s interface is defined by the sets of variables the agent 

monitors and controls; 

- for each pair of components C1 and C2, a dataflow connector is 

derived from C1 o C2 labeled with variable d if and only if d is 

among C1’s controlled variables and C2’s monitored variables. 

The initial abstract architecture obtained with the above 

construction rules defines the refinement space in which different 

alternatives of component refinement exist. The refinement space is 

first globally constrained by architectural requirements and then 

different alternatives are explored to refine components and connectors. 

Van Lamsweerde proposed imposing “suitable” architectural styles in 

order to refine the dataflow architecture, that is, styles to be 

documented by applicability conditions such as domain properties and 

the soft goals they are addressing [40]. 

Once the abstract dataflow architecture is refined to meet 

architectural constraints, it gets ready for further refinement to achieve 

the non-functional goals (quality of service and development goals). 

Many of these goals impose constraints on component interaction; for 

example, security goals restrict interactions to limit information flows 

along the channels; accuracy goals impose interactions to maintain a 

consistent state between related objects and so forth. The refinement of 

the architecture to accommodate nonfunctional goals proceeds as 

follows: 

- for each non-functional terminal in the goal refinement graph G, 

all specific connectors and components that G may constrain are 

identified; 

- if necessary, G is instantiated to those connectors and 

components; 

- for each non-functional goal-constrained connector or 

component, it is refined to meet the instantiated non-functional 

goal associated with it. Architectural refinement patterns might 

be used to drive the refinement process as described in [40]. 

Van Lamsweerde characterizes his architectural extension of KAOS 

as systematic and incremental in a mix of qualitative and formal 
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reasoning to attain software architectures that meet both functional and 

non-functional requirements. He argues that deriving architecture that is 

based on goal-oriented requirements analysis allows for making use of 

the capabilities of the goal-oriented paradigm. The derived architecture 

is quite able to accommodate non-functional requirements as well as 

functional requirements, which is not the case in other paradigms like 

object-oriented analysis and formal methods. Further, the ability to 

explore the different alternatives for answering “WHAT” questions lies 

at the core of goal-orientation allowing for constructive guidance to 

software architects in their design task. 

This extension to KAOS to derive architecture from requirements is 

similar to FADSE in some aspects like employing goal-oriented 

approaches during requirements analysis in order to derive an 

architecture using a constructive procedure in the form of 

transformation rules. However, the generated architecture from Van 

Lamsweerde’s extension to KAOS is not formal like FADSE or APL 

[26]. Further, FADSE goes further beyond design and produces 

requirements into an implementable form while Van Lamsweerde’s 

extension of KAOS generates architectural design with no specific 

focus on security aspects. 

Liu and Yu explored integrating the goal-oriented language GRL 

and Use Case Maps (UCM) in order to derive architectural design from 

functional and non-functional requirements [41]. The goal-oriented 

language GRL is used to support requirements modeling using goal and 

agent-oriented techniques, and to guide the architectural design process. 

UCM is a scenario-oriented architectural notation used to express the 

architectural design at each stage of development. UCM support of 

scenario orientation allows for visualizing the behavioral aspects of the 

architecture at varying degrees of abstraction and levels of detail. 

In the integrated GRL and UCM approach, GRL models are 

constructed using business goals and nonfunctional requirements that 

are refined and operationalized, until some concrete design decisions 

are launched. These design decisions are further elaborated into UCM 

scenarios that ask "how" questions instead of "what" questions. 
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Moreover, UCM scenarios describe the behavioral features and 

architectures of the system in the restricted context of achieving some 

implicit purpose(s), which basically answers the "what" questions 

followed by the “why” questions such as [41]: 

- "what the system should do as providing an in-coming call 

service?" 

- "what is the process of wireless call transmitting?" 

- "why to reside a function entity in this network entity instead of 

the other?" 

The GRL-UCM integrated approach aims to derive an architectural 

design from requirements through eliciting, refining and 

operationalizing requirements incrementally until a satisfying 

architectural design is launched. The general steps of the process are 

illustrated in Figure 6.7. Unlike FADSE, the integrated GRL and UCM 

approach only derives high level architectural design without involving 

any rigor in the derivation. Further, the integrated approach aims at 

handling system requirements with no specific focus on security 

requirements. 

Mylopoulos et. al. proposed a requirements-driven software 

development method called TROPOS that supports agent-orientation of 

software systems [42]. TROPOS adopts the i* modeling framework 

described in [36], which offers the concepts of actor, goal, and 

dependency. These concepts are used to model early and late 

requirements, architectural and detailed design. Tropos main theme is 

that building a software system that operates in a dynamic environment 

requires explicit modeling and analysis of this environment in terms of 

actors, their goals and dependencies on other actors [42]. Tropos 

supports four phases of software development: 

- early requirements, concerned with understanding the problem 

by studying an organizational setting; the output of this phase is 

an organizational model which includes relevant external actors, 

their respective goals and their interdependencies; 
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- late requirements, where the system-to-be is described within its 

operational environment, along with relevant functions and 

qualities; 

- architectural design, where the system’s global architecture is 

defined in terms of subsystems, interconnected through data, 

control and other dependencies; 

- detailed design, where behavior of each architectural component 

is defined in further detail. 

Like FADSE, TROPOS formally derives detailed design 

specifications from requirements. Unlike FADSE, Tropos does not 

focus on security aspects but rather on system requirements. 

Dromey proposed the GSE method, which formally derives high 

level architectural design from a set of functional requirements using 

behavior trees [43]. GSE derives design from requirements through the 

admission of the prospect that individual functional requirements are 

regarded as fragments of behavior while a design that satisfies a set of 

functional requirements is regarded as integrated behavior. Individual 

functional requirements are formally modeled using behavior trees 

representation in the GSE approach to enable the transition from 

requirements to design. Dromey believes that the behavior tree notation 

solves a fundamental problem of going from a set of functional 

requirements to a design satisfying those requirements since it provides 

a clear, simple, constructive and systematic path for this transition [43]. 

Behavior trees of individual functional requirements may be composed, 

one at a time, to create an integrated design behavior tree. From this 

problem domain representation, a direct and systematic transition to a 

solution domain representation is feasible. The solution domain is 

represented in the form of component architecture of the system and the 

behavior designs of the individual components that make up the system. 

Unlike FADSE, GSE only considers functional requirements, which 

makes it inappropriate to security requirements that are typically 

classified as non-functional. Further, GSE derives high level 

architectural design as opposed to implementation specifications in 

FADSE. 
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Hinchey et. al proposed R2D2C (Requirements to Design to Code) 

approach, which “offers a mechanical transformation of requirements 

expressed in restricted natural language or in other appropriate 

graphical notations into a provably equivalent formal model that can be 

used as the basis for code generation and other transformations” [44]. 

Requirements might be expressed using scenarios in constrained 

(domain-specific) natural language, or in a range of other notations 

(including UML use cases). Requirements are then transformed to a 

formal model guaranteed to be equivalent to the requirements stated at 

the outset. The formal model can be expressed using a variety of formal 

methods and could be subsequently used as a basis for code generation. 

Currently, R2D2C is using CSP, Hoare’s language of Communicating 

Sequential Processes, which is suitable for various types of analysis and 

investigation. CSP could be used for full formal implementations and 

automated test case generation, etc. 

R2D2C involves a number of phases, which are reflected in the 

system architecture described in Figure 6.7. The following describes 

each of these phases. 

- D1 Scenarios Capture: Engineers, end users, and others write 

scenarios describing the functionalities that should be offered by 

the intended system. The input scenarios may be represented in a 

constrained natural language using a syntax-directed editor, or 

may be represented in other textual or graphical forms; 

- D2 Traces Generation: Traces and sequences of atomic events 

are derived from the scenarios defined in D1; 

- D3 Model Inference: An automatic theorem prover is used to 

infer a formal model, expressed in CSP - in this case, ACL2, 

using the traces derived in phase 2. Concurrency laws need to be 

deeply embedded in the theorem prover to provide it with 

sufficient knowledge of concurrency and of CSP to perform the 

inference; 

-  D4 Analysis: different types of analysis could be performed 

based on the formal model making use of the currently available 

commercial or public domain tools, and specialized tools that are 
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planned for development. CSP allows for model analysis at 

different levels of abstraction using a variety of possible 

implementation environments; 

- D5 Code Generation: Existing techniques of automatic code 

generation from formal models are reasonably well understood 

and could be applied in the R2D2C approach whether using a 

tool specifically developed for the purpose, or existing tools such 

as FDR or converting to other notations suitable for code 

generation (e.g., converting CSP to B) and then using the code 

generating capabilities of the B Toolkit. 

The generated code might be code in a high-level programming 

language, low-level instructions for (elector-) mechanical device, 

natural language business procedures and instructions or the like [44]. 
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Figure 6.7. The Entire Process with D1 thru D5 Illustrating the 

Development Approach 

R2D2C, the way it is described above, requires significant 

computing power due to the employment of an automated theorem 

prover performing significant inferences based on traces input and its 

knowledge of the concurrency laws. For more applicability of the 

approach, there is a reduced version of R2D2C called the shortcut 

version, in which the use of a theorem prover is avoided while 

maintaining the same level of validity of the approach. 

R2D2C has the same spirit as FADSE in terms of building a formal 

model of requirements from which design and code can be 

automatically generated. R2D2C employs CSP while FADSE employs 

KAOS security extension and the B method. Software projects fully 

developed using B have not reported performance problems that 
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obstruct the applicability of B to real software due to the level of 

maturity and stability of the commercial B tools. R2D2C also considers 

transforming the requirements model specified in CSP to B in order to 

make use of the code generation capabilities in B tools. Unlike FADSE, 

R2D2C captures requirements only in scenarios, which cannot capture 

all types of requirements especially security requirements that might 

not always be suitable for representation in scenarios. 

There are a number of approaches proposed in literature to check 

for consistency and compliance between requirements and design or 

implementation. This category of approaches is comparable to FADSE 

since FADSE allows for the generation of acceptance test cases from 

the requirements in order to check for the consistency between the 

derived implementation specifications and the requirements model. 

The Ontology for Software Specification and Design (OSSD) 

approach integrates KAOS and UML to be able to detect errors in 

software designs against the original requirements [45]. This is 

achieved through integrating UML with the KAOS framework for 

elaboration requirements in order to help automate the detection of 

inconsistencies in UML designs, which enhances the quality of the 

original design and ultimately integrating the multiple views of UML 

[45]. OSSD is based on extracting structure, data and relationships from 

UML design models; abstracts them into an ontology-based integrated 

model; and creates a specification level representation of the original 

UML design in a formal, agent-oriented requirements modeling 

language, which is KAOS. 

A simple set of mappings is used to transform the OSSD model to 

an equivalent KAOS model in order to produce requirements 

specification that is used as input to an appropriate verification tool in 

order to detect inconsistencies between the specifications resulted from 

the OSSD approach and the original requirements. The original UML 

design is then manually updated based on the results of the verification 

processing. 

“The transformation from UML to OSSD can be summarized as a 

combined lexical and semantic analysis of the UML Model diagrams, 
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followed by the utilization of multiple mapping tables that enable the 

creation of an instance of the OSSD model” [45]. The Upper Merged 

Ontology (SUMO), WordNet, Browser helps with the categorization of 

terminology used in the UML diagrams. The first step in the approach 

is to identify the Object, Attribute, Relation and Behavior Constructs of 

the OSSD Model using UML class diagrams. Behavior and behavior 

constraints are refined through the processing of the UML Sequence 

Diagrams. The processing of the UML State Machine Diagram refines 

behavior constraints and identifies the States and Transitions in the 

OSSD Model. Lastly, the OSSD processing of the UML Use Case 

Diagram identifies the Goals associated with Objects and Behavior in 

the OSSD Model. The OSSD is depicted in Figure 6.8. 

 
Figure 6.8. OSSD Approach 

OSSD has the same objective as FADSE in producing high quality 

design; however, OSSD does not have a specific focus on security and 

it does not illustrate how to deal with UML semantic inconsistencies. 

Further, OSSD contemplates only on the design phase of software 

engineering with no strong focus on either requirements or 

implementation like FADSE. 
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Liu et. al. proposed a formalization of UML that defines both a 

UML model of requirements and another of design as a pair of class 

diagram and a family of sequence diagrams [46, 47, 48]. Both models 

of requirements and design are then given unified semantics. The 

approach then defines consistency between a design class diagram and 

the interaction diagrams and shows how the removal of inconsistency 

can be treated as a model refinement. Finally, the approach formally 

defines the correctness of UML model of design with respect to the 

model of requirements. This approach supports a “use case, step-wised 

and incremental development in building models for requirements 

analysis” [46]. 

In this formalization approach of UML, class models and use cases 

are used to capture requirements. The class model is relatively 

conceptual, which means that classes do not have methods and the 

associations among conceptual classes are undirected. The functional 

requirements are described by use cases and each use case is 

represented by a sequence diagram called a system sequence diagram. 

On the other hand, the design model consists of a design class model 

and a family of sequence diagrams. Classes in this class model now 

have methods and a method of a class may call methods of other 

classes. Therefore, the specification of these methods must agree with 

the object interactions in the sequence diagrams. 

The formalization of both the requirements model and the design 

model allows for checking consistency between requirements and 

design [48]. However, the approach uses UML to build the 

requirements model, which suffers from the inherent inconsistencies 

and informality of UML that might result in building a low quality 

requirement model. Moreover, the formalization approach allows for 

eliciting and analyzing functional requirements while marinating the 

limitations of UML to capture nonfunctional requirements such as 

security. 

Ledang and Souquieres proposed translating UML specifications to 

formal B specifications in order to rigorously analyze UML 

specifications via their corresponding B formal specifications [49, 50, 
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51]. This approach suggests a formalization of each UML construct as 

follows: 

1. Use case translation to B: each use case is modeled as a B 

operation. To express in B the pre- and post-conditions of use 

cases, each use case and its involved classes are modeled in the 

same abstract machine. By structuring use cases, they are 

organized into levels. The use cases at level one corresponds to 

“user-goal” use cases. The use cases, which are the included 

cases of the ones at level one, are said at level two and so on. 

The bottom level of use cases is composed of basic operations 

of classes. 

2. Modeling class operations: each class operation is modeled as a 

B operation in an abstract machine. As for use cases, the class 

operation and its involved data are grouped in the same abstract 

machine. In addition, the calling-called class operation 

dependency to arrange derived B operations into abstract 

machines is used. 

3. Modeling state charts: this happens in two stages: 

- creating a B abstract operation for each event. In the B 

abstract operation, the expected effects of the event is directly 

specified on the data derived from class data related by the 

event. Consequently, an event and its related data are modeled 

in the same abstract machine; 

- implementing (or refining) the B operation in the first step by 

calling B operations for the triggered transition and actions. 

Several kinds of analysis on UML specifications can be done after 

the translation to B such as the following: 

- the consistency of class invariant; 

- the conformity of object and state chart diagrams regarding the 

class diagrams; 

- the conformity of class operations, use cases regarding the class 

invariant; 

- the class operation calling-called dependency; 

- the use case structuring. 
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The transformation of UML to B is close in methodology to the 

FADSE though it is different in its objective. That is, the main 

objective of translating UML to B is to allow for formal analysis of 

UML specifications through their corresponding B specifications. The 

other objective of the UML formalization is to use UML specifications 

as a tool for building B specifications, so the development of B 

specifications becomes easier. On the other hand, FADSE transforms 

KAOS requirements model to B in order to allow for the refinement of 

security requirements, which are critical, into an implementation with a 

high confidence that the generated implementation meets the security 

requirements and preserves the security properties. Unlike FADSE, the 

UML formalization falls short when it is applied to security 

requirements as UML does not have specific constructs to model 

security specifications. 

Blackburn et.al. introduced the Test Automation Framework (TAF), 

which is a model-based verification approach that has been effective in 

detecting and correcting requirement defects early in the development 

process [52-55]. The TAF main objective is to reduce the manual test 

development effort and reduce rework though the integration of various 

government and commercially available model development and test 

generation tools to support defect prevention and automated testing of 

systems [52]. 

TAF supports modeling methods that focus on representing 

requirements, like the Software Cost Reduction (SCR) method, as well 

as methods that focus on representing design information, like 

SimulinkB or MATRIXx, which supports control system modeling for 

aircraft and automotive systems [53]. Blackburn uses model translation 

means to convert requirement-based or design-based models to a form 

understandable by T-VEC, the test generation component of TAF, to 

produce test vectors [54]. Test vectors include both inputs and the 

expected outputs along with requirement-to-test traceability 

information. T-VEC also supports test driver generation, requirement 

test coverage analysis, and test results checking and reporting. The test 
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drivers are then used to test the implementation functionalities during 

the testing phase [55]. 

Like FADSE, TAF derives test cases from the requirements model 

in order to verify the consistency and compliance between requirements 

and implementation and to provide sufficient traceability information. 

However, TAF is stronger in generating different types of test cases 

including unit testing, integration testing and acceptance testing while 

FADSE only generates acceptance test cases. This difference is due to 

the fact that TAF is a specialized testing framework while FADSE 

provides the generation of acceptance test cases as an extra verification 

step to ensure that the derived implementation meets the initial set of 

security requirements. It might be part of FADSE’ future work to apply 

deeper analysis to the KAOS requirements model to generate other type 

of test cases. 

Rationale 

Like many high-assurance applications, there are cost and time 

reasons to focus the use of formal methodsto the key aspects of a 

system. For large software applications it can be cost-prohibitive to 

apply formal methods and many of these large systems have relevant 

security concerns. So, a compromise was made and formal methods 

were applied to software security aspects of the system in Formal 

Analysis and Design for Security Engineering. Further, the 

requirements elicitation and specification process is complex and the 

additional complexity of formulating these requirements using a formal 

method is overwhelming. So, Formal Analysis and Design for Security 

Engineering started with Van Lamsweerde’s near-formal, goal-directed 

KAOS framework for identifying, elaborating, organizing, analyzing, 

and specifying security requirements [4, 2, 4, 3]. KAOS is a proven 

semi-formal requirements elaboration framework with an underlying 

formal infrastructure based on first-order temporal logic. From this 

base, Formal Analysis and Design for Security Engineering transforms 

the KAOS requirements specification into B, preserving the security 

properties so carefully expressed in KAOS. Then, using the B 
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refinement process, Formal Analysis and Design for Security 

Engineering systematically elaborate and refine the security 

requirements into a formal B design specification. To accommodate the 

fact that KAOS is not fully formal, take the idea of producing a test 

case suite based on the requirements model to help increase confidence 

through verification. Further, extending KAOS with more formality in a 

development platform like B allows for tracing security requirements at 

the various steps of development; that is during both design and 

implementation. 

This section provides an argument for the rationale of the choices of 

KAOS and B to employ in Formal Analysis and Design for Security 

Engineering. The paradigm shift from the traditional approaches 

including semi-formal and formal methods to goalorientation has led 

the requirements engineering research community to argue about the 

effectiveness and usefulness of the new paradigm. The research effort 

in the goal-orientation domain has resulted in the major two 

frameworks namely KAOS and i* that represent the current state of the 

art in the domain. A number of case studies have been used to 

demonstrate the effectiveness of the goal-oriented paradigm and 

illustrate its strengths and limitation. The KAOS framework has been 

effectively demonstrated on more than 30 industrial projects that report 

outstanding success stories [2]. The i* framework has been 

demonstrated on a number of case studies, some of them are quite large 

systems. However, there is no quantitative analysis that precisely 

estimate the gains obtained from applying goal-oriented approaches 

over traditional approaches. As Van Lamsweerde and Mylopoulos, et. 

al. mentioned that preliminary empirical studies and their own 

experience with goal-orientation shows a strong potential in its 

application and its extensibility to formal methods [57, 23]. 

The above mentioned approaches that extend KAOS with extra 

formality to fill in the gap between requirements and later phases of 

development such as architecture and design show interest of the 

research community in the new goal-oriented paradigm. Researchers 

who extended KAOS either for architecture or design provided a 
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qualitative argument for their choice of the goal-oriented method. Their 

argument has been qualitatively based on the prominent features of 

goal-orientation that enables the enhancement of the current 

requirements engineering practice. Van Lamsweerde argued for the 

strengths of the goal-oriented KAOS framework that makes it suitable 

to requirements engineering since it overcomes the limitations of 

traditional semi-formal and formal approaches as mentioned above. 

There remain still some limitations to the approach in engineering 

requirements. The following paragraphs summarize the strengths and 

limitations of the KAOS framework. The following key points about 

goal orientation justify the choice of the goal-oriented KAOS 

framework for requirements analysis in Formal Analysis and Design for 

Security Engineering [57]. 

Goal-oriented modeling and specification takes a wider system 

engineering perspective; goals are prescriptive assertions that should 

hold in the system made of the software-to-be and its environment; 

domain properties and expectations about the environment are 

explicitly captured during the requirements elaboration process, in 

addition to the usual software requirements specifications. 

1. Operational requirements are derived incrementally from the 

higher-level system goals they “implement”. 

1. Goals provide the rationale for the requirements that 

operationalize them and, in addition, a correctness criterion for 

requirements completeness and pertinence [58]. 

2. Obstacle analysis helps producing much more robust systems 

by systematically generating (a) potential ways in which the 

system might fail to meet its goals and (b) alternative ways of 

resolving such problems early enough during the requirements 

elaboration and negotiation phase. 

3. Alternative system proposals are explored through alternative 

goal refinements, responsibility assignments, obstacle 

resolutions and conflict resolutions. 

4. The goal refinement structure provides a rich way of structuring 

and documenting the entire requirements document. 
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5. Different levels of formality could be offered by the framework 

allowing one to combine different levels of expression and 

reasoning: semi-formal for modeling and structuring, 

qualitative for selection among alternatives, and formal, when 

needed, for more accurate reasoning. 

6. Goal formalization allows requirements engineering-specific 

types of analysis to be carried out, like: 

- guiding the goal refinement process and the systematic 

identification of objects and agents [7, 59]; 

- checking the correctness of goal refinements and detecting 

missing goals and implicit assumptions [11]; 

- guiding the identification of obstacles and their resolutions 

[59]; 

- guiding the identification of conflicts and their resolutions 

[2]; 

- guiding the identification and specification of operational 

requirements that satisfy the goals [8, 60]. 

Van Lamsweerde argument of the goal-orientation characteristics 

that offer better handling of requirements analysis is supported by 

Mylopoulos, et. al. argument in [23]. Mylopoulos, et. al. argued that the 

adoption of the goal-oriented mindset is very important during 

requirements analysis because it deals with non-functional requirements 

and relates them to functional ones [23]. Further, goal-oriented analysis 

focuses on the description and evaluation of alternatives and their 

relationship to the organizational objectives behind a software 

development project. Many of the requirements engineering research 

community have argued that capturing these interdependencies between 

organizational objectives and the detailed software requirements can 

facilitate the tracing of the origins of requirements and can help make 

the requirements process more thorough, complete, and consistent [23]. 

Mylopoulos, et. al. have strengthened their argument in favor of the 

goal-oriented paradigm by preliminary empirical studies showing that 

goal-oriented analysis can indeed lead to a more complete requirements 

definition than OOA techniques. Further, the authors’ own experiences 
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in analyzing the requirements and architectural design for a large 

telecommunications software system confirm that goaloriented analysis 

can greatly facilitate and rationalize early phases of the software design 

process [23]. KAOS provides a graphical notation and semi-formal 

interface the hides the underlying formal infrastructure in order to 

increase the usability and applicability of the approach and decrease its 

cost of employment in industrial projects [2]. Van Lamsweerde stated 

that one of the frequently asked questions about KAOS when 

considered for use in industrial projects is about the minimal project 

size for which a KAOS approach is cost-effective. The answer of this 

question is that if the project is estimated to take 20 man days, the 

probability of a positive return on investment is quite weak as building 

a requirements model is time-consuming compared to the project size 

in this case [61]. However, a quantitative analysis on the consulting 

projects in which Van Lamsweerde and his team have applied KAOS 

shows that a typical requirements analysis of 4 to 8 man months has 

been needed. The typical duration of the requirements analysis phase is 

3 months and the budget needed for it represents about 10% of the total 

project cost [2, 61, 62]. Figure 11 extrapolates the return on investment 

according to project size from the Van Lamsweerde’s team experience 

and from the following hypotheses [61]: 

- the cost of one developer is 0,6 k€ per day; 

- the cost of one analyst is 1 k€ per day; 

- about one development project over 2 experiments in which the 

cost overruns with about 189%; 

- one of the two projects that failed is due to a requirements related 

problem; 

- the cost of an ideal requirements analysis phase is estimated at 

10% of the project cost with a minimum bound fixed to 30k€. 
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Figure 6.9: Return on Investment of KAOS Application According to 

Project Size [46] 

Figure 6.9 shows that employing KAOS in a project for 

requirements analysis is cost-effective as soonas the project man power 

is more than 100 man days. For medium-size and larger projects, the 

cost reduction is expected to be 30% [61]. 

Figure 6.9 indicates that one of the limitations of the KAOS 

framework is that it is not cost-effective for projects whose size is less 

than 100 man days. In order to overcome this limitation, it is 

recommended that the company business develops a generic KAOS 

model once and customize it during the gap analyses made to compare 

the user requirements with what the package provides [22]. 

KAOS allows requirements engineers to use variable level of 

formality based on the criticality of the different parts of the software 

requirements. The variance in the formality level ranges from using the 

visual notation of KAOS to model goals to fully use first-order 

temporal logic to formally specify the goals, object invariants and 

operations pre/post conditions. Critical system aspects like security 
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requirements might be a good candidate to the employment of high 

level of formality for requirements analysis. Formality variance gives 

more flexibility to project managers to balance their tradeoff between 

effort and cost of formality. 

The KAOS framework is capable of constructing near-complete 

and near-consistent requirements models. The word “near” has been 

cautiously used to describe the completeness and consistency of the 

KAOS requirements models since one of the KAOS limitations is that it 

is not capable of providing formal evidence of requirements 

completeness and consistency. Requirements models are generally 

characterized by being incomplete and inconsistent by nature [22] even 

with formal specifications. For example, in the electronic smart card 

case study used to demonstrate Formal Analysis and Design for 

Security Engineering, the integrity requirement on the messages 

communicated in the system has been missed though the case study was 

specified in the Z formal language. However, the KAOS framework 

provides a constructive procedure justifying its ability to reach 

reasonable completeness and consistency levels. First, KAOS specifies 

5 completeness criteria that could be used by the requirements engineer 

to check and ensure the model completeness as follows: 

1. A goal model is complete with respect to the refinement 

relationship if and only if every leaf goal is an expectation, a 

domain property, or a requirement. 

2. A goal model is complete with respect to the responsibility 

relationship if and only if every requirement is placed under the 

responsibility of one and only one agent. 

3. To be complete, a process diagram must specify: 

- the agents who perform the operations; 

- the input and output data for each operation. 

4. To be complete, a process diagram must specify when 

operations are executed using trigger conditions. 

5. All operations are to be justified by the existence of some 

requirements (through the use of operationalization links). 
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Second, KAOS provides a procedure for identifying all the possible 

obstacles (things that hinder goals’achievement) and conflicts 

(contradictions between requirements) during the obstacle analysis and 

resolution phase of the framework. In the security context, the KAOS 

security extension considers obstacles as possible security threats. The 

KAOS security extension provides a threat analysis mechanism to both 

formally or informally analyze possible threats and perform threat 

mitigation while building the security requirements model. Threat 

analysis results in the detection and resolution of security 

vulnerabilities very early in development [63]. Further, threat analysis 

allows for the anticipation of application-specific attack scenarios such 

as attacks on a web-based banking application that might result in 

disclosure of sensitive information about bank accounts or in credulous 

money transfer. My experience with using the obstacle analysis feature 

of the KAOS security extension has emphasized its effectiveness both 

in the demonstration of FADSE with the case studies and in the 

empirical study hold to validate Formal Analysis and Design for 

Security Engineering. For example, when applying Formal Analysis 

and Design for Security Engineering to the some system and comparing 

it to the Z specification and implementation of the same system, the 

obstacle analysis feature was effective in detecting threats to messages 

integrity. The Z specification, on the other hand, was not able to detect 

the same threats. This demonstrates that introducing KAOS for 

requirements analysis prior to formal design in Formal Analysis and 

Design for Security Engineering is not only enhancing the cost-

effectiveness of applying formal methods, but also provides means to 

early detect security breaches and enhance the overall security of the 

software. Third, Van Lamsweerde indicated that spending reasonable 

effort on the construction of the requirements model enhances its 

completeness and consistency [2]. The more feedback sessions the 

analyst holds with the stakeholders to get their answers on open 

questions or to verify the completeness and consistency of the 

requirements model, the better the results obtained at the design and 
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implementation phases. The KAOS goal graph is a structure that could 

be communicated with the stakeholders who often have no technical 

background. Providing a structure that could be understood and 

communicated to stakeholders allows requirements engineers to get 

more thorough feedback from stakeholders to enhance the 

completeness and consistency of the requirements model. 

The choice of B as a formal development platform for elaborating 

security design specifications assists in preserving security properties of 

requirements when design specifications are being derived. B has the 

notion of model refinement that allows for building a detailed model of 

design from an abstract model of requirements while preserving the 

security properties of the requirements model. The refinement 

mechanism in B provides a means for documenting design decisions 

and building forward traceability links from requirements to design. 

Hence, the links between artifacts are clear enough to provide 

traceability information that serves software maintenance activities, 

which might be performed after the software is fully developed. The 

use of a software model that stores design decisions and traceability 

links significantly improves the accuracy and completeness of impact 

analysis that is concerned with identifying the impact of a given change 

on the software product [65]. Moreover, B is based on set mathematics 

with the ability to use standard first-order predicate logic facilitating the 

integration with the KAOS security requirements model that is based 

on first-order temporal logic. Further, B is a mature formal method that 

has been successfully employed in industrial projects for long time. The 

availability of good tool support for the B development platform 

strengths the practicality and applicability of Formal Analysis and 

Design for Security Engineering. 

Employing formal methods in Formal Analysis and Design for 

Security Engineering provides a reasonable approach to the challenge 

of developing secure software products with formal evidence of 

correctness [64]. Recognizing that formal methods reduce security risks 

but entails more cost, it is possible to justify this cost by applying 
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Formal Analysis and Design for Security Engineering only to security, 

which is a critical aspect of the system. Further, software systems that 

are evaluated for security at the Common Criteria (CC) EAL 

(Evaluation Assurance Level) 5, 6 and 7 need formal evidence assuring 

the security of the software. This makes software products developed 

using Formal Analysis and Design for Security Engineering securely 

compliant with CC higher levels. 

Formal Analysis and Design for Security Engineering is a step 

towards the development of highly secure software. In a nutshell, 

Formal Analysis and Design for Security Engineering is a 

requirements-driven software engineering approach that derives design 

specifications from a set of security requirements modeled using KAOS 

security extension framework. The approach provides a secure software 

engineering methodology that effectively integrates KAOS security 

extension,which is characterized by the ability to formally build a 

complete, consistent and clear requirements model with the B method, 

which provides formal guarantees for the correctness of the system 

development. This research showed that KAOS is promising in that it 

could be extended with an extra step of formality in order to fully 

implement security requirements while preserving the security 

properties specified in therequirements model. Moreover, extending 

KAOS with more formality in a development framework like B allows 

for tracing requirements at the various steps of development; that is, 

during both design and implementation. 

Formal Analysis and Design for Security Engineering starts with a 

set of security requirements that are being elaborated with the KAOS 

security extension to build a goal graph for the security requirements 

and derive the operations that achieve the goals. Formal Analysis and 

Design for Security Engineering makes use of the analytical capabilities 

provided with the goal graph to achieve two objectives. The first 

objective is to transform the KAOS operations derived to achieve the 

goals to B using means of the transformation scheme described below 

in order to construct an abstract B model that describes the initial 
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system state and its expected security behavior. The initial B machine is 

further refined using the B refinement mechanism to add more details 

while building the security design specifications. The second objective 

is to derive acceptance test cases from the goal graph outlining the 

different scenarios of security behavior that should be met by the 

derived B design and implementation specifications. This means that 

the goal graph is used to derive the initial abstract B model that will be 

further refined for design and implementation and to derive means to 

verify that the derived design and implementation meet the security 

requirements objectives through the acceptance test cases. The 

completeness and consistency of the derived implementation 

specifications are a function of the successful verification of the 

implementation against the acceptance test cases. The extra verification 

step that Formal Analysis and Design for Security Engineering provides 

through the derivation of test cases allows for detecting inconsistencies 

that might have been in the requirements model or in the process of 

design and implementation derivation. The test cases guarantee the 

same level of completeness and consistency of the requirements model 

since they are derived using a depth first search algorithm. The 

algorithm traverses the goal graph to generate sequence of calls to 

operations in the correct order that matches the semantics of the high 

level goals in the goal graph. The test cases provide means to detect 

possible security hazards that might result from inconsistencies either in 

the requirements model or in design. Formal Analysis and Design for 

Security Engineering is illustrated in Figure 6.10. 
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Figure 6.10. Formal Analysis and Design for Security Engineering 

Formal Analysis and Design for Security Engineering provides 

means for transforming the security requirements model built with 

KAOS to an equivalent one in B using some transformation rules. The 

B model that has been transformed from KAOS representing security 

requirements is then refined using non-trivial B refinements that 

generate design specifications conforming to the security requirements. 

Each B refinement step prior to the implementation refinement reflects 

some design decision(s) added by the refining B machine to the refined 

B machine until implementation is obtained. The B formal method 

exhibits one of its prominent features of model refinement in allowing 

us to make our security design decisions with a proof of correctness 

that these decisions do not violate the constraints specified in the 

KAOS requirements model (operations pre/post conditions and entities 

invariants). This means that the development platform itself provides 
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constructs to reduce risks of introducing errors in development. After 

applying a number of refinement steps to the initial B model, an 

implementation refinement step, which is a special refinement step in B 

is applied. 

Formal Analysis and Design for Security Engineering allows for 

deriving one artifact, which is design from another artifact, which is a 

requirements model using formal representation in B. The refinement 

mechanism in B provides means for documenting design decisions and 

building forward traceability links from requirements to design. Hence, 

the links between artifacts are clear enough to provide traceability 

information that serves the purposes of software maintenance activities 

that might be performed after the software is fully developed. The use 

of a software model that stores design decisions and traceability links 

significantly improves the accuracy and completeness of impact 

analysis that is concerned with identifying the impact of a given change 

on the software product [65]. 

The derived implementation specifications are then verified against 

the test cases that have been drawn from the KAOS requirements 

model. Our results have shown that the major two sources for problems 

encountered in implementation are inconsistencies either in the 

requirements model or in the design decisions made during the B 

refinement steps. The derived test cases are capable of detecting some 

inconsistencies in both the requirements model and design. Further, the 

ratio between the numbers of successful test cases and failed test cases 

can be used as exit criteria for security assurance and this is evidenced 

in the Common Criteria Evaluation Assessment Levels (EAL) 5, 6 and 

7. The feedback loop established from the test cases results to the 

requirements model as indicated in the Figure 6.11 allows for detecting 

possible security hazards a priori to deploying the software system into 

production at which time “real” security threats might be encountered. 

Formal Analysis and Design for Security Engineering is 

characterized with some features that make it more attractive to apply 

over other similar formal approaches. These features are either inherent 



 

88 

 

 

 

 

from the underlying approaches employed in Formal Analysis and 

Design for Security Engineering, namely KAOS and B or new in 

Formal Analysis and Design for Security Engineering. It addresses 

security-specific elements of software to bridge the gap between 

security requirements and their realization in design and 

implementation. Up to our knowledge, Formal Analysis and Design for 

Security Engineering is the first approach to address the gap between 

requirements and design for security requirements specifically. Formal 

Analysis and Design for Security Engineering is promising in being 

ready for wide applicability thanks to the strong tool support provided 

by the underlying technologies of KAOS and B. KAOS has a 

commercial tool called Objectiver [61] that has been commercially used 

in a number of successful industrial projects. B has been in the 

industrial market for a while with its most two famous commercial 

products namely AtelierB and the B-Toolkit [66, 67]. The availability 

of strong tool support strengths the practicality and applicability of 

Formal Analysis and Design for Security Engineering. 

Formal Analysis and Design for Security Engineering takes KAOS 

with a further step of formality to derive design and implementation 

through transforming the KAOS requirements model to B. The initial B 

model obtained from the automatic transformation enforce the same 

security constraints specified in the KAOS requirements model 

modeled in the form of preconditions of the B operations that model the 

KAOS operations and the B machine invariants that model the KAOS 

entities invariants. The definition of these constraints in the initial B 

model forces the preservation of these constraints at the later B 

refinements steps that add more details to the initial B model to commit 

design decisions. The proof obligation facility provided with B method 

and that could be automatically generated using one of the commercial 

B tools allows software security developers to discharge the generated 

proof obligations to ensure correctness of development. Discharging the 

proof obligations formally proves that a refinement step in B does not 

violate the constraints of the more abstract B model being refined. 
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Formal Analysis and Design for Security Engineering provides an extra 

verification step to show the maintenance of security properties 

specified in the requirements model in the derived implementation 

specifications. This is achieved when deriving a set of test cases that are 

generated from traversing the KAOS goal graph. The test cases provide 

security developers with means to assure a reasonable level of 

completeness and consistency of their implementation with respect to 

the requirements model. Finally, one of the key merits of employing 

formal methods in Formal Analysis and Design for Security 

Engineering is the availability of sufficient traceability information that 

links requirements to design decisions giving better opportunities for 

more accurate and less vulnerable handling of changes to security 

specifications. 

Transforming KAOS to B 

The Knowledge Acquisition for autOmated Specifications 

requirements model is represented in the form of a directed-acyclic 

graph rooted at the very high level goal of the system and structured in 

multiple levels. Goals at each level refine the goals at the higher level. 

An example of a goal graph for the security requirements of the spy 

network system is illustrated as an example in Figure 6.12. The 

diamond shapes represent security goals while the rectangles with 

circular corners represent agents responsible to achieve leaf goal 

requirements. 

The whole system is represented either as a single abstract B 

machine or multiple abstract B machines related to each other based on 

the size of the system. Each KAOS entity (passive object) is 

represented as a B machine included or seen by the system machine(s) 

and encapsulating its KAOS attributes and operations manipulating the 

attributes as follows: 

- the entity attributes are variables in the equivalent B machine 

representing the state of the object; 
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- the B machine invariant is composed of the types of the 

attributes’ variables (might be primitive types or types from other 

KAOS entities) and the domain invariant of the KAOS object 

presented in first-order predicate logic; 

- each B machine representing an entity includes a set representing 

all its instances because B is not an object oriented language, 

rather it is instance-based. Entity attributes are represented as 

relations between the set of instances and the attribute types. This 

representation of the instances and their attributes allows for the 

use of the set arithmetic capabilities of B. 
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Each KAOS operation is represented as a B operation in the system 

machine and uses the KAOS entities either as parameters or return 

values. KAOS operations pre/post and trigger conditions are treated in 

the transformation as follows: 

- pre-condition are directly mapped to a B precondition for the B 

operation since both KAOS and B preconditions are written in 

first order-predicate logic; 

- post-condition has no equivalent construct in B. The operation 

specification and refinement should be responsible for enforcing 

the KAOS operation post-condition. This means that the post 

condition of the KAOS operation should be used in the operation 

specification, which is not part of the transformation. The 

transformation is only limited to building the requirements model 

that represent the KAOS model. It is the responsibility of the 

designer to fill in the body of each operation while taking into 

consideration the KAOS operation post-condition; 

- trigger-condition has no direct mapping to the trigger condition 

in B. The trigger condition in KAOS is used to model the 

sequence of operation calls and the conditions that would lead to 

calling the operation. The trigger condition could be forced by 

the agents who are controlling the system runtime execution. 

Further, it is the responsibility of the agent calling the operations 

to prepare all the operations trigger conditions in a true state for 

the operation to be called. 

Agents (active objects) are not directly transformed to KAOS since 

they are responsible for the runtime behavior of the system. Agents’ 

behavior is modeled through the transformed KAOS operations. The 

acceptance test cases derived from the KAOS goal graph simulate the 

agent behavior in executing the KAOS operations that realized the 

requirements goals. KAOS goals are not transformed to B since their 

semantics is encapsulated in the KAOS operations that realize the leaf 

goals. The achievement of leaf goals through KAOS operations implies 

the achievement of the higher-level goals through the KAOS AND/OR 

refinement process. The KAOS goals and their sequence of refinement 
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are used to derive the acceptance test cases that are used to increase our 

confidence in the derived implementation specifications to be 

consistent and complete with respect to the requirements model. 

Further, KAOS goals in the goal graph are used to provide links for 

requirement traceability. Design decisions can be easily linked to 

higher-level goals using the goal graph structure that indicates which 

goals are realized by which operation (s). Traceability information 

plays a crucial role in accurately specifying the impact of applying a 

change to security specifications. KAOS domain properties are 

captured in B as invariants to the B machines that model the KAOS 

objects and as pre/post conditions to the operations that model KAOS 

operations. Objects invariants as well as operations pre conditions are 

preserved during the B refinement steps meaning that the domain 

properties are maintained throughout the software development 

lifecycle using the proposed approach. KAOS scenarios are not 

considered in the transformation scheme since scenarios are used as a 

vehicle security requirements engineer uses to assure the customer that 

all the security requirements are well understood and captured. The 

primary objective of the transformation from KAOS to B is to develop 

security design specifications that need to detail the implementation 

plan of the security requirements rather than focusing, as in the 

requirements analysis phase, on providing evidence that the customer 

can understand such as scenarios.  

The rules of the transformation scheme from KAOS to B are 

summarized in Table 6.1. 
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Table 6.1. Transformation Rules from KAOS to B. 
KAOS Constructs B Constructs 

KAOS object  B abstract machine 

KAOS object attribute  B machine variable 

KAOS object operation  B machine operation 

KAOS object invariant  B machine invariant 

KAOS operation  B operation 

KAOS operation pre-condition  B operation pre-condition 

KAOS agent  Agent behavior is modeled through 

the transformed 

KAOS domain properties  

 

Invariants of the transformed KAOS 

objects and 

pre-conditions of B operations 

 

The transformation step of FADSE from KAOS to B can be 

automated using the Goal Graph Analyzer tool. The Goal Graph 

Analyzer tool is a Java tool that parses the KAOS goal graph 

represented in an XML format to generate the initial B model using the 

transformation rules of Table 6.1 and the acceptance test suite. The 

generated B model needs human in the loop to complement the B 

operations equivalent to KAOS operations and KAOS objects’ 

operations with body specifications describing the abstract behavior of 

the operation to realize security requirements. The behavior need to be 

complemented since it is not specified in the KAOS model that only 

specifies what operations are needed to achieve security requirements 

rather than how these operations will achieve the requirements. To 

prove equivalency between the KAOS model and the initial B model 

resulting from the transformation, we can investigate two options; a 

formal mathematical proof and the derivation of acceptance test cases. 

Nakagawa and the team who developed the formal specification 

generator for KAOS wre consulted [38], that generates a VDM++ 

model from KAOS specifications about the feasibility of a formal 

mathematical proof of equivalency between KAOS and B. Nakagawa 

and his team have reported their experience in trying to develop the 



 

95 

 

 

 

 

mathematical proof as infeasible since the KAOS model is a 

requirements model involving undefined parameters making the proof 

very hard to develop within a reasonable timeframe. Moreover, the 

automation of the transformation reduces its error-proneness since 

automation rigidly applies the transformation rules. Further, the fact 

that both KAOS and B employ firstorder predicate logic to express 

system constraints and conditions facilitates the transformation and 

reduces the probability of an equivalency gap between the KAOS 

model and the transformed B model. The acceptance test case option 

has been more feasible to realize any errors that might result from the 

transformation scheme. The KAOS goal graph is used to derive the 

initial abstract B model that will be further refined for design and 

implementation and to derive means to verify that the derived design 

and implementation meet the security requirements objectives through 

the acceptance test cases. Our results have shown that the major two 

sources of problems encountered in implementation are inconsistencies 

either in the requirements model or in the design decisions made during 

the B refinement steps, but not in the transformation rules. 

Derivation of Acceptance Test Cases 

Formal Analysis and Design for Security Engineering provides an 

extra verification step to show the maintenance of security properties 

specified in the requirements model in the derived implementation 

specifications. FADSE derives a suite of acceptance test cases through 

traversing the KAOS goal graph. The test cases provide security 

developers with means to assure a reasonable level of completeness and 

consistency of their implementation with respect to the requirements 

model. The KAOS goal graph is rooted at the very high level goal of 

the system while leaf goals at the very bottom of the goal graph 

represent requirements. Each requirement is realized with an operation 

performed by an agent in the software-to-be. This means that the 

sequence of operations that need to be performed in order to execute a 

goal at a middle level of the goal graph can be identified using a depth 

first search (DFS) algorithm for the subgraph rooted at this goal. A DFS 
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algorithm with backtracking capabilities in order to eliminate the 

unnecessary paths from the search process has been chosen [68, 69]. 

Consider part of the goal graph concerned with the money exchange of 

electronic transactions for an electronic purse system illustrated in 

Figure 6.13. To test the achievement of the goal ExchangeMoney, the 

sequence of operation calls need to be generated using the DFS 

algorithm for the subgraph rooted at the ExchangeMoney node. 

Following the DFS algorithm illustrated in Figure 6.14 and its Java 

implementation in Figure 6.15, we can obtain the ExchangeMoney test 

case illustrated in Figure 6.16. The DFS algorithm searches the 

subgraph rooted at ExchangeMoney node to visit the operation nodes in 

the following sequence: DecryptMsg, SendMoneyValue, EncryptMsg, 

ReceiveMoneyValue  
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Figure 6.13. KAOS Goal Graph for Money Exchange of the Electronic 

Purse System 

DSF (G,v) 
Input: Goal graph G and a vertex 

Output: Edges labeled as discovery and back edges in the connected 
component 

 
For all edges e incident on v do 
   If edge e is unexplored then 

     W? opposite (v,e) // return the end point of e distant to v 
      If vertex w is unexplored then 
          - mark e as a discovery edge 
          - Recursively call DSF (G,w) 

else 
         - mark e as a back edge 

Figure 6.14. The Depth First Search Algorithm Used to Generate 

Acceptance Test Cases 
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Figure 6.15. Java Code for the DFS  

boolean exchangeMoneyTestCase(requestMsg,pd) { 
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    decryptedReqMsg:=ElectronicPurse.decryptMsg(requestMsg); 
    if (decryptedReqMsg.content==null) return false; 

 
   encryptedValueMsg:=ElectronicPurse. 

sendMoneyValue(pd.fromPurse, 
                                              decryptedReqMes); 

   if (encryptedValueMsg==null) return false; 
 

   decryptedValueMsg:=ElectronicPurse. 
decryptMsg(encryptedValueMsg); 

   if (encryptedValueMsg ==null) return false; 
    

   ackMsg:= ElectronicPurse. 
receiveMoneyValue(pd.toPurse,decryptedValueMsg); 

   if (ackMsg ==null) return false; 
   else return true; 

} 
Figure 6.16. Generated Test Case for MoneyExchange Goal 

The generated test cases might need to be augmented by the 

software developers or testers to add more business domain-specific 

assertions. More meaningful messages might be displayed with the 

assertions to assist developers reasoning about failures of test cases and 

identifying sources of errors. Our results have shown that errors in the 

requirements model and/or design errors are the major sources of 

problems identified using the acceptance test cases. Blackburn 

proposed test coverage percentage and test results (number of 

successful and failed test cases) as measures for checking the quality of 

the software product [52]. The same measures could be used with 

Formal Analysis and Design for Security Engineering to evaluate the 

quality of the derived implementation, which is a function of the 

completeness and consistency of the requirements model. The 

acceptance test cases guarantee the same level of completeness and 

consistency of the requirements model since they are directly derived 
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from that model using the DFS algorithm. Therefore, the acceptance 

test cases are capable of identifying inconsistencies in the derived 

implementation with respect to the requirements model. 

The derived test cases are automatically generated from the KAOS 

requirements model using the Goal Graph Analyzer tool that traverses 

the model to generate both the initial B model and the acceptance test 

cases. The acceptance test cases could be used as exit criteria for 

stakeholders to verify compliance between requirements and 

implementation. Further, the employment of formal methods in the 

derivation of both the acceptance test cases and the implementation 

allows for the assurance of target of evaluation constructed using 

Formal Analysis and Design for Security Engineering at Common 

Criteria EAL 5, 6, and 7 that mandate formal evidence of development. 

Clarke et. al. categorized testing into three categories namely unit 

testing, integration testing and acceptance testing [70]. Unit testing is 

concerned with assuring functionality on the module level while 

integration testing is concerned with assuring functionality when the 

various system modules are integrated. Clarke outlined selection 

criteria for paths that might reveal faults in software programs both for 

unit and integration testing [70]. However, up to our knowledge, there 

is no research work done in the area of identifying selection criteria for 

acceptance test cases that might have given more weight to some test 

cases over others in being able to reveal faults and inconsistencies. 

FADSE Tool Support 

Formal Analysis and Design for Security Engineering offers a wide 

range of applicability thanks to the integrated tool support provided by 

the underlying technologies of KAOS and B. KAOS has a commercial 

tool called Objectiver [61] that has been commercially used in a 

number of successful industrial projects. Van Lamsweerde has reported 

success stories of applying KAOS using the Objectiver toolbox to more 

than twenty enterprise software projects [2]. B has been in industry for 

a while with its most two famous commercial products namely AtelierB 

[66] and the B-Toolkit [67]. The availability of strong tool support 
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strengths the practicality and applicability of Formal Analysis and 

Design for Security Engineering and allows for its demonstration on 

large case studies. The KAOS requirements model created with 

Objectiver is exported in XML format. a Java tool called the Goal 

Graph Analyzer to parse the XML of the KAOS model and extract the 

necessary information required to build the initial B model and the 

acceptance test cases was built. The Analyzer produces two artifacts; 1) 

the initial B model representing the requirements model, and 2) the 

acceptance test cases. The software engineer needs to augment the B 

model with abstract specification of the B operations’ body while the 

tester augments the generated test cases with some assertions and 

messages to enhance the usability of the test cases to produce more 

meaningful results. This inserts a human-in-the-loop to produce more 

useful output. The B-Toolkit is then used refine the abstract B machines 

to make design decisions and finally derive implementation 

specifications. Proof obligations are generated with each refinement 

step and the required proofs are discharged by the software developer in 

order to prove correctness of development. Figure 6.17 illustrates the 

tool support of Formal Analysis and Design for Security Engineering. 
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Figure 6.17. Formal Analysis and Design for Security Engineering Tool 

Support 

 

6.3 A Formal Framework for Dependability and Resilience 

from a Software Engineering Perspective 

Software engineering [71,72,73] aims at providing theories, 

methods and tools to allow for the production of Information and 

Communication Technological systems (ICT systems). Many adjectives 

can be used to qualify the production and the system built from 

different perspectives all of which are related to some so-called quality 

criteria. Two important areas of software engineering are model driven 

engineering and dependability. Model driven engineering [74, 75] is a 

field aiming at proposing methods and tools supporting the engineering 

of ICT systems for which models are extensively used. A model, in this 
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sense, is an abstraction of a real world entity that is of interest for the 

engineering of the ICT system under consideration. Models are defined 

using basic modelling elements and modelling elements' combination 

operators. Models are expressions (mainly textual or graphical) that 

comply with a modelling language (defined using a textual or graphical 

syntax). Examples of known modelling languages in software 

engineering are UML [76], BPMN [77], Statecharts [78] and of course 

all programming languages among others. The development of 

modelling languages is a continuous process that aims at tailoring the 

language to its targeted use. 

The second field of interest, dependability, abstractly characterises 

the trustworthiness of a computing system. Dependability expresses 

informally the confidence that can be placed on services delivered (see 

http://www.dependability.org/). A well known informal conceptual 

framework has been proposed in [79, 80]. Here a taxonomy is proposed 

in which dependability concepts are organised into three categories: 

attributes (availability, reliability, safety, confidentiality, integrity, 

maintainability), threats (faults, errors, failures) and means (fault 

prevention, fault tolerance, fault removal, fault forecasting). 

From an informal perspective means are used at specific points in 

the ICT systems's life cycle from its creation until its retirement in 

order to provide the targeted level for each of the attributes. In the last 

few years a significant amount of research and development has been 

dedicated to proposing languages, methods and tools to engineer 

dependable ICT systems. Using either explicit or implicit means that 

can be defined statically or dynamically in an autonomous or 

heteronomous manner. It is easy to understand and demonstrate that the 

dependability of an ICT system is a first class quality attribute. Even 

though the taxonomy, referred to above, represents a major 

improvement in the conceptual clarification of the concepts related to 

dependability, it is not sufficient for two main reasons. Firstly the 

taxonomy is not precise enough from a scientific point of view and 

secondly it has not been tailored to be used by the model driven 

engineering community. In order to gain precision, a first, simple and 
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commonly agreed upon approach is to provide a mathematical 

definition. To be compatible with the model driven engineering 

paradigm, this definition should be given using meta-modelling 

techniques. 

Resilience in ICT systems, introduced around the seventies [81] has 

been most intensively used within the research community in the very 

few last years. By reviewing the important references we can notice 

that the word resilience, is used with a variety of definitions and at 

different levels [82, 83, 84]. With the same intention described 

previously, it is in the interest of ICT systems engineering community 

to derive a precise definition of resilience that can be also integrated 

into modelling languages. 

With respect to the mathematical definition of concepts that are 

useful to understand dependability and resilience, we could use many 

fields (sets theory, mathematical logic, category theory, mathematical 

statistics and geometry among others) at different abstraction levels. 

Field selection should depend on the targeted exploitation of the 

formalisation. In this article, it is proposed to use algebra (mainly 

elementary algebra and basis of general algebra focusing on set theory 

and functions) since it is one of the mostly used mathematical fields by 

ICT systems engineers and scientists. Its concepts are easily mapped to 

the ones that exist in technological fields like programming languages 

and data bases. In addition, the concepts correspond to the terminology 

used in the natural language of document production throughout the 

ICT systems procurement life cycle (such as requirement document, 

verification and validation plans). Last but not least, the abstraction 

level chosen for the framework proposed in this article makes this 

choice appropriate. The intention is also that the framework should 

allow for being refined such that more detailed definitions of its 

concepts using different mathematical structures may be introduced in a 

consistent way with the framework. This should be considered at the 
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modelling language definition level. As an example, the dependability 

and resilience of a system might be dependent upon the metrics that can 

be defined based on probabilities, statistics, logical systems, model 

checking or test results. Thus these metrics should of course be present 

in the language used to model the dependable or resilient system. 

In order to allow for the exploitation of the framework proposed in 

this article (called DREF for Dependability and Resilience Engineering 

Framework) in the modelling language definition, some integration 

techniques must be provided. To this aim and following the model 

driven engineering (MDE) perspective, a meta-model for the DREF 

framework was proposed to define. Further, the process for engineering 

new domain specific modelling languages (DSL) using a model driven 

engineering approach is presented. In this process, let us define how to 

exploit the DREF meta-model when introducing a new DSL. As 

proposed in this article, this can be done either by extending the 

existing DSL to integrate dependability and resilience support or upon 

creating the new DSLs. 

In the following discussion, the formal conceptual framework for 

dependability and resilience is provided along with some basic 

illustrations. Then an approach for integrating the proposed framework 

into a modelling language definition is proposed and illustrated through 

a simple case study. A critical analysis and perspective section is then 

proposed to help understand the focus of this work. 

Definition of a formal conceptual framework for dependability 

and resilience 

In this section let us introduce all the concepts needed to define 

resilience. The main goal of these sections is to provide a precise 

mathematical set of definitions for all notions necessary to address 

resiliency. 
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Entities, Properties and satisfiability 

The two first basic sets of the proposed conceptual framework 

(named DREF ) are the sets of entities and properties. Entities are 

anything that is of interest to be considered. It might be a program, a 

database, a person, a hardware element, a development process, a 

requirement document, et cetera. Properties are the basic concepts to be 

used to characterise entities. It might be an informal requirement, a 

mathematical property or any entity that aims at being interpreted over 

entities. 

Definition 1. The basic sets of the DREF conceptual framework, 

defined as disjoint subsets of a given universe U are: 

6. PROPERTY )(U  the set of all properties; 

7. ENTITY )(U  the set of all entities. 

Remark 2. 

a)  prop, propa, prop1…propn, (resp. ent, enta, ent1… entn) 

will denote of PROPERTY (resp. of ENTITY); 
b)  Subsets of PROPERTY and ENTITY will be denoted by 

capitalization (e.g. Prop, Ent). Indexed notation might also 

be used. 

The fact that a property is satisfied to some degree by an entity is 

defined as a function as follows: 

Definition 3. Let Prop, Ent be sets of properties and entities; 

Satisfiability, sat, is a function such that: 

𝑠𝑎𝑡: 𝑃𝑟𝑜𝑝 × 𝐸𝑛𝑡 ⟶ ℝ ∪ {⊥} 
Remark 4. 

a) We denote by dom(sat) the subset of 𝑃𝑟𝑜𝑝 × 𝐸𝑛𝑡 for which 

sat is defined; 

b) ),( entpropsat  represents the fact that the satisfiability 

of prop for ent cannot be determined (in addition to the fact 

that sat functions are partial functions). This is to allow one to 

differentiate the case where a satisfiability value is expected 
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but the satisfiability evaluation cannot be determined to the 

case where the satisfiability function is not expected; 

c) We use ℝ as co-domain of the satisfiability functions in order 

to cover all cases that would be necessary. 

Example 5. 

A simple satisfiability function could consider its co-domain 

partitioned using two arbitrary values (e.g. 1 and 0) such that: 

8. 1),( entpropsat  represents the fact that prop is "exactly 

satisfied" by ent (or ent "satisfies exactly" prop). In this 

context, 1 represents the nominal satisfiability; 

9. 0),( entpropsat  represents the fact that prop is "exactly 

unsatisfied" by ent (or ent "unsatisfies exactly" prop). In this 

context, 0 represents a tolerance threshold; 

10. 1),( entpropsat  (resp.   0) represents the fact that prop is 

"oversatisfied" (resp. "under satisfied") by ent (or ent "satisfies 

more (resp. less) than
" 
prop); 

11. in case, 1),( entpropsat  (resp.   0), we can simply say that 

prop is "satisfied" (resp. unsatisfied) by ent (or ent "satisfies’’ 
prop). In this context, 1 (resp. 0) represents an acceptance 

(resp. rejection) threshold; 

12. if ]1,0[),( entpropsat  then we can consider that prop "is 

partly satisfied and partly unsatisfied" by ent. 
For a strict Boolean satisfiability function only two satisfiability 

values would be accessible (e.g. 0 and 1). Thus only two notions would 

be used: satisfied or unsatisfied. 

Let us consider that the notions of under and over satisfiability are 

necessary to represent the frequent informal situation for which an 

entity has more (resp. less) than the required property. The existence of 

an order relation between properties could represent the correlation of 

satisfiability between properties. When this order relation can be 

defined it could be useful that it is strongly sat – compatible as defined 
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below to indicate that a property greater than another must have its 

satisfiability value always greater than the one of the other for all the 

entities considered. 

Definition 6. Let sat be a satisfiability function over Prop and Ent 

and prop  a partial order defined over Prop . prop  is said strongly sat – 

compatible iff the following property holds: 

∀𝑝𝑟𝑜𝑝𝑎 , 𝑝𝑟𝑜𝑝𝑏 ∈ 𝑃𝑟𝑜𝑝 (𝑝𝑟𝑜𝑝𝑎 <𝑝𝑟𝑜𝑝 𝑝𝑟𝑜𝑝𝑏) ⇒ (∀ 𝑒𝑛𝑡 ∈ 𝐸𝑛𝑡 

𝑠𝑎𝑡(𝑝𝑟𝑜𝑝𝑎 , 𝑒𝑛𝑡) < 𝑠𝑎𝑡(𝑝𝑟𝑜𝑝𝑏 , 𝑒𝑛𝑡) 𝑜𝑟 𝑠𝑎𝑡(𝑝𝑟𝑜𝑝𝑎 , 𝑒𝑛𝑡) = 

𝑠𝑎𝑡(𝑝𝑟𝑜𝑝𝑏 , 𝑒𝑛𝑡) = ⊥) 
As stated in the introduction, the formal framework developed is 

intended to cover the current use of these concepts from an informal 

perspective (e.g. natural language words in expression), through the 

modelling expression in semi-formal notations up until mathematically 

based notation. Thus for each context, one should associate, at the right 

level, the concepts of the DREF framework to the existing concepts. 

Example 7. Let us consider the context where mathematical logic is 

used to describe properties. In this case, entities will be logical 

structures (a set of logical structures is denoted LogStruct as a member 

of the power of all possible logical structures (LOGSTRUCT)). 

Properties are logical formulae. Let LSpec denotes a set of logical 

formulae and LStruct a set of logical structures. Let sat be a 

satisfiability function such that: 

𝑠𝑎𝑡: 𝐿𝑆𝑡𝑟𝑢𝑐𝑡 × 𝐿𝑆𝑝𝑒𝑐 → ℝ ∪ {⊥}    s. t. sat(Istruct, p)

=  {
1 𝑖𝑓 𝐼𝑠𝑡𝑟𝑢𝑐𝑡 ⊨   𝑝
0 𝑖𝑓 𝐼𝑠𝑡𝑟𝑢𝑐𝑡 ⊭ 𝑝

⊥ 𝑒𝑙𝑠𝑒4
 

Let us now define an order relation l  over LSpec s.t. 

𝑝 <𝑙 𝑝
′ 𝑖𝑓𝑓 𝑝 ⊨ 𝑝′. Thus we have the following theorem: 

Theorem 8. <𝑙  𝑖𝑠 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑠𝑎𝑡 − 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒. 
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Proof. ∀ 𝐼𝑠𝑡𝑟𝑢𝑐𝑡 ∈ 𝐿𝑆𝑡𝑟𝑢𝑐𝑡 𝑠𝑎𝑡(𝐼𝑠𝑡𝑟𝑢𝑐𝑡, 𝑝) =   1 ⇒ 𝐼𝑠𝑡𝑟𝑢𝑐𝑡 ⊨
𝑝. Furthermore we know that 𝑝 <𝑙  𝑝

′  ⇒ 𝑝 ⊨  𝑝′. So, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡 ⊨  𝑝′ 
and 𝑠𝑜 𝑠𝑎𝑡(𝐼𝑠𝑡𝑟𝑢𝑐𝑡, 𝑝′) = 1. 

The same approach is possible if the properties would be algebraic 

specifications with a loose semantics and entities would be algebraic 

structures with a loose semantics [85]. 

 

Example 9. In this example, we consider an entity that corresponds 

to a first version of a software product line (SPL) platform developed in 

our laboratory [84] (see Table 6.2). This SPL platform (RF for REACT 

Framework) is used to derive Crisis Management Systems (e.g. car 

crash crisis, fire crisis in schools, pollution crisis). There are two 

properties to consider (see Table 6.3). The first states the compliance of 

the platform w.r.t. the service oriented architecture style [87] and the 

second the compliance of the entity RF with the definition of a SPL 

platform according to [88]. The decision depends on three stakeholders 

(lets call them observers as given in Table 6.4. A satisfiability function 

is given for each observer and for the REACT framework entity in 

Table 6.5. Each observer provides its satisfiability function. In this 

example, each property is evaluated using a discrete evaluation scale of 

naturals of [-5, +5] (with acceptance and rejection thresholds both set at 

0). 

Table 6.2. Entities. 
1 RF React Framework 

 

Table 6.3. Properties. 
1 SOA is SOA oriented 

2 SPL is a SPL framework 

 

Table 6.4. Observers. 
1 NG Nicolas Guelfi 

2 BR Benoit Ries 
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3 JL Jerome Leemans 

Subjectivity of satisfaction using observers and balancing 

Satisfaction is not an objective concept as illustrated in example 9. 

To represent subjectivity, let us introduce the concept of "observer". 

Thus the satisfiability functions can be associated to observers. 

Definition 10. The set of all observers is defined as a subset of a 

given universe U and is denoted OBSERVER. 

Table 6.5. Satifiabillity function. 
Satifiabillity function for RF 

Obs. prop.s sat. 

NG SOA 1 

SPL -2 

BR SOA 2 

SPL 1 

JL SOA 4 

SPL ⊥ 

 

Remark 11. Let o be an observer, then 𝑠𝑎𝑡𝑜  denotes a satisfiability 

function for the observer o. 

Now we can define the satisfiability function for a set of observers. 

At this point, no information is available in order to differentiate 

between observers. Of course, useful satisfiability functions need not 

only to allow for balancing observers but also properties. This is done 

later by introducing weights. in the meantime, we use the arithmetic 

average. Nonetheless, it must be reminded that the satisfiability value 

for each observer is free to be fixed. 

Definition 12. Let 𝑂𝑏𝑠 be a set of observers, and 𝑆𝑎𝑡𝑂𝑏𝑠 a 𝑂𝑏𝑠 – 

indexed family of satisfiability functions, then the satisfiability function 

for 𝑂𝑏𝑠 is defined as: 
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𝑠𝑎𝑡𝑂𝑏𝑠: 𝑃𝑟𝑜𝑝 × 𝐸𝑛𝑡 ⟶ ℝ ∪ {⊥}      𝑠. 𝑡. 𝑃𝑟𝑜𝑝 =  ⋃ 𝑃𝑟𝑜𝑝𝑜 𝑎𝑛𝑑 𝐸𝑛𝑡

𝑜∈𝑂𝑏𝑠

= ⋃ 𝐸𝑛𝑡𝑜 

𝑜∈𝑂𝑏𝑠

𝑎𝑛𝑑 𝑠𝑎𝑡𝑂𝑏𝑠(𝑝𝑟𝑜𝑝, 𝑒𝑛𝑡)

=

{
 
 

 
 ⊥ 𝑖𝑓 ∃𝑜 ∈

𝑂𝑏𝑠

𝑠𝑎𝑡𝑜(𝑝𝑟𝑜𝑝, 𝑒𝑛𝑡)
=⊥

∑ 𝑠𝑎𝑡𝑜(𝑝𝑟𝑜𝑝, 𝑒𝑛𝑡)𝑜∈𝑂𝑏𝑠

|𝑂𝑏𝑠|
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Remark 13. We consider that satisfiability of a property 𝑝 or an 

entity 𝑒 can only be defined for a set of observers 𝑖𝑓 <  𝑝, 𝑒 > belongs 

to the domain of each element of 𝑆𝑎𝑡𝑂𝑏𝑠. 
Observers and properties might be balanced to reflect the fact that 

the global satisfiability function might be impacted differently by 

observers or properties. In many situations, the final satisfaction should 

take into account that observers are not always egual to each others and 

that some properties can count more than others. We thus introduce a 

notion of balancing in a generic way to cover, later, observers and 

properties too. As a first approach we consider weights (i.e. balancing 

values) as being positive and non-null values. To avoid considering an 

observer, It should be removed from the list of observers. A negative 

weight for an observer would mean that we should consider the 

opposite of all his judgements! 

Definition 14. Let 𝑆 be a set, then a balancing of 𝑆 is defined as a 

function 𝜔𝑆 such that: 𝜔𝑆: 𝑆 ⟶ ℝ+
∗ . 

Remark 15. We will consider an observer's balancing (e.g. 𝜔𝑂𝑏𝑠) 
and a property's balancing (e.g. 𝜔𝑃𝑟𝑜𝑝).  

Definition 16. Let 𝑠𝑎𝑡 be a satisfiability function over 𝑃𝑟𝑜𝑝 and 

𝐸𝑛𝑡, 𝜔𝑃𝑟𝑜𝑝 a balancing of 𝑃𝑟𝑜𝑝, then the global balanced satisfiability 

of 𝑠𝑎𝑡, is denoted as 𝑔𝑠𝑎𝑡𝜔𝑃𝑟𝑜𝑝 and is such that:  

𝑔𝑠𝑎𝑡𝜔𝑃𝑟𝑜𝑝 =
∑ 𝜔𝑃𝑟𝑜𝑝(𝑝) × 𝑠𝑎𝑡(𝑝, 𝑒)<𝑝,𝑒>∈𝑑𝑜𝑚(𝑠𝑎𝑡)

∑ 𝜔𝑃𝑟𝑜𝑝(𝑝)𝑝∈𝑃𝑟𝑜𝑝
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Definition 17. Let 𝑂𝑏𝑠 be a set of observers, 𝑆𝑎𝑡𝑂𝑏𝑠 an 𝑂𝑏𝑠-
indexed set of satisfiability functions, 𝜔𝑂𝑏𝑠 a balancing of 𝑂𝑏𝑠. A 

balanced satisfiability function for 𝑂𝑏𝑠, 𝑆𝑎𝑡𝑂𝑏𝑠 and 𝜔𝑂𝑏𝑠 is denoted as 

𝑠𝑎𝑡𝜔𝑂𝑏𝑠 and is such that: 

𝑠𝑎𝑡𝜔𝑂𝑏𝑠 : 𝑃𝑟𝑜𝑝 × 𝐸𝑛𝑡 ⟶ ℝ ∪ {⊥} 𝑠. 𝑡. 𝑃𝑟𝑜𝑝 =  ⋃ 𝑃𝑟𝑜𝑝𝑜 𝑎𝑛𝑑 𝐸𝑛𝑡

𝑜∈𝑂𝑏𝑠

= ⋃ 𝐸𝑛𝑡𝑜 𝑎𝑛𝑑 𝑠𝑎𝑡𝜔𝑂𝑏𝑠(𝑝, 𝑒)

𝑜∈𝑂𝑏𝑠

= 

{
 
 

 
 ⊥ 𝑖𝑓 ∃𝑜∈

𝑂𝑏𝑠

𝑠𝑎𝑡0(𝑝, 𝑒)
= ⊥

∑ 𝜔𝑂𝑏𝑠(𝑜) × 𝑠𝑎𝑡𝑜(𝑝, 𝑒)𝑜∈𝑂𝑏𝑠
<𝑝,𝑒>∈𝑑𝑜𝑚(𝑠𝑎𝑡𝑜)

∑ 𝜔𝑂𝑏𝑠(𝑜)𝑜∈𝑂𝑏𝑠
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Since observers can be grouped we must analyze the properties of 

the satisfiability functions. We thus define the notion of coherence.  

Definition 18. Let 𝑆𝑎𝑡𝑂𝑏𝑠 be a Obs-indexed set of satisfiability 

functions. 𝑆𝑎𝑡𝑂𝑏𝑠 is said to be coherent 𝑖𝑓𝑓  

(∀𝑜, 𝑜′ ∈ 𝑂𝑏𝑠)(∀𝑝 ∈ 𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝑌)(∀𝑒 ∈ 𝐸𝑁𝑇𝐼𝑇𝑌)¬(𝑠𝑎𝑡𝑜(𝑝, 𝑒) = 

⊥∧ 𝑠𝑎𝑡𝑜′(𝑝, 𝑒) ≠⊥) ∧ ¬(𝑠𝑎𝑡𝑜(𝑝, 𝑒) < 0 ∧ 𝑠𝑎𝑡𝑜′(𝑝, 𝑒) > 0) 
Definition 19. Let 𝑆𝑎𝑡𝑂𝑏𝑠 be a Obs-indexed set of satisfiability 

functions. 𝑆𝑎𝑡𝑂𝑏𝑠 is said to be homogeneous 𝑖𝑓𝑓 coherent and 

(∀𝑜, 𝑜′ ∈ 𝑂𝑏𝑠)(∀𝑝 ∈ 𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝑌)(∀𝑒 ∈ 𝐸𝑁𝑇𝐼𝑇𝑌)(𝑠𝑎𝑡𝑜(𝑝, 𝑒) 
≤ 0 ∧ 𝑠𝑎𝑡𝑜′(𝑝, 𝑒) ≤ 0) ∨ (𝑠𝑎𝑡𝑜(𝑝, 𝑒) ≥ 0 ∧ 𝑠𝑎𝑡𝑜′(𝑝, 𝑒) ≥ 0) 

Example 20. If we consider the same case described in example 9, 

then we can define weights for observers and properties as given in 

Table 6.6. We can see that the observer NG (considered head of the 

project) has a weight of 3 compared to the weight 1 of JL (a master 

trainee). Concerning properties, all the observers share the same 

property weights which indicate that the software product line 

dimension (SPL) of the framework developed (RF) is twice more 

important that the software service oriented one (SOA). 
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Thus we have the following global balanced satisfiability values for 

RF: 

- for the observer NG it is 𝑔𝑠𝑎𝑡𝑁𝐺 = −1; 

- for the observer BR it is 𝑔𝑠𝑎𝑡𝐵𝑅 = 4/3;  

- for the observer JL it is 𝑔𝑠𝑎𝑡𝐽𝐿 = 4;  

- for the set of observers 𝑂𝑏𝑠 =  {𝑁𝐶, 𝐵𝑅, 𝐽𝐿}, we have a global 

balanced satisfiability of  
3×𝑔𝑠𝑎𝑡𝑁𝐺+2×𝑔𝑠𝑎𝑡𝐵𝑅+1×𝑔𝑠𝑎𝑡𝐽𝐿

3+2+1
=
11

18
≈

0.61. 

Of course, since 𝐽𝐿 is not capable of evaluating the 𝑆𝑃𝐿 property 

over the 𝑅𝐹 entity, the family of functions is not domain-homogeneous. 

Thus the computation of the global satisfiability is biased. If we 

compute the maximum set of domain-homogeneous observers from 

𝑂𝑏𝑠 (i.e. 𝑂𝑏𝑠ℎ = {𝑁𝐺, 𝐵𝑅}), then the global satisfiability of 𝑂𝑏𝑠ℎ is 
−1

15
≈ −0.06 and thus we move from a positive (above the acceptance 

threshold) to a negative value (i.e. below the rejection threshold). This 

result indicates that the scale chosen  has changed from an acceptance 

status to a rejection status. 

It must be noticed that the global satisfiability function is not 

intended to be the only or the primary satisfiability information to be 

used when exploiting the 𝐷𝑅𝐸𝐹 framework. Doing so would imply the 

exclusion of all approaches that would be required to handle specific 

properties or observers since they would be hidden in the global 

weighted average computation. 

Table 6.6. Weights and Satisfiability function. 
Weights and Sat for RF 

Obs. w.o. prop w.p. sat. 

NG 3 SOA 1 1 

SPL 2 -2 

BR 2 SOA 1 2 

SPL 2 1 

JL 1 SOA 1 4 

SPL 2 ⊥ 
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Balancing is an important concept for explicit definition of 

priorities. In all the engineering projects we have been involved in 

(from 10k€ to 3 M€) implicit or explicit prioritization, ordering, or 

balancing of properties were incorporated by partners (i.d. observers), 

themselves implicitly or explicitly weighted. Nevertheless, it is true that 

the current practices have difficulties in explicitly stating those weights. 

This is also the case for explicit modeling of some types of faults, 

especially the ones that are of all the following types: development, 

internal, human made, software level, non malicious, non deliberate, 

incompetence due and persistent. We believe, nevertheless, that 

accurate scientific models should be able to handle them. Further work 

is required in experimenting with methodologies in which the weights 

can be efficiently incorporated. 

Change, Evolution Axis and Correlations 

The terminology used in the fields related to Information and 

Communication Technological (ICT) systems, quite frequently 

incorporates the following keywords: change, evolution, adaptation, 

variation, modification, transformation. If we focus on a program as an 

entity, then a program change could refer to a new version of the 

program seen as a sequence of lines of code, or it might refer to the 

change of some program "status" defined using specific "state 

variables". One can easily see that those two interpretations of program 

change are fundamentally different. 

Considering the notion of change seems logical since we are 

currently considering ICT systems and humans as being entities whose 

existence (i.e. definition) seems to change with time (at least). A first 

simple approximation, then, would be to define change as the 

difference between two definitions of two entities distributed over a 

common evolution axis. As an example, let consider 𝑝1 as a simple 

imperative program sorting a list of integers using the bubble algorithm 

and 𝑝2 using a guick sort algorithm. If we consider 𝑝1 and 𝑝2 as 
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comparable entities then the change from 𝑝1to 𝑝2 should represent the 

difference between the two programs. The way of defining the 

difference is thus fundamental. A simple very informal definition could 

be: "𝑝1 differs from 𝑝2 by the type of sorting algorithm used". A more 

precise definition could be provided by the use of a term rewriting 

function 𝑟𝑒𝑤𝑟𝑖𝑡𝑒 that would rewrite a bubble sort imperative program 

on to a guick sort based imperative program. In this case 𝑝2 =
𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑝1), will be used to define the difference between the two 

programs in terms of all the modifications made to 𝑝1 to reach 𝑝2 

In case of a program status change, a program change would be 

defined as any modification to any of the predefined state variables 

constituting the program status. If the program status of 𝑝1 is defined 

by the status of a local variable containing the list of integers to be 

sorted then 𝑝1 and 𝑝2 could not be considered as eguivalent at any point 

in the evolution axis except at initial and final evolution points. In this 

last case, the difference between the two programs is expressed as a 

difference between two lists of integers. Thus the definition of the 

evolution axis is a mandatory preliminary step to allow an entity's 

comparison. 

Definition 21. An evolution axis is a set of values that are used to 

index a set of entities or a set of properties. 

Remark 22. The intention is to allow for comparison of entities 

relative to an evolution axis. Concerning ICT systems, the commonly 

used axes are the time axis (that can be considered as discrete or 

continuous) related to system's versioning or related to system status. If 

we consider software product lines then one evolution axis can be 

related to variants. 

Example 23. If we consider the REACT framework (entity RF), we 

can have three versions of the framework. One of them has an added 

service discovery mechanism based on a service registry, and the third 

has provided service orchestration of reusable modules corresponding 

to different types of crisis management scenarios belonging to different 

crisis types explicitly provided in the framework. Let us introduce an 
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evolution axis representing the three successive versions of the REACT 

framework. The evolution axis is then the set {𝑣1, 𝑣2, 𝑣3} and it 

concerns the entity RF. We will then have three values on this evolution 

axis: 𝑅𝐹𝑣1, 𝑅𝐹𝑣2, 𝑅𝐹𝑣3. It is important to notice that those values are 

strictly ordered. This is mandatory to consider when addressing 

resilience. 

Example 24. Another more complex illustration can be made in the 

context of the relationships between requirements and implementation. 

A classical situation in a system's life cycle is the fact that the 

correspondence between requirements and realisations is not always 

optimal. Of course the problem is to define what the criteria are to 

evaluate and order these correspondences. A simple approach could be 

to compare the set of user functionalities described in the requirement 

document and the set of functionalities supported by the system. This 

corresponds to a comparison between the requirement document 

obtained at the analysis level and a reverse engineering of the 

requirement from the implemented system. In this case, one can define 

two evolution axes, one for the implemented system and one for the 

reguirements. We thus have the properties' evolution axis 𝑃𝑟𝑜𝑝𝑒𝑣𝑜1 =

{𝑣1, 𝑣2, 𝑣3, 𝑣4}, and the system's implementation evolution axis 

𝐸𝑛𝑡𝑒𝑣𝑜1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}. We have four values for the properties 

𝑃𝑟𝑜𝑝 = {𝑟𝑒𝑞𝑣1, 𝑟𝑒𝑞𝑣2, 𝑟𝑒𝑞𝑣3, 𝑟𝑒𝑞𝑣4} and three values for the system 

entities 𝐸𝑛𝑡 = {𝑠𝑦𝑠𝑣1, 𝑠𝑦𝑠𝑣2, 𝑠𝑦𝑠𝑣3, 𝑠𝑦𝑠𝑣4}. The satisfiability function 

would then evaluate the adequacy of requirements vs implementations. 

This function could be defined as a percentage of the functionalities of 

requirements covered by the system. In this case, we could have the 

satisfiability functions defined in the tables 6.7, 6.8 and 6.9. Depending 

on the evolution processes definition and coordination for the 

requirements and for the implementations, the set of adequacies to be 

evaluated is defined characterising the domain of the satisfiability 

function. 

Table 6.9. Weights and Satisfiability function for sys-v1. 
Weights and Sat for sys-v1 
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Obs. w.o. prop. w.p. sat. 

NG 1 req-v1 1 75 

req-v2 1 60 

 

Table 6.8. Weights and Satisfiability function for sys-v2. 
Weights and Sat for sys-v2 

Obs. w.o. prop. w.p. sat. 

NG 1 req-v2 1 80 

 

Table 6.9. Weights and Satisfiability function for sys-v3. 
Weights and Sat for sys-v1 

Obs. w.o. prop. w.p. sat. 

NG 1 req-v3 1 85 

req-v4 1 90 

 

Nominal Satisfiability and Requirements 

In order to formalize the notion of quality, we must introduce the 

concept of a nominal satisfiability function and the concept of 

requirement. 

Definition 25. A nominal satisfiability function is a satisfiability 

function used to represent the expected satisfiability and to allow 

comparative evaluation w.r.t. to any satisfiability function that is 

provided. 

Definition 26. A requirement for a set of entities, 𝐸𝑛𝑡, is a set of 

properties, 𝑅𝑒𝑞 of 𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝑌, together with a nominal satisfiability 

function, 𝑛𝑠𝑎𝑡, such that 𝑑𝑜𝑚(𝑛𝑠𝑎𝑡)  =<  𝑅𝑒𝑞, 𝐸𝑛𝑡 > 

Remark 27. When not provided, the default nominal satisfiability 

function is such that ∀ < 𝑝, 𝑒 >∈ 𝑑𝑜𝑚(𝑛𝑠𝑎𝑡) 𝑛𝑠𝑎𝑡(𝑝, 𝑒) = 1. 

Definition 28. Let 𝑟𝑞𝑡 =<  𝑅𝑒𝑞, 𝑛𝑠𝑎𝑡 > be a requirement for a set 

of entitles, 𝐸𝑛𝑡, and 𝑠𝑎𝑡 a satisfiability function, 𝑠𝑎𝑡 is said to satisfy 

𝑟𝑞𝑡 𝑖𝑓𝑓  ∀ < 𝑟, 𝑒 > ∈  𝑑𝑜𝑚(𝑠𝑎𝑡)    𝑠𝑎𝑡(𝑟, 𝑒)  ≥  𝑛𝑠𝑎𝑡(𝑟, 𝑒). 
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Example 29. If we consider the REACT framework (entity RF), we 

have three versions of the framework as described in example 23. The 

tables 6.10, 6.11 and 6.12 given below describe the values of the 

satisfiability functions for the three observers and the same properties. 

In this example, we have a nominal satisfiability function 

𝑛𝑠𝑎𝑡(𝑟, 𝑒)  =  1 for all versions of the RF entity and for the two 

properties. The evolution of the global satisfiability function is the 

following: 

gsat('RF – v1') ≈ 0.61 

gsat('RF – v2') ≈ 1.22 

gsat('RF – v3') = 3 

The evolution of the global balanced satisfiability function is the 

following: 

gsatwObs('RF – v1') ≈ – 0.06 (in case of a selection of homogeneous 

observer set) 

gsatwObs('RF – v2') ≈ 1.22 

gsatwObs('RF – v3') ≈ 2.93.  

This means that RF − v1 and RF − v2 satisfy the requirements if we 

do not take into account the balancing (gsat is greater than the nominal 

satisfiability defined at 1) and that only RF − v3 satisfies the 

requirements if we consider balancing (the two others – 0,06 and 0:86 

are lower than 1). 
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Table 6.10. Weights and Satisfiability function for RF-v1. 

 
 Table 6.11. Weights and Satisfiability function for RF-v2. 

 
Figure 6.18 gives a general graphical representation of the 

satisfiability functions (Y axis) for all the observers (colors) over the 

properties (Z axis) and the REACT Framework entity evolutions (X 

axis). For example, we can see the progression of the satisfiability for 

NG for each property and along the evolutions of RF. 
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Table 6.12. Weights and Satisfiability function for RF-v3 

 
 

 
Figure 6.18. RF Evolution Satisfiability Function represented in 3D 
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Tolerance, Preservation, Improvement and Degradation 

In order to address the main concepts of dependability, we propose 

to define four basic concepts in our formal framework: tolerance, 

preservation, improvement and degradation. We consider that there is 

no universal notion of quality but rather that quality is a subjective 

notion relative to a set of properties that represent the expectation on a 

specific entity. 

 Definition 30. 

 A tolerance threshold is defined as a satisfiability function. 

Tolerance threshold functions are used to represent the lower bound 

that defines the tolerance margin for satisfiability functions w.r.t. a 

nominal satisfiability function. 

 Remark 31. 

 Tolerance threshold functions will be denoted as tolsat. 

 The tolerance margin is the space between nsat and tolsat (see 

Figure 6.19). 

 Intolerance is characterised by nsat = tolsat. 

 Definition 32. 

 A preservation is defined as constancy in a satisfiability function 

w.r.t. an evolution axis.  

 Definition 33. 

 An improvement is defined as an increase in a satisfiability function 

w.r.t. an evolution axis. 

 Definition 34. 

 A degradation is defined as a decrease in a satisfiability function 

w.r.t. an evolution axis. 

 Remark 35. 

Preservation (resp.improvement, degradation) might be observed 

relative to a nominal satisfiability and tolerance threshold in order to 
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discriminate between different types of preservation 

(resp.improvement, degradation). As an example, an improvement 

causing a satisfiability function to go from below to above the tolerance 

threshold would be characterised as a failure reducing improvement. 

 
Figure 6.19. Tolerance threshold. 

 Example 36. 

 We consider the REACT framework and the three versions of the 

framework described in example 23 for which the satisfiability function 

is drawn in 2D in Figure 6.20. Considering the nominal satisfiability 

function nsat, we notice that for almost ail pairs of observers 

(NC,BR,JL) and properties (SOA, SPL), we have continuous 

improvement along the entity's evolution axis representing the React 

Framework versions (RFVl, RFV2, RFV2). For < BR,SOA >, we have an 
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improvement from RFVl to RFV2 and a preservation from RFV2 to RFV2 . 

For < JL,SOA >, we have an improvement from RFVl to RFV2 and a 

degradation from RFV2 to RFV2. If we now consider the varying 

nominal satisfiability function, nsat', we observe that there is no 

improvement but preservation for < BR,SOA > (and < NC,SPL >,< 

JL,SOA >) RFVl to RFV2. 

 Tolerance and Failure 

Based on the previous definition of tolerance margin, we now 

address the notions of tolerance and failure. Both concepts are related 

to the satisfaction of a property over an entity given a nominal 

satisfiability and tolerance threshold functions. 

 Definition 37. 

Given sat, a satisfiability function, and tolsat, a tolerance threshold, 

a failure is defined as a tuple < r,ent >ϵ dom(sat) Ո dom(tolsat) such 

that: sat(r, ent)≤tolsat(r, ent). 

 Remark 38. 

1. We will write fail(r, ent) to denote the failure < r, ent > 
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Figure 6.20. RF Evolution Satisfiability Function 2DGraph. 

 

2. The fact that 3 < r, ent > ϵ dom(sat)/sat(r, ent) < nsat(r, ent) is 

considered as a degradation of requirement satisfaction untif sat(r, ent) 

≤ tolsat(r, ent), a situation in which we have a faifure. 

3. An infinite degradation is a tupie < r,ent > that is a faifure for 

which there is no entity ent' onward in the evofution axis of ent such 

that sat(r, ent') > tolsat(r, ent). 

4. If we want to represent degradation modes it is sufficient to 

provide a strictly ordered family of tolerance thresholds that partition 

the tolerance margin into tolerance spaces, that correspond to the 

different degradation modes. 

 Definition 39. 
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 Let sat be a satisfiability function, nsat a nominal satisfiability 

function and tolsat a tolerance threshold. Then a tolerance is defined as 

a tuple < r, ent > such that: 

<r,ent> ϵ dom(sat) ˄ <r,ent> ϵ dom(tolsat)˄<r,ent> ϵ dom(nsat) ˄ sat(r, 

ent) < nsat(r, ent) ˄ sat(r, ent) > tolsat(r, ent). 

 Thus in order to allow the characterisation of fault-tolerance at the 

requirement level, we need to introduce the notion of a requirement 

with fault-tolerance . 

Definition 40. 

 Let < Req,nsat > be a requirement and tolsat a tolerance threshold, 

then a requirement with fault-tolerance Reqrr is defined as a tuple 

<Req, nsat, tolsat >. 

 As an example, let us consider a set of comparable11 entities, 

pt1,…,ptn, as being n number of changes of a program, p, over the time 

evolution axis. Let sat, nsat, tolsat be satisfiability, nominal 

satisfiability and tolerance threshold functions whose values are 

sketched in Figure 6.21. We have two failures between Ptj and Ptj+r 

which are the situations where sat (in black) falls below the tolsat 

tolerance threshold (in red). From Ptj+r till Ptk sas is within the tolerance 

limits characterised by having sas between nomsat (in green ) and 

tolsat. Of course we must precise the context of the sat, nsat, tolsat 

functions which will mainly be dependent on the properties and 

observers and which should be coherent for the three functions in order 

to allow a precise interpretation of the tolerance, failure and 

preservation situations. Positive (resp. negative) variations of sat 

correspond to improvement (or degradation) w.r.t. satisfiability and 

constancy (from Pt0 tp Pt1 and from Pt, onward) corresponds to 

preservation. 
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Figure 6.21. Tolerance threshold 

 

3. Resilience as change for improvement 

 We define the general concept of resilience intuitively as a property 

of an evolution process that is considered to improve capabilities thus 

avoiding failures and reducing degradations. Roughly, it is the 

existence of a change toward improvement that reduces failures and 

tolerance needs. This fact implies that at least one evolution axis exists 

for resilience definition. Another evolution axis might be introduced as 

a refinement. The consideration of additional evolution axes can be 

useful to introduce different evolution types and to study their 

correlation and impact on resiliency. Different types of resilience might 

be introduced that depend on the evaluation of the expected reduction 

of failures and tolerances that are induced by the evolution. The 
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properties used for the evaluation of the satisfiability function define 

observation points. Thus an observation axis could also be introduced 

to classify the observation points used for the evaluation of failures and 

degradations and their change over the chosen evolution axes. The 

explicit concep¬tualisation of evolutions and observations is a 

fundamental task to allow for good dependability and resilience 

evaluation. 

The next definitions are fundamental in our framework. The first 

introduces: tolmax as the maximum possible level of tolerance needed. 

It is defined based on the differences between the expected lowest 

acceptable satisfiability levels (in Figure 6.23 it is the yellow surface); 

stol represents the total quantity of tolerance deduced from the effective 

satisfiability all along the evolution axis (in Figure 6.23 it is the green 

surface); /to/ is the proportion of the two previous quantities. The 

second definition introduces a variation of the required tolerance levels 

between two evolutions (successive or not). The third definition focuses 

on failures and introduces: 1) a failure level that indicates the failure 

grade for a given property and entity evolution (in Figure 6.23 it is the 

distance between the red curve and any point of an entity version curve 

that goes below it); 2) qfail represents the number of times an entity is 

failing (goes below the tolerance threshold) all along its evolution axis; 

and 3) sfail quantifies the level of failure as for stol. The fourth 

definition introduces the variation quantities in terms of number of 

failures ( ∆qfail) and failure level ( ∆fail). 

Definition 41. 

Let entv be an entity, and ev = {1,…,m} be an evolution axis for 

entv. Let sat be a satisfiability function defined over entv and over a set 

of properties Prop, nsat a nominal satisfiability function and tolsat a 
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tolerance threshold defined over entv along the evolution axis. The 

notions of maximum tolerance (𝑡𝑜𝑙𝑚𝑎𝑥𝑣), cumulative tolerance (𝑠𝑡𝑜𝑙𝑣) 

and tolerance level (𝑙𝑡𝑜𝑙𝑣) are defined as follows: 

𝑡𝑜𝑙𝑚𝑎𝑥𝑣 = ∑ (𝑛𝑠𝑎𝑡(𝑝, 𝑒𝑛𝑡𝑣
𝑡) − 𝑡𝑜𝑙𝑠𝑎𝑡(𝑝, 𝑒𝑛𝑡𝑣

𝑡))
𝑡𝜖𝑒𝑣
𝑝𝜖𝑃𝑟𝑜𝑝

 

𝑠𝑡𝑜𝑙𝑣 = ∑ (
−𝑀𝑎𝑥(𝑠𝑎𝑡(𝑝,𝑒𝑛𝑡𝑣

𝑡),(𝑝,𝑒𝑛𝑡𝑣
𝑡))

𝑀𝑎𝑥(𝑠𝑎𝑡(𝑝,𝑒𝑛𝑡𝑣
𝑡),(𝑝,𝑒𝑛𝑡𝑣

𝑡))
)

𝑡𝜖𝑒𝑣
𝑝𝜖𝑃𝑟𝑜𝑝

(0 𝑖𝑓 𝑃𝑟𝑜𝑝 = Ø) 

𝑙𝑡𝑜𝑙𝑣 =
𝑠𝑡𝑜𝑙𝑣

𝑡𝑜𝑙𝑚𝑎𝑥𝑣
 

 

 Definition 42. 

 Let enti and entj be two entities both evolving along an evolution 

axis ev = {1,…,m}. Let sat be a satisfiability function defined over the 

cited entities and over a set of properties Prop, nsat a nominal 

satisfiability function and tolsat a tolerance threshold defined over the 

entities along the two evolution axes. The notion of tolerance variation 

(∆𝑡𝑜𝑙𝑖,𝑗) induced by the evolution from enti to entj is defined as follows: 

∆𝑡𝑜𝑙𝑖,𝑗 = 𝑙𝑡𝑜𝑙
𝑙 − 𝑙𝑡𝑜𝑙𝑙 

Definition 43. 

 Let entv be an entity, let ev = {1,…,m} be an evolution axis for the 

entity entv . Let sat be a satisfiability function defined over entv and 

over a set of properties Prop, nsat a nominal satisfiability function and 

tolsat a tolerance threshold defined over enti along the evolution axis. 

The notions of local failure (𝑓𝑎𝑖𝑙𝑣 ), cumulative failure quantity 

(𝑞𝑓𝑎𝑖𝑙𝑣 ) and cumulative failure level (𝑠𝑓𝑎𝑖𝑙𝑣 ) are defined as follows: 

 

𝑓𝑎𝑖𝑙𝑣: 𝑒𝑣 × 𝑃𝑟𝑜𝑝 → 𝑅/𝑓𝑎𝑖𝑙𝑣(𝑡, 𝑝) = (
−𝑀𝑖𝑛(𝑠𝑎𝑡(𝑝,𝑒𝑛𝑡𝑣

𝑡),(𝑝,𝑒𝑛𝑡𝑣
𝑡))

𝑡𝑜𝑙𝑠𝑎𝑡(𝑝,𝑒𝑛𝑡𝑣
𝑡)
) 
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𝑞𝑓𝑎𝑖𝑙𝑣 = |{< 𝑡, 𝑝 >/𝑓𝑎𝑖𝑙𝑣(𝑡, 𝑝) > 0}| 

𝑠𝑓𝑎𝑖𝑙𝑣 = ∑ 𝑓𝑎𝑖𝑙𝑣(𝑡, 𝑝)
𝑡𝜖𝑒𝑣
𝑝𝜖𝑃𝑟𝑜𝑝

(0 𝑖𝑓 𝑃𝑟𝑜𝑝 = Ø) 

 

Definition 44. 

 Let enti and entj be two entities attached12 to a common evolution 

axis ev = {1,…,m}. Let sat be a satisfiability function defined over the 

cited entities and over a set of properties Prop, nsat a nominal 

satisfiability function and tolsat a tolerance threshold defined over the 

entities along the two evolution axes. The notions of failure level 

variation (faili;j ) and failure quantity variation (qfaili;j ) induced by the 

evolution from enti to entj is defined as follows: 

∆𝑓𝑎𝑖𝑙𝑖,𝑗 = 𝑠𝑓𝑎𝑖𝑙
𝑖 − 𝑠𝑓𝑎𝑖𝑙𝑗 

∆𝑞𝑓𝑎𝑖𝑙𝑖,𝑗 = 𝑞𝑓𝑎𝑖𝑙
𝑖 − 𝑞𝑓𝑎𝑖𝑙𝑗 

 The next definition then, provides a first basic definition of 

resilience as a property over two entities belonging to a common 

evolution axis. 𝑟𝑒𝑠𝑖𝑙𝑇  iff the tolerance level has decreased; 𝑟𝑒𝑠𝑖𝑙𝐹  iff 

the number of failures as decreased; and 𝑟𝑒𝑠𝑖𝑙𝑇𝐹 if both previous 

properties are true. 

Definition 45. 

  Let ent be an entity evolving along the evolution axis ev = {1,...,n} 

(the generative axis). Let sat be a satisfiability function defined over the 

cited entities and over a set of properties Prop, nsat a nominal 

satisfiability function and tolsat a tolerance threshold defined over the 

entities along the evolution axis. Let i,j ϵ ev, the properties of T- 

resilience.F- resilience and TF-resilience (noted 𝑟𝑒𝑠𝑖𝑙𝑖,𝑗
𝑇 , 𝑟𝑒𝑠𝑖𝑙𝑖,𝑗

𝐹 , 

𝑟𝑒𝑠𝑖𝑙𝑖,𝑗
𝑇𝐹) are defined as follows: 
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- 𝑟𝑒𝑠𝑖𝑙𝑖,𝑗
𝑇 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑖𝑓𝑓 ∆𝑡𝑜𝑙𝑖,𝑗 > 0 

- 𝑟𝑒𝑠𝑖𝑙𝑖,𝑗
𝐹 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑖𝑓𝑓 ∆𝑞𝑓𝑎𝑖𝑙𝑖,𝑗 > 0 

- 𝑟𝑒𝑠𝑖𝑙𝑖,𝑗
𝑇𝐹𝑖𝑠 𝑡𝑟𝑢𝑒 𝑖𝑓𝑓 𝑟𝑒𝑠𝑖𝑙𝑖,𝑗

𝑇 > 0 

 The definition of TF-resilience is a strict definition of resilience 

since it requires that both the level of tolerance and the number of 

failures if any are reduced. 

Remark 46. 

 In case we want to address property (resp. properties set) specific 

resilience, we must define the set Prop used to compute the different 

types of resilience. By default, we will consider Prop as the set of 

properties over which sat is defined. 

To illustrate these definitions, let us consider ev1 = versions = {1,…, n} 

be the n evolutions steps of an entity ent over the versioning axis and 

obs = times = {k0,…,km} the m + 1 observation points for ent 

corresponding to a time axis. 𝑒𝑛𝑡𝑖
𝑘 represents the entity at version i and 

time k. In Figure 6.22, we provide the graph of the satisfiability 

functions for enti ; enti+1 and enti+2 for the time observation points from 

k0 to k10. We consider only one property, a constant tolsat function of 0 

and a constant nsat function of 1. If we compute fail and tol for the 

three evolutions enti; enti+1 and enti+2, we obtain the figures given in 

Table 6.13 and in Table 6.14. We notice that the tolerance level ltol 

decreases from 0.86 to 0.23, which corresponds to a tol of 0.63. From a 

graphical point of view, we observe that through the two evolution 

steps, the total level of tolerance is constantly reduced (this is 

represented approximately by the surface reduction (i.e. from the 

surface in between satenti and nsat; and the surface in between satenti+1 

and nsat). Thus we can easily prove that there is a resilient process over 

ev1 in between i and i+2 (L.e. 𝑟𝑒𝑠𝑖𝑙𝑖,𝑖+1
𝑇𝐹  ˄ 𝑟𝑒𝑠𝑖𝑙𝑖+1,𝑖+2

𝑇𝐹  is true). 
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Table 6.13. Values for tolmax, tol, ltol. 

 
 

Table 6.14. Values for ∆tol and ∆fail. 

 

 
Figure 6.22. Simple Satisfiability correlation arbitrary axis / versioning 

axis 
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In the general case, nsat and tolsat may vary and satenti+1 is not a 

constant improvement over the two evolution axes w.r.t. satenti. Figure 

6.23 demonstrates such a case. From a surface point of view, we are 

interested in observing the tolerance surface (in between tolsat and 

nsat), which is between the satisfiability gap through the evolution axis 

(i.e. the surface in between satenti and satenti+1).  

We can draw the following conclusions concerning Figure 6.23: 

-  (+) represents the tolerance that is removed by evolving from 

enti to enti+1. enti+1 is thus considered as an improvement w.r.t. 

enti for the associated evolution steps over time. 

-  (-) is the tolerance that is added by evolving from enti to enti+1. It 

is a result of the fact that enti+1 represents a degradation w.r.t. enti 

for the corresponding evolutions over time axis. 

-  (i) corresponds to failures not suppressed by the evolution. 

-  (ii) is a situation where the evolution has made a satisfactory 

entity evolve into a failing entity. 

-  (1) and (2) represent no improvement w.r.t. tolerance or to 

failure has been accomplished by the evolution. Both entity 

evolutions are over or below the tolerance margin. 

If we compute ∆fail and ∆tol for the two entities for all the 

evolutions from k0 to k10, we notice that the tolerance level ltol 

decreases from 0.43 to 0.12 corresponding to ∆tol of 0.21. The total 

level of tolerance is reduced by a factor 3.5. Thus we can deduce that as 

soon as ∆tol is greater (resp. lower) than 0 we have an improvement 

(degradation) of tolerance needs due to the evolution. The number of 

failures, is constant at 3. Thus according to our definition there is no 

resiliency because we did not reduce the number of failures. Resilience 

can now be analysed by observing its values over the chosen evolution 

axis. The current notion of resilience is given in definition 45. It 

considers global tolerance and the total number of failures. We are free 
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to define specific notions of resilience depending on a number of 

interesting parameters. A non-restrictive list could be: 

- minimum, maximum delays in term of evolution steps needed to 

change ∆tol and ∆qfail. 

- use of ∆qfail instead of ∆fail. 

- mandatory or optional removal of failures. 

-  focus on specific properties that might be different between 

evolution steps instead of fusing all properties to evaluate the 

degradation and the improvement. 

-  focus on specific evolution intervals at the dynamic evolution 

axis level in order to reduce the constraints on resiliency. 

-  provide constraints on the durability of improvement. The 

resilience from enti, to ent j could be reguired to last over the 

next generations (no decadence). 

-  
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Figure 6.23 Advanced Satisfiability correlation arbitrary axis 

/versioning axis 

Model Driven Engineering using the DREF framework 

 

The objective is to allow the use of the DREF framework at the 

modelling level no matter what the modelling language is used. The 

motivation for this objective is clearly to allow modelling notation 

(DSL- Domain Specific modelling Language) providers to benefit from 

the DREF framework in order to include precisely defined concepts 

that address dependability and resilience. This will allow users of the 

modelling notation to explicitly and precisely address dependability 

concepts. 

For this objective we propose an approach composed of the 

following steps: 
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-  Define the meta-model of the targeted DSL using standard meta-

modelling tools i.e. ecore equivalent diagrams [89]. The model 

should include meta concepts derived from the DREF meta-

model. 

-  Define properties, entities and observers at the domain level. 

-  Define the evolution axis. 

-  Define the satisfiability functions including the nominal and the 

tolerance threshold. 

We begin this section by presenting the DREF meta-model. 

Subsequently, each of these phases is illustrated using a concrete 

example of a toy DSL in the domain of business process modelling. 

The DREF meta-model 

In this section, let us provide a proposal for introducing DREF 

formal framework elements using meta-modelling techniques. The idea 

is to propose adequate meta-modelling elements to exploit the 

definition of a domain specific language that would be targeted by 

potential future users of DREF. In Figure 6.24 provide the model 

structure of the DREF meta-model is provided. The idea is that at the 

modelling level a DREF model to be composed of 3+1 categories of 

models is requested. The first three ones (modes view) are dedicated to 

the nominal view, the tolerance view, the fail view. The fourth provides 

the satisfiability view. First, it must be noticed that the modes view 

could allow one to provide several models per category. This should be 

defined in the specific meta-model structure. The models provided will 

propose a specific level of the separation of focus of these views. This 

means that for a specific DSL the modelling elements for each of these 

views might be strongly separated while in some other approaches they 

might be fused. It will be up to the meta-model designer to define the 

level of separation of concerns that is required. 
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In the following example, one can observe an approach for defining 

the level of separation of perspectives concerning a DREF extension of 

some BPMN like meta-model. The example provides a clear separation 

of modelling elements dedicated to nominal satisfiability, tolerance 

margin and failures (Figure 18). In any case, at the semantic level, these 

views must be implemented for having a means to determine if the 

satisfiability function should be: 

-  greater than or equal to the nominal satisfiability (Nominal 

mode); 

-  within the tolerance margin (Tolerance mode); 

-  or lower than the tolerance threshold (Fail mode). 

Figure 8 represents a proposal for a meta-model fragment. First the 

meta-model here is incomplete. Second, the approach chosen to define 

the meta-model elements associated with the concepts defined in the 

formal definition of the DREF framework is very simple so as to be 

evidently clear. Concerning the incompleteness, many properties are 

not expressed and will need to be added. These properties should 

constrain any model satisfying this meta-model and should be 

compliant with the properties expressed in the formal definition. As an 

example, the meta-model requires the following properties: unique 

index values associated with an evolution axis; all tuples of a 

satisfiability function concerning the same evolution axis; and 

satisfiability of a property over an entity can only be defined if all 

observers have this entity and property in their definition domain. For 

this later property, we would have to parse all the tuples of the 

Dref_Satisfiability_tuple and verify that for all entity and property 

couples considered there exists a tuple for all the observers). 

Furthermore, if we want to impose domain-homogeneous satisfiability 

functions (cf. see definition 12 and example 20) we should constrain 

that there is no property for which there is at least one observer capable 
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of evaluating its satisfiability (satisfiability value set to a real number 

value) and at least one observer incapable of evaluating the 

satisfiability (satisfiability value set to the undetermined value ⊥).  

 
Figure 6.24. DREF Meta-model - Models view 

 

The satisfiability view is a model of the satisfiability function. In 

Figure 6.25 an initial proposal for this concept of the DREF framework 

at meta-model level is given. Any Sat_model defines a satisfiability 

function. The meta-model elements given in Figure 6.25 are those that 

allow for modelling satisfiability functions in extension. This means 

that a compliant model would contain at least three Dref_Satisfiability 

functions: one for the nominal satisfiability, one for the tolerance 

threshold and at least one for the effective satisfiability for each 

evolution axis. Each Dref_Satisfiability function is defined by a set of 
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tuples roughly of the form: <evolution axis name and index, Entity, 

Observer, Observer Weight, Property, Property eight, a real value or the 

undetermined value>. 

 Of course, depending on the means available for defining such a 

function, it will be possible to add another model view in which the 

satisfiability function could be defined (statically or dynamically) 

differently. As an example, the function could be defined depending on 

an axiomatisation, the quantitative results of the evaluation of a test set 

(as it is done in validation testing), or as the quantitative results of the 

evaluation of a set of theorems (as done in model checking). In any 

case, the result will always be a satisfiability function that should 

comply with the meta-model proposed (i.e. the extensional or 

intentional views of these functions should be coherent). 
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Figure 6.25. DREF Meta-model - Satisfiability view 

Applying the DREF framework 

In this section, a small experimental validation of the approach 

provided in this article, by engineering a small domain specific 

language, for modelling Resilient Business Processes is presented. 

Illustration in the context of Business Process Modelling 

In this section illustrates the approach in the context of a very 

simple version of a domain specific modelling language dedicated to 

the modelling of business processes. This DSL is built according to the 

BPMN (Business Process Modelling Notation) Standard [77]. 

The BPMN and DREF-BPMN Meta-models 
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In this illustration, let us choose to extend a BPMN like DSL with 

the concepts of the DREF framework. In order to proceed, we first have 

to define the meta-model of the BPMN-like DSL (provided in Figure 

6.27). It indicates that a specification can contain three types of models: 

a BPMN model (example of an instance given in Figure 6.28), a 

constraint model (instance given in Figure 6.31) and two models 

subtypes of class diagram: concept model (instance given in Figure 

6.29) and interface model (instance given in Figure 6.30). Furthermore, 

a BPMN model is a simplified standard BPMN [77] (i.e. pools, lanes, 

activities or tasks). The simple particularity is that we attach pre/post 

expressions using the Object Constraint Language (OCL) to tasks, thus 

providing an axiomatic specification of tasks (see Figure 6.31). 
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Figure 6.26. Simplified BPMN Meta-model 

 

Let us define an extended BPMN meta-model demonstrating its 

integration with the DREF meta-model. Figure 10 illustrates such an 

extended meta-model. In the context of this simple example, we have 

defined a DREF model for which the nominal, tolerance and failure 

models are defined as BPMN models. Of course, the constraints 

provided for each of theses three models will define what is allowed to 

be included in these models14. It is important to note that the extension 

proposed concerns only the structural part which is related to the 
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models view of the DREF meta-model (see Figure 6.24). Concerning 

the satisfiability functions, the example given in this section does not 

provide the associated meta-models. The idea is nevertheless the same 

i.e. for each property and entity (in this example, business process 

instances) a satisfiability value is provided (see the graphical 

representation in Figure 16). 
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Figure 6.27. DREF-BPMN Meta-model 
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The Nominal Mode 

Let us consider a simple Human Resources (HR) Department. The 

HR department has one business process which manages short term 

contracts (STC) for specific missions. Let us have the following 

informal requirements description: HR department has as a goal to 

process the STC recruitments for the different services of the company. 

Each time a service has a position to fill, he provides the position 

description to the HR such that HR can start the process. HR publishes 

the position using external diffusion (such as journals, web, national 

recruitment services). Applications are received until the position is 

closed i.e. when at least 2 applicants applied. All applicants are 

interviewed and then the HR selects the best candidate. The contract is 

signed with the selected candidate. Finally, company service and 

unselected applicants are notified. 

According to the meta-model, this BPMN model for the nominal 

mode is made of a process model (cf. Figure 6.28), a concept model (cf. 

Figure 6.29 and 6.30) and a constraint model (cf. Figure 6.31). In 

Figure 6.28, the BPMN model of this STC contract BP of the HR 

department is we provided. This BP model should be considered as the 

process that the HR must apply in case of STC management. 
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Figure 6.28. HR Short Term Contract BP - Nominal mode - process 

model 
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According to the meta-model (Figure 10), the activities are related 

to data which are modelled in the concept model (Figure 6.29). This 

data model more precisely describes the concepts, which are mentioned 

in the informal requirements (of course this should be performed in an 

iterative process involving all the concerned stakeholders). 

In order to specify more precisely the activities of the BP let us 

provide for each of its activities (listed in the interface view of Figure 

6.30) a pre/post axiomatic specification using OCL [90]. An example of 

such a specification is provided in Figure 6.31. In this specification, the 

pre-condition of the meetApplicant activity indicates that the HR 

department has not previously interviewed the candidate (if this is not 

the case, the outcome of this activity is not known and the fault will not 

be attributed to the HR). The post-condition, indicates that the HR 

registers the fact that this applicant has been interviewed. 
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Figure 6.29. HR Short Term Contract BP - Nominal mode - Concept 

model 
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Figure 6.30. HR Short Term Contract BP - Nominal mode - Process 

Activities and Messages 

 

Pre- and post-conditions are part of the constraints' model as well as 

the conditions used in the BP model for gateways. In the same model, 

the positionClosed logical property is specified as a Boolean operation 

that is true iff the total number of applicants met is more than one. 

Entities, Observers, Properties and Balancing 

Having defined the nominal view of the business process let us now 

define Entities, Observers, Properties and Balancing in the following 

way: 
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Figure 6.31. HR Short Term Contract BP - Nominal mode - constraints 

model extract 

 

- Entities: let us propose to consider real business processes 

executions as entitles . A real business process Is given In terms 

of a description of what has been executed by the HR 

department. In order to continue In a consistent way with the 

model driven engineering approach, a real business process will 

be given as a model. In the case of seguentlal semantics where 

the participants In the BP are not distinguishable, they should 

correspond to a set of directed graphs representing the seguence 

of activities and messages labelling links between nodes 

representing the BP state . To simplify, we will just model them 

as a an ordered set of events being activity or message 

Identifiers. As an example, we consider the four BP instances 

modelled as oriented graphs in Figure 6.32. 

- Observers: Each of these BP instances are observed by only one 

observer who is the Quality Control Officer (QCO) of the 

company. 

- Properties: The QCO is interested in observing the entities using 

the model that has been given to the HR department. In this very 
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simple case, we consider that the property is provided by the BP 

Process Models' view (the conjunction of the models provided in 

Figures 6.28-6.31). 

- Balancing: In this very simple illustration we have one observer 

and one property. We thus have a default balancing such that the 

weight of the observer and the property are egual to 1. 

Evolution and Observation axis 

Let us define two axes for the purpose of illustrating the DREF 

framework in model driven engineering and development processes: 

- An evolution axis (ev) has two indexes (1 and 2) representing 

one evolution step of the HR service. While in the first one the 

HR employee activities would be evaluated according to a non 

fault-tolerant business process (modelled in Figure 6.43). The 

second version of the HR department introduces a tolerance 

margin (described in Figure 6.34). 

- An observation axis (obs) with four indexes (1 to 4) to denotes 

the 4 observation points is shown in Figure 6.32. They represent 

four completed recruitment processes executed by the actual HR 

Service. 

-  



 

152 

 

 

 

 

 
Figure 6.32. Actual BP instances observed at HR Department 

 

The Satisfiability view 

Once the entitles distributed along the given evolution axes, 

properties and observers (with or without balancing) are defined, we 

have to provide the satisfiability view as a model Instance of the meta-

model. In the case of the toy example, we have one observer (HRD as 

the director of the HR service), one property as the business process 

model given In Figure 6.28 and eight entitles (𝑏𝑝𝑖0
1, … , 𝑏𝑝𝑖3

2). 
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Satisfiability view Is then given as a set of tuples defining the 

satisfiability functions. In the context of the case study, we represent 

them by the two plots given in Figure 6.33. 

In the Illustrations, the values of the satisfiability functions are 

determined using the nominal and tolerance modes provided In the 

corresponding models given in Figure 6.34. The satisfiability function 

Is such that: 

𝑠𝑎𝑡(𝑏𝑝𝑖𝑖
𝑗
) = 1 𝑖𝑓𝑓 𝑏𝑝𝑖𝑖

𝑗
 belongs to the business process Instances 

that are "Instances" of the Nominal model (i.e. compiles with the 

Nominal mode definition). 

𝑠𝑎𝑡(𝑏𝑝𝑖𝑖
𝑗
) = 0.5 𝑖𝑓𝑓 𝑏𝑝𝑖𝑖

𝑗
 belongs to the business process instances 

that are ”instances” of the Tolerance model (i.e. it complies with the 

Tolerance mode definition). 

𝑠𝑎𝑡(𝑏𝑝𝑖𝑖
𝑗
) = 0 𝑖𝑓𝑓 𝑏𝑝𝑖𝑖

𝑗
 is any other business process instance. 

-  
-  
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Figure 6.33. Satisfiability for HR version 1 & 2 
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In Figure 6.5 the Failure view(s), which is used here only to model 

a subset of the business process instances for which the satisfiability 

function returns a failure (below the tolerance margin), is included. 

Depending on the DREF extension targeted, either this view could be 

considered as fully characterising the failures or only a subset. In the 

first case, any business process instance not in the nominal, tolerance, 

or failure sets should either not be in the definition domain of sat or the 

sat value should be ⊥. In the second case, the view should be used to 

document a subset of failing business process instances. 
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Figure 6.34. HR Short Term Contract BP - process model with 

tolerance modelling 

 

In the case of failure modes, the view could be used to partition the 

failure margin in failure modes (the red variants). This can be 

generalised to the tolerance view, which would provide a means to 

model the degradation modes. 
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Tolerance, failure and Resilience 

Given the satisfiability functions, we can now analyse the basic 

dependability elements, which are failure and tolerance, and the T 

−Resilience;F −Resilience; TF −Resilience over the evolution axes. In 

our case study, we have ∆𝑞 𝐹𝑎𝑖𝑙1,2 = 3 − 1 = 2 𝑎𝑛𝑑 ∆𝑡𝑜𝑙1,2 = 13 −
12 = 1. Thus we can say that there is T-Resilience and F-Resilience 

(and so TF-resilience) in the evolution process from 𝐻𝑅1 to 𝐻𝑅2. 

Other Approaches for DREF Satisfiability functions 

In the context of safety critical system development, let us addres 

the problem of defining a development process that would improve the 

dependability of engineered software along the versioning evolution 

axis. The context for this problem was the development of embedded 

safety critical software for a car's airbag opening system. The approach 

was based on a validation using testing [91]. Thus each software 

version was validated based on the results of a set of test cases. A 

constraint was to ensure non-regression in the versioning. The meta-

models for the nominal view were provided in terms of protocol state 

machine and class diagrams with OCL constraints. After a thorough 

analysis of the application domain, it has been concluded that the 

validation would be dependent on 5+2 views (cf. Figure 6.36). Each of 

these views would then select a set of test cases to be used to define the 

satisfiability value of the software version. Even if it would be 

appropriate, the first approach used did not define a balancing, neither 

between the views nor between the test cases. 
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Figure 6.35. HR Short Term Contract BP - process model with 

tolerance and Failure modelling 

 

 
Figure 6.36. Views 

Using test results as a mean to compute the satisfiability is a very 

valuable and pragmatic approach for DREF. From a similar 

perspective, model checking techniques could also be considered. 
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Practical use of the DREF framework is currently limited to the field of 

DSL development (as illustrated by the case study). Currently 

additional experiments to better assess the framework are conducted. 

One experiment in the field of operational resilience [92] uses entities 

as algebraic Petri net models [93], properties as invariants regarding 

places in the APN, and satisfiability as logical functions computed 

using the model checker AlPiNA [94]. A second experiment was 

performed in the context of architecture description languages [95]. The 

aim was to improve the AADL modeling language with the DREF 

concepts, thus engineering an architecture description language for 

resilient architectures. Those experiments provide a practical 

assessment of the usefulness of the approach presented in this article for 

the specific aims targeted. 

Conclusion 

In this section, an initial version of a formal framework DREF that 

precisely defines the fundamentals concepts used to define 

dependability and resilience of ICT systems is introduced. This 

framework has been defined using set theory at a chosen abstraction 

level in order to cover the current advances in the terminology of 

dependable and resilient systems engineering. The proposed framework 

has been designed to be useful for ICT system model driven 

engineering. To this extent, a meta-model has been proposed for the 

framework and a validation of the approach using the DREF framework 

for modelling language engineering has been provided. 

 

Advancement questions 

1. What is the KAOS? 

2. What does KAOS specification language provide? 

3. What we should do to formally express these security goals? 

4. What we need to do for applying the generic security model to 

a system? 
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5. What is the difference between the OR and AND-refinement? 

6. What is the FADSE framework? 

7. What are the main limitations of the semi-formal approaches to 

security engineering? 

8. What is the difference between the dependability and 

resilience? 

9. What is the model driven engineering? 

10. What is main purpose of the DREF? 
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Introduction 

Systematical engineering security into software applications is an 

important and difficult problem [1, 2, 3, 4] The importance of the 

problem can be seen from the number of security incidents reported to 

the Computer Emergency Readiness Team Coordination Center 

(CERT/CC) and their associated costs.The CERT/CC data from 2003 

reports 137,529 incidents; the cost of electronic crimes is reported at 

666 million dollars [5]. Most of these incidents, which can involve from 

one to thousands of sites, result from software vulnerabilities. The 

CERT/CC data indicate the number of these incidents continues to rise. 

The difficulty of the problem stems from its breadth, as it covers many 

areas such as authentication, auditing, authorization, confidentiality, 

integrity, and non-repudiation (security standard ISO 7498-2) [6], 

where authentication verifies the claimed identity of a user or provider, 

auditing ensures that user activity is properly recorded and reviewed, 

authorization moderates information use and provision, confidentiality 

means information is provided only for proper use as appropriate to the 

sensitivity of the information, integrity makes certain that information 

is used in ways that allow only necessary changes, and non-repudiation 

ensures the identity of a user is irrefutably verified and recorded as 

protection against their later denying participation. Each of these can be 

further categorized. For example, authentication may include peer 

entity authentication and data origin authentication; confidentiality may 

include connection confidentiality, connectionless confidentiality, 

selective field confidentiality, and traffic flow confidentiality, etc., as 

presented in Figure 7.1. 
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Figure 7.1. Elements of security 

Security needs to be considered during each phase of the software 

development life-cycle, including requirements specification and 

analysis, architecture design, detailed design, implementation, testing, 

and deployment. The software architecture of a system is the structure 

of the system which comprises software elements, these elements' 

externally visible properties, where externally visible properties refer to 

their provided services, performance characteristics, fault handling, 

shared resource usage, and so on, and the relationships among those 

elements [7]. Software architecture focuses on designing and specifying 

the overall system's gross organization and global control structure; 

protocols for communication, synchronization, and data access; 

assignment of functionality to design elements; physical distribution; 

composition of design elements; scaling and performance; and selection 

among design alternatives etc. 

As the first design phase, it is widely recognized that decisions 

made at the architecture design stage have a strong impact on the 

quality of the final product [8]. Hence, to provide a positive impact, 

architecture designs, which reflect architectural decisions, should be 

analyzed so that design flaws can be detected and removed. 

Discovering and fixing defects at the architecture design stage is more 
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cost- and time-effective compared to performing such work after the 

system is implemented, as fixing defects at the implementation stage 

would necessarily cause the revision and reconstruction of numerous 

design, implementation, and testing artifacts. Therefore, the 

architectural design and analysis of security properties is a very 

important step in the software development lifecycle. The architectural 

design of security properties enables the realization of a system's 

security non-functional requirements; the analysis of security properties 

provides architects with objective results to evaluate design 

alternatives. 

Recently, numerous approaches have been proposed to support the 

modelling and analysis of security properties in software architecture 

designs. Here a survey in which the approaches are classified into four 

broad categories: semi-formal (i.e., mainly using semi-formal methods 

in the approach), formal (i.e., mainly using formal methods in the 

approach), integrated semi-formal and formal (i.e., using a combination 

of semi-formal and formal methods), and aspect-oriented (i.e., security 

non-functional properties are modelled as aspects) approaches are 

presented. 

7.1 Semi-formal Security Modelling and Analysis Approaches 

Unified Modelling Language(UML)[9], a well-known notation, is a 

language for specifying, visualizing, constructing, and documenting 

designs of software systems. UML provides graphical notations to 

express the design of software systems with semi-formal syntax and 

semantics, and an associated language, the Object Constraint Language 

(OCL), for expressing logic constraints. UML contains two basic 

diagram types: structure diagrams and behavior diagrams. Structure 

diagrams depict the static structure of the elements in the system, 

including class, composite structure, component, deployment, object, 

and package diagrams. Behavior diagrams depict the dynamic behavior 

of the elements in the system, including activity, statechart, use case, 

communication, interaction overview, sequence, and timing diagrams. 
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UML semantics are defined using a meta-model that is described in a 

semi-formal manner using three views: the abstract syntax, well-

formedness rules, and modelling element semantics. The abstract 

syntax is provided as a model described in a subset of UML, consisting 

of a UML class diagram and a supporting natural language description. 

The well- formedness rules are provided using the OCL and natural 

language (i.e., English). The UML meta-model is defined as one of the 

layers of a four-layer meta-modelling architecture, which includes 

meta-metamodel, meta-model, model, and user objects. This section 

presents several approaches, which use UML to model and analyze 

security non-functional properties. 

7.2 MAC-UML Framework 

The MAC-UML Framework [10] addresses the issue of 

incorporating Mandatory Access Control (MAC) into UML design 

artifacts, including use case, class, and sequence diagrams. The 

approach focuses on providing support for the definition of clearances 

and classifications for relevant UML elements. 

In this section the concept of security assurance rules for a UML 

design is presented. The basis of such security assurance rules is that 

UML use case diagrams, class diagrams, and sequence diagrams are 

abstracted into a set of UML elements. For example, there is a UML 

use case set UC = {uc1, uc2 ...}, UML actor set AC = |ac1, ac2 ...}, UML 

class set C = {c1,c2 ...}, and UML method set M = {m1,m2 ...}. Each 

UML element is assigned a clearance (CLR) or classification (CLS) 

from the partially ordered set ^ = {± = o1,a2 ...,<rs} where the order 

relation a* < oj(i < j) means the security level oj has a higher security 

concern than that of a*. Notations ac.CLR, uc.CLS, c.CLSmin, 

c.CLSmax and m.CLS represent the CLR of actor ac, the CLS of use 

case uc, the min and max CLS of class c, and the CLS of method m, 

respectively. Then, three tiers of MAC security assurance rules are 

defined to assess the question of how to attain security in a design. Tier 

1 security assurance rules represent the creation of use case diagrams 

with actors, use cases, actor-use case associations, actor and use case 
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inheritance, and use case inclusion and extension relationships. For 

example, one of these security assurance rules can be interpreted as: 

For every actor acm that is associated with the use case uc* (as a 

behavior of the application), the CLR of the actor acm must dominate 

the CLS of the use case uc*. Formally, it can be represented as: V actor 

acm and use case u c a c m is securely (MAC) associated with uc* ^ 

acmCLR > ucy.CLS. 

Correspondingly, security assurance rules for actor inheritance, use 

case inheritance, use case inclusion, and use case extension have also 

been defined. Tier 2 security assurance rules emphasis on defining the 

classes that are utilized by each use case: for a class c (intended) to be 

used in a sequence diagram to serve the goal (i.e., realize the 

functionality) of use case uc, the CLS of the uc must dominate the 

minimum CLS of c. Tier 3 security assurance rules are a refinement of 

Tier 2 security assurance rules to support method calls between the 

different entities (use case and objects) in a sequence diagram. Finally, 

algorithms are defined for assessing whether a UML design as a whole 

satisfies the security assurance rules by conducting a comprehensive 

analysis of the entire design. 

The security problem addressed in the approach is mandatory 

access control (refer to Figure 7.1). The example system used is a 

Survey Institution which performs and manages public surveys. In the 

system, after the raw data of the survey is collected, staff with different 

privileges will manipulate the database, where senior person can add a 

survey header into the database, and another staff person (senior or 

junior staff) will add questions into that survey, and also have the 

ability to categorize questions and add a new question category if 

needed. However, there are some special questions that have more 

sensitive content, which only senior staff are allowed to perform data 

entry. The strength of the approach is that it bridges the gap between 

software engineering and an organization's security personnel. With the 

enforcement and assessment of three tiers of security assurance rules, 

the MAC capability can be incorporated into a UML design, where 

access violations through inheritance, inclusion, and extension can be 
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detected. The approach can be applied to systems where MAC is one of 

the priority concerns. Such systems can be a distributed system, or an 

information system. The limitation of the approach is: since security 

assurance rules in the approach are only explored on a subset of UML 

diagrams (i.e., use case, class, and sequence diagram), the approach is 

only applicable to a system design that uses these three kinds of 

diagrams. In addition, security analysis of the approach is based on the 

semi-formal UML, where the relationship inheritance, inclusion, and 

extension are not formally defined. To obtain more rigorous analysis 

results, a formal specification of the system design is desired. 

7.3 SecureUML 

SecureUML [11] is a modelling language that defines a vocabulary 

for annotating UML based models with information relevant to access 

control. It is based on the role-based access control model (RBAC), 

with additional support for specifying authorization constraints. 

SecureUML defines a vocabulary for expressing different aspects of 

access control, like roles, role permissions, and user-role assignments. 

Due to its general access-control model and extensibility, SecureUML 

is well suited for business analysis as well as design models for 

different technologies. The structure of the modelling language 

conforms to the reference model for model driven systems. Model-

driven software development is an approach where software systems 

are defined using models and constructed, at least in part, automatically 

from these models. A system can be modelled at different levels of 

abstraction or from different perspectives. The syntax of every model is 

defined by a meta-model. 

The SecureUML meta-model is defined as an extension of the 

UML meta-model. The concepts of RBAC are represented directly as 

meta-model types, including User, Role and Permission as well as 

relations between these types. Instead of defining a dedicated meta-

model type to represent protected sources, every UML model element 

is allowed to take the role of a protected resource. Additionally, the 
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type ResourceSet is introduced, which represents a user defined set of 

model elements. A Permission is a relation object connecting a role to a 

ModelEle- ment or a ResourceSet. The semantics of a Permission are 

defined by the ActionType elements used to classify the Permission. 

Every ActionType represents a class of security relevant operations on 

a particular type of protected resource, for example, a method with the 

security relevant action executes, or an attribute with the action 

changes. ActionTypes give the developer a vocabulary to express 

permissions at a level close to the domain vocabulary. The set of 

ActionTypes available in the language can be freely defined using 

ResourceType elements. A ResourceType defines all action types 

available for a particular metamodel type. The connection to the meta-

model type is represented by the attribute BaseClass, which holds the 

name of a type or a stereotype. The set of resource types and their 

action types, and the definition of their semantics on a particular 

platform, define the resource type model for the platform. An 

AuthorizationConstraint is a part of the access control policy of an 

application. It expresses a precondition imposed on every call to an 

operation of a particular resource, which usually depends on the 

dynamic state of the resource, the current call, or the environment. 

AuthorizationConstraint is derived from the UML core type Constraint. 

Such a constraint is attached either directly or indirectly, via a 

Permission, to a particular model element representing a protected 

resource. 

The security problem addressed in the approach is role- based 

access control (refer to Figure 7.1). Enterprise JavaBeans (EJB) has 

been used in the approach. EJB is used in the industry for developing 

distributed systems. It is an industry standard with strong security 

support, which is implemented by a large number of application 

servers. The access control model of EJB is RBAC, where the protected 

resources are the methods accessible by the interfaces of an EJB. An 

access control policy is mainly realized by using declarative access 

control. This means that the access control policy is configured in the 

deployment descriptors of an EJB component. The security subsystem 
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of the EJB environment is responsible for enforcing this policy on 

behalf of the components. The strength of the approach is that it 

developed a modelling language to build on the access control model of 

RBAC, with additional support for specifying authorization constraints 

in the context of a model-driven software development process to 

generate access control infrastructures. The approach helps to realize 

the RBAC capabilities in UML. The approach is suitable for distributed 

systems that incorporate RBAC model, such as an online banking 

system. However, the limitation of the approach is: currently, the 

approach only focuses on UML static design models, which are 

relatively close to the implementation. 

It is worth considering whether the efficiency of the development 

process of secure applications can be improved by annotating models at 

a higher level of abstraction (e.g. analysis) or by annotating dynamic 

models, e.g. UML state machines. 

7.4 Separating Modelling of Application and Security Concerns 

Separating Modelling of Application and Security Concerns 

(SMASC) is an approach proposed to model system’s functional 

requirements separately from security requirements using UML use 

case, class, and object collaboration diagrams [12]. The motivation of 

the approach is to make a secure application system more maintainable 

with minimal impact on application concerns from changes to security 

concerns or vice versa. In the approach, the system is viewed through 

multiple views: a functional requirement view in UML use case 

diagram; a static view in UML class, and a dynamic view in UML 

object collaboration modelling. The system’s functional requirements 

are modelled in “non-secure” business use cases. Security concerns are 

captured in security use cases and security objects, where security use 

cases are realized through message communications among security 

objects. The security use cases and objects can also be used in different 

application systems. Similarly, in the static model of the system, 

security concerns are separated from business concerns by modelling 
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non-secure application classes separately from security service classes, 

and in the dynamic model, security concerns are separated from 

business concerns by modelling non-secure application objects 

separately from security objects. Therefore, the system’s use cases, 

classes, and objects are divided into business layer and security layer. 

Security requirements are considered optional features meaning that if 

the security feature is required in a given application, then the 

appropriate security requirement condition is set to true, otherwise it is 

set to false. When the system requires security services, the security use 

cases are extended from the non-secure business use cases at extension 

points, which is a location where a use case extends another use case if 

the specified condition holds. The security use cases can have 

parameters, whose values are passed from the business use cases that 

they extend. Consequently, security classes and objects that realize the 

security feature can be added into the system’s static and dynamic 

model. 

The security problem addressed in the approach include integrity 

and non-repudiation (refer to Figure 7.1). The example system is an e-

commerce application, where security concerns are separated from 

business concerns by modelling non-secure e-commerce application 

classes in the e-commerce business layer and secure classes in security 

layer. The strength of the approach is that it provides a way to capture 

security requirements in security use cases and encapsulate such 

requirements in security objects separately from the application 

requirements and objects. The approach reduces system complexity 

caused by mixing security requirements with business application 

requirements, thus to increase the system’s maintainability and 

components reusability. However, one issue of the approach is that 

usually, security property is a pervasive property for a system which 

may crosscut many design model elements; therefore, clear separation 

of business and security model elements would not be a trivial task in 

this object-oriented approach. 
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7.5 Formal Security Modelling and Analysis Approaches 

Formal methods [13] are referred to the variety of mathematical 

modelling techniques that are applicable to specify, develop, and verify 

computer system (software and hardware) design. A system’s formal 

specification is the use of notations derived from formal logic to 

describe assumptions about the world in which a system operates, 

requirements that the system is to achieve, and a design to meet those 

requirements. Formal methods provide a way that a system can be 

formally specified whereby its desired properties can be reasoned about 

rigorously. Formal methods have been used to represent software 

architectures, where they provide a formal, abstract model for systems; 

thus, a means of describing and analyzing software architectures and 

architectural styles is available. This section presents several 

approaches that use formal methods to model and analyze security 

properties. 

Software Architecture Model 

Software Architecture Model (SAM) [14] is a general formal 

framework for visualizing, specifying, and analyzing software 

architectures. In SAM, a software architecture is visualized by a 

hierarchical set of boxes with ports connected by directed arcs. These 

boxes are called compositions. Each composition may contain other 

compositions. The bottom-level compositions are either components or 

connectors. Various constraints can be specified. This hierarchical 

model supports compositionality in both software architecture design 

and analysis, and thus facilitates scalability. Each component or 

connector is defined using Petri net. Thus, the internal logical structure 

of a component or connector is also visualized through the Petri net 

structure. Textually, a SAM software architecture is defined by a set of 

compositions C = C\, C2,..., Ck (each composition corresponds to a 

design level or the concept of sub-architecture). Each composition Ci = 

{Cmi, Cni, Csi} consists of a set Cmi of components, a set Cni of 

connectors, and a set Csi of composition constraints. An element Cij = 
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(Sij, Bij), (either a component or a connector) in a composition Ci has a 

property specification Sij (a temporal logic formula) and a behavior 

model Bij (Petri net). Each composition constraint in Csi is also defined 

by a temporal logic formula. The interface of a behavior model Bij 

consists of a set of places (called ports) that is the intersection among 

relevant components and connectors. Each property specification Sij 

only uses the ports as its atomic propositions/predicates that are true in 

a given marking if they contain appropriate tokens. A composition 

constraint is defined as a property specification, however it often 

contains ports belonging to multiple components and/or connectors. A 

component Cij can be refined into a lower-level composition Ci, which 

is defined by h(Cij) = C;(h is a hierarchical mapping relating 

compositions). The behavior of an overall software architecture is 

derived by composing the bottom-level behavior models of components 

and connectors. SAM provides both the modelling power and flexibility 

through the choice of different Petri net models. In SAM, software 

architecture properties are specified using a temporal logic. Depending 

on the given Petri net models, different temporal logics are used. 

In [15], SAM is applied to support the formal design of software 

architecture for secure distributed systems. The security problem 

addressed is general information confidentiality (refer to Figure 7.1). 

The Petri net model used is the Predicate Transition Nets. The linear-

time temporal logic is selected to formally specify security policies, the 

Chinese Wall policy, where Basic objects are individual items of 

information (e.g. files), each concerning a single corporation; Company 

datasets define groups of objects that refer to the same corporation; 

Conflict of interest classes (COI) define company datasets that refer to 

competing corporations. Subsequently, the definition of the sensitive 

dataset and secure distributed control architecture are provided. Finally, 

a new concept called the dependence relation for the Petri net model is 

defined, which gives source and sink of every work flow in the model 

and the dominating elements. Given an architecture model of a 

distributed system, a set of rules have been given to reconstruct the 

software architecture and enforce the security policy in the workflow 
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level for a software architecture by examining the flow of sensitive 

datasets between tasks. 

The strength of the approach is that it integrates two formalisms, 

Petri nets and temporal logic, to specify software architectures. The 

properties of the software architecture (e.g., information flow, 

deadlock, etc.) specified in Petri nets can be proved using temporal 

logic. Consequently, model checking techniques can be employed to 

realize the automated verification of software architecture properties. In 

addition, the approach provides a hierarchical architecture specification 

model, which enables iterative model checking in a bottom-up fashion. 

However, one issue of the approach is because of the limitation of 

model checking, the approach is generally not applicable to infinite 

state systems. 

Multi Security Level Architecture 

A modelling method for the Multilevel Security (MLS) architecture 

of the Defense Advanced Research Projects Agency’s (DARPA’s) 

Polymorphous Computing Architecture (PCA) program is proposed in 

[16]. PCA is a multi-processor architecture that allows a processor to 

morph during operations to provide the best type of processor for the 

job at hand. The goal of MLS-PCA is to create a high assurance 

security infrastructure for multiprocessor distributed applications, 

which means that the trusted aspects of the system needs to be verified, 

at a high level, under a certification program, such as the DoD's Trusted 

Computer Security Evaluation Criteria or its replacement, the Common 

Criteria (CC). In the proposed architecture, each single level Avionics 

Application Process (AAP) is front-ended by an Encryption Processing 

Element (EPE). All communication by an AAP must go through an 

EPE. All communication between EPEs is encrypted and authenticated. 

Keys are distributed to the EPEs by the Network Security Element 

(NSE) based on a security policy set up by mission control. The NSE 

enforces both Mandatory Access Control (MAC) and Discretionary 

Access Control (DAC). There is a unique key for each element of the 

security policy. For example, there is a key for each security level and 
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compartment in the MAC security lattice, as well as for each pair in the 

DAC matrix. The NSE generates a session key between two AAPs by 

XORing the relevant policy keys with a onetime random key. The 

session key is then distributed to each of the AAP's EPE, where this 

session key must be distributed encrypted. All connections between two 

AAPs are simple. This allows a low level process to send information 

up to a high level process, but not vice versa. Another type of 

connection, called a coalition, that consists of AAPs at a common 

security level and using a common key is also allowed. In addition, the 

EPEs are also transparent to the AAPs, preventing the EPEs themselves 

from being used as a covert channel. High levels of evaluation require 

formal models and analysis. The selected formal method is Alloy [17]. 

The language is based on set theory and the first-order logic, similar to 

Z, with the standard set operators and quantifiers. A state is defined by 

sets and relationships among them. An operation will transform a state 

to a new state, i.e., the sets are modified. Alloy also allows the 

specification of invariants. 

The security problem addressed in the approach is authentication 

(refer to Figure 7.1). With the use of formal method Alloy and its 

analysis tool in the approach, one can check the correctness of software 

architecture specification, using an inductive argument to claim that if 

an initial state is legal and all operations produce legal states, the 

system cannot be in an illegal state and the specification is correct. The 

approach also can be used to determine if a software architecture 

specification is overconstrained or under-constrained. The approach 

forces designers to look at the details of the architecture at an early 

stage of development, thus problems are detected and verification 

provides evidence that the requirements are maintained. One issue of 

the approach is: as in the analysis of an Alloy specification, a solution 

is obtained in a specific scope, therefore, the analysis of the approach is 

correct, but not complete. 
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Security Check 

Security check is a technique proposed in [18] to entail taking small 

units of a system, putting them in a “security harness” that exercises 

relevant executions appropriately within the unit, and then model 

checking these tractable units. The technique is inspired by unit 

verification. The basic semantic framework used in the modelling is 

discrete time labeled transition systems. A discrete-time transition 

labeled transition system (DTLTS) is a tuple < S,A sj > where: S is a 

set of states; A is a visible action set; ^ is the transition relation; and sj 

is the start state. The distinguished elements t and i correspond to the 

internal action and clock-tick (or idling) action. A DTLTS encodes the 

operational behavior of a real time system. States may be seen as 

“configurations” the system may enter, while actions represent 

interactions with the system’s environment that can cause state 

changes. The transition relation records which state changes may occur: 

if < s, a, s' > is a transition relation, then the transition from state s to s' 

may take place whenever action a is enabled. t is always enabled; other 

actions may require “permission” from the environment in order to be 

enabled. Also, transitions except those labeled by i are assumed to be 

instantaneous. While unrealistic at a certain level, this assumption is 

mathematically convenient, and realistic systems, in which all 

transitions “take time”, can be easily modelled. If a DTLTS satisfying 

the maximal progress property is in a state in which internal 

computation is possible, then no idling (clock ticks) can occur. DTLTSs 

model the passage of time and interactions with a system’s 

environment. Finally, DTLTSs may be minimized by merging 

semantically equivalent but distinct states. The properties prove in 

security check are safety properties, including quasiliveness or bounded 

response which is a reasonable weakening of classical liveness. Both 

these classes of properties are inherent in any security property 

specification. While safety deals with properties of the form “nothing 

bad will happen” (i.e., the private key can never be revealed), liveness 

deals with assured- response or in a temporal setting bounded-response 
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(i.e., the system will always respond in “t” time units even when under 

a DOS attack). Security check works by taking the property to be 

proved on the system and suitably crafting a “test process” based on 

that property (safety or liveness). The “unit”, or modules inside the 

system to which the property is applicable, is isolated, all the behavior 

of the process not relevant to the property in question is “sealed” off 

and this transformed “unit” is first minimized and then run in parallel 

with the test process. Then it is checked if the test process terminates by 

emitting a pre-designated “good” or a “bad” transition. Depending on 

the transition the test process emitted it can be decided if a property is 

satisfied by the system or not. 

The security problem addressed in the approach is to improve the 

intrusion detection capabilities for distributed system. The security 

check approach offers a means of coping with state explosion of a 

system. The approach also enables to detect system vulnerabilities even 

when the attack behavior is not known. And for known attack patterns 

the approach can provide models of suspicious behavior which can then 

be used for intrusion detection at a later stage. One issue of the 

approach is since modelling checking techniques have been used; the 

approach is more suitable to finite state systems. 

CVS-Server Security Architecture 

An outline of a formal security analysis of a CVS-Server 

architecture is presented in [19]. The analysis is based on an abstract 

architecture (enforcing a role-based access control on the repository), 

which is refined to an implementation architecture based on the usual 

discretionary access control provided by the POSIX environment). The 

Concurrent Versions System (CVS) is a widely used tool for version 

management in many industrial software development projects, and 

plays a key role in open source projects usually performed by highly 

distributed teams. CVS provides a central database (the repository) and 

means to synchronize local modifications of partial copies (the working 

copies) with the global repository. CVS can be accessed via a network; 

this requires a security architecture establishing authentication, access 
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control and non-repudiation. The proposed architecture aims to provide 

an improved CVS server, which overcomes the shortcomings of the 

default CVS server. The first aim of the work is to provide a particular 

configuration of a CVS server that enforces a role-based access control 

security policy. The second aim is to develop an “open CVS-Server 

architecture”, where the repository is part of the usual shared file 

system of a local network and the server is a regular process on a 

machine in this network. While such an architecture has a number of 

advantages, the correctness and trustworthiness of the security 

mechanisms become a major concern, which leads to use formal 

methods to analyzing the access control problem of complex system 

technology and its configuration. The formal method Z has been chosen 

as the specification formalism. The modelling and theorem proving 

environment Isabelle/HOL-Z 2.0 is used, which is an integrated 

documentation, type- checking, and theorem proving environment for Z 

specifications. 

The security problem addressed in the approach is role- based 

access control (refer to Figure 7.1), which is modelled and analyzed in 

the context of a CVS system. Therefore, the RBAC addressed in the 

approach is not generic to other applications. 

7.6 Integrated Semi-formal and Formal Modelling and Analysis 

Approaches 

This section presents the approaches that use a combination of 

semi-formal and formal methods to model and analyze security non-

functional properties. 

UML/Theorem Prover Approach 

An extensible verification framework for verifying UML models 

for security requirements is presented in [20]. In particular, it includes 

various plug-ins performing different security analysis on models of the 

security extension UMLsec. Then an automated theorem prover binding 

is used to verify security properties of UMLsec models that make use 

of cryptography (such as cryptographic protocols). The UMLsec is an 
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extension to UML that allows the expression of security relevant 

information within the diagrams in a system specification. UMLsec is 

defined in the form of a UML profile using the standard UML 

extension mechanism. The analysis routine in the verification 

framework supports the construction of automated requirements 

analysis tools for UML diagrams. The framework is connected to 

industrial CASE tools using data integration with XMI and allows 

convenient access to this data and to the human user. Advanced users of 

the UMLsec approach should be able to use this framework to 

implement verification routines for the constraints of self-defined 

stereotypes, in a way that allows them to concentrate on the verification 

logic (rather than on user interface issues). The usage of the framework 

proceeds as follows: the developer creates a model and stores it in the 

UML 1.4/XMI 1.2 file format; the file is imported by the UML 

verification framework into the internal Metadata Repository (MDR). 

MDR is an XMI-specific data-binding library that directly provides a 

representation of an XMI file on the abstraction level of a UML model 

through Java interfaces (JMI). This allows the developer to operate 

directly with UML concepts, such as classes, statecharts, and 

stereotypes. Each plug-in accesses the model through the JMI interfaces 

generated by the MDR library. The plug-ins may receive additional 

textual input and they may return both a UML model and textual 

output. The plug-ins include static and dynamic checkers. The static 

checker parses the model, verifies its static features, and delivers the 

results to the error analyzer. The dynamic checker translates the 

relevant fragments of the UML model into the automated theorem 

prover input language. The automated theorem prover is spawned by 

the UML framework as an external process; its results are delivered 

back to the error analyzer. The error analyzer uses the information 

received from the static checker and dynamic checker to produce a text 

report for the developer describing the problems found, and a modified 

UML model, where the errors found are visualized. Besides the 

automated theorem prover binding presented in this chapter there are 
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other analysis plugins including a model-checker binding and plug-ins 

for simulation and test-sequence generation. 

The security problem addressed in the approach is authentication 

(refer to Figure 7.1). The approach has been applied to a security-

critical biometric system, where the control access to protected 

resources, such as a user’s biometric reference data, needs to be 

ensured. Therefore, a cryptographic protocol is needed to protect the 

communication between the user biometric data reader and the host 

system. The protocol uses message counter in the transmission 

messages, thus to detect attacks. With the application of the approach, a 

flaw in the protocol, which allows attackers to misuse those message 

counters, has been detected. However, security properties that can be 

analyzed in the approach are limited to those which can be represented 

in first-order logic. 

UML/Promela Approach 

The UML/Promela approach [21] is proposed to investigate an 

appropriate template for security patterns that is tailored to meet the 

needs of secure systems development. In order to maximize 

comprehensibility, the well-known notation UML is used to represent 

structural and behavioral information. Furthermore, the verification of 

security properties is enabled by adding formal constraints to the 

patterns. The enhanced security pattern template presented herein 

contains additional information, including behavior, constraints, and 

related security principles, that addresses difficulties inherent to the 

development of security-critical systems. The security needs of a 

system depend highly on the environment in which the system is 

deployed. By introducing and connecting general security properties 

with a pattern’s substance, the developer can gain security insight by 

reading and applying the pattern. Furthermore, behavioral information 

and security-related constraints are included in the security pattern 

template. The developer can use this information to check if a specific 

design and implementation of the pattern is consistent with the essential 

security properties. The augmented security pattern template includes 
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fields’ applicability, behavior, constraints, consequences, related 

security pattern, supported principles, and thus enhances the 

communication of security-specific knowledge that is related to a 

concrete application. Finally, a UML formalization framework that is 

developed to support the generation of formally specified models 

defined in terms of Promela [22], the language for the Spin model 

checker, thus to analyze the security pattern related requirements. 

The security problem addressed in the approach is authorization 

(refer to Figure 7.1). The approach has been applied to an example 

system, where security properties, such as access violations from 

external requests to the system’s internal entities, can be verified. These 

properties are instantiated in terms of linear time temporal logic to 

enable the analysis with Spin model checker. However, the approach 

currently focuses on the security property analysis against 

requirements. It needs to be extended in order to support the 

architecture level design and analysis of security properties. 

7.7 Aspect-Oriented Security Modelling and Analysis 

Approaches 

The principle of separation of concerns has long been a core 

principle in software engineering. It helps software engineers with 

managing the complexity of software system development. This 

principle refers to the ability to identify, encapsulate, and manipulate 

those parts of software that are relevant to a particular concern 

(concept, goal, purpose, non-functional properties, etc.). However, 

many concerns of a system tend to crosscut many design elements at 

the design level; their implementation tends to crosscut many code 

units. Aspect-Oriented Software Development (AOSD) [23] 

technologies have been proposed to enable the modularization of such 

crosscutting concerns. In AOSD, a system’s tangling concerns or 

pervasive properties are encapsulated in model element called an 

aspect. Subsequently, a weaving process is employed to compose core 

functionality model elements with these aspects, thereby generating an 

architecture design. This section presents aspect-oriented approaches 
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which have been proposed to model and analyze security nonfunctional 

properties. 

Aspect-Oriented Secure Application 

An experience report based on developing security solutions for 

application software is presented in [24]. The programming language 

AspectJ [25] is used for this purpose. The engineering of application 

level security requirements are considered in this report, where the 

security concern covers many aspects, including authentication, 

auditing, authorization, confidentiality, integrity and non-repudiation. 

Security is a pervasive requirement for an application. Modularizing 

security concerns is a difficult task, and where and when to call a given 

security mechanism in an application has not been addressed 

adequately either. Furthermore, the crosscutting nature of security not 

only relates to the diversity of specific places where security 

mechanisms are to be called: some security mechanisms also require 

information that is not localized in the application. An example used in 

the report describes a Personal Information Management (PIM) system. 

A PIM system supports the human memory by keeping track of 

personal information, including a person’s agenda, contact information 

of friends and business contacts, the tasks he has to fulfill, etc. A palm 

pilot is a typical example of a PIM system. In this system, the security 

requirement is the enforcement of access control. The design of this 

application is captured in a UML class diagram, where a class called 

PIMSystem is the center of the model. Through this class, the system 

can represent and manage three different types of information: 

appointments, contacts and tasks. Two security access rules are: for 

appointments and tasks, the owner can invoke all their operations; other 

persons are only allowed to view them; for contacts, only owners can 

perform their operations. Finally, the report focuses on implementing 

these rules as aspects in AspectJ. 

The security problem addressed in the approach is authorization 

(refer to Figure 7.1). The approach provides a way to implement 

authorization properties as crosscutting concerns in the aspect-oriented 
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programming language AspectJ. However, it did not address the 

problem of aspect-oriented design of security properties. 

Formal Design Analysis Framework 

Formal Design Analysis Framework (FDAF) [26, 27, 28], is an 

aspect-oriented approach proposed to support the design and automated 

analysis of non-functional properties for software architectures. In the 

FDAF, non-functional properties are represented as aspects. At the 

architecture design level, aspect represents either a property that 

permeates all or part of a system, or a desired functionality that may 

affect the behavior of more than one architecture design elements, such 

as security aspects. Security aspects, including data origin 

authentication, role-based access control, and log for audit, have been 

defined in the FDAF. The definition of these security aspects uses 

UML diagrams. The definition for a security aspect includes its static 

view and dynamic view. The static view of a security aspect is defined 

using UML class diagram, presenting the attributes and operations need 

to be used in order to include the desired functionality in a system. It 

may also include OCL invariants, pre-conditions, and post-conditions 

regarding the weaving constraints of the security aspect. The dynamic 

view of a security aspect is defined in UML sequence diagram, 

describing the dynamic behavior of the security aspect, including the 

information about when and where to use the operations defined in the 

security aspect’s static view. The FDAF proposes a UML extension to 

support the modelling of security aspects in UML. This extension 

assists architects in weaving an aspect into a design and updating an as-

pect in a design. The syntax and semantics for this UML extension have 

been defined. The FDAF uses a set of existing formal analysis tools to 

automatically analyze a UML architecture design that has been 

extended with security aspects. Architecture designs are documented 

using extended UML class diagram and swim lane activity diagram in 

the FDAF. The automated analysis of an extended UML architecture 

design in existing formal analysis tools is achieved by formalizing part 

of UML into a set of formal languages that have tool support. The 
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translation into a formal language with existing tool support leverages a 

large body of work in the research community. The formalization 

approach used is the translational semantic approach [29]. In 

translational semantics, models specified in one language are given 

semantics by defining a mapping to a simpler language, or a language, 

which is better understood. Algorithms for mapping UML class and 

swim lane activity diagrams to a set of formal languages have been 

defined, verified with proofs, and implemented in the FDAF tool 

support, thus automated translation from UML to this set of formal 

languages are realized. Formal languages that UML can be formalized 

in the FDAF for the analysis of security properties include Promela [22] 

and Alloy [17], where Promela’s analysis tool is used to analyze data 

origin authentication and log for audit security aspect design and 

Alloy’s analysis tool is used to analyze role-based access control 

security aspect UML design. 

The example system selected in the FDAF is the Domain Name 

System (DNS) [30], which is a real-time, distributed system. The 

security problem addressed includes data origin authentication, role-

based access control, and log for audit (refer to Figure 7.1). There three 

security aspects have been modelled in the DNS, where data origin 

authentication is used to ensure the source of data, role-based access 

control is used to ensure the access control of the DNS database, and 

log for audit is used to log DNS messages. The strength of the approach 

is it integrates the well-known semi-formal notation UML and a set of 

existing formal notations into an aspect-oriented architectural 

framework to support the design and analysis of non-functional 

properties, such as security and performance. A limitation of the 

approach is that the analysis of a UML based architecture design uses 

existing formal tools, the limitations of these tools affect the analysis 

results provided in terms of accuracy, useful analysis data extraction, 

and interpretation of the results. 
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7.8 Discussion 

A summary of the approaches in the survey is presented in Table 

7.1. The approaches in this survey support modelling of one or more 

security properties at the architecture design level; many also support 

their automated analysis. The comparison criteria defined for this 

survey are: identifying the specific security property addressed (e.g., 

role-based access control, authentication, etc.), modelling notation(s) 

used, whether or not automated security property analysis is supported, 

and the kind of example system the approach has been applied to. Each 

of these criteria is useful, as the results can be used to guide the 

selection of an appropriate approach and identify possible areas for 

future research. For example, if one needs to model (but perhaps not 

analyze) role-based access control for a distributed system, then UML 

can be selected as the modelling notation. However, if there is a need 

for a more rigorous, automated analysis of the security property, then a 

formal method would be more suitable, such as Z or Alloy. If one needs 

to model confidentiality for information system, then Petri nets and 

temporal logic are candidate notations, as these have been already been 

successfully used to model this property. This is not to say that other 

notations could not be used to model confidentiality. Actually, it opens 

a wide variety of possible future research topics that investigate the use 

of different notations, tailored notations, and perhaps identifying a set 

of notations that are suitable for modelling a comprehensive collection 

of security properties. It is also important to note that the validation of 

the approaches presented in the literature has typically been made using 

one example system. Additional validation of the approaches used to 

model and analyze security properties for the architecture design is 

necessary. 
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Table 7.1: Overview of approaches to design and analyze security 

properties. 
 Security 

Property 

Modelling 

Notations 

Analysis Example 

System 

UML-MAC 

Framework 

Mandatory 

Access Control 

UML Supported Information 

System 

SecureUML Role-Based 

Access Control 

UML Not 

supported 

Distributed 

System Using 

EJB 

SMASC Integrity, 

NonRepudiation 

UML Not 

supported 

E-Commence 

Application 

System 

Software 

Architecture 

Model 

Confidentiality Petri Nets, 

Temporal 

Logic 

Not 

supported 

Information 

System Using 

Chinese Wall 

Policy 

Multi Level 

Security 

Architecture 

Authentication Alloy Automated 

analysis 

Real-Time 

System: MLS-

PCA 

Security 

Check 

Intrusion 

detection 

Discrete 

Time 

Labeled 

Transition 

System 

Automated 

analysis 

Distributed 

System 

CVS-Server 

Security 

Architecture 

Role-Based 

Access Control 

Z Automated 

analysis 

Distributed 

system: CVS 

UML/ 

Theorem 

Prover 

Approach 

Authentication UML, 

First-Order 

Logic 

Automated 

analysis 

Biometric 

system 

UML/Promela 

Approach 

Authorization UML, Liner 

Time 

Temporal 

Logic 

Automated 

analysis 

Distributed 

System 
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Aspect 

Oriented 

Secure 

Application 

Authorization UML Not supported Information 

System: 

Personal 

Information 

Management 

System 

FDAF 

Data Origin 

Authentication, 

Role-Based 

Access Control, 

Audit 

UML, 

Formal 

languages 

(Promela, 

Alloy) 

Automated 

analysis 

Real-Time, 

Distributed 

System: 

Domain Name 

System 

 

 

Advancement questions 

1. What are the main components of the security? 

2. What is the main purpose of the The MAC-UML Framework? 

3. What the modelling language SecureUML is developed for? 

4. What is the on the role-based access control model? 

5. What is the main idea of the Separating Modelling of 

Application and Security Concerns approach? 

6. What are the main features of the Software Architecture 

Model? 

7. How can we model and analyze the security non-functional 

properties? 

8. What are tha main profirs in the usage of the UML/Promela 

approach? 

9. What are the main intended purpose of the AspectJ 

programming language? 

10. What the Formal Design Analysis Framework is design for? 
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Introduction 

Security is an intricate property that is achieved by a combination 

of sufficiently strong cryptographic algorithms and protocols, correct 

implementation of hardware and software, and appropriate assumptions 

about trusted author-ities. Assuring that all of these factors are present 

and correctly integrated to form a secure system is difficult — if not 

impossible—without the use of rigorous and formal analytical 

techniques. 

The purpose of this section is to give an overview of some formal 

methods whose goal is to lend assurance that a system using 

cryptographic protocols will behave securely. These methods rely on 

mathematical logic and are accessible to engineers. Because security 

must be addressed from a variety of viewpoints, it is important to use a 

variety of methods, each suited for addressing a particular viewpoint. 

This section is focused on a single key-distribution protocol—the 

Needham–Schroeder public-key protocol [1,2] —and highlight how 

three different formal methods can be used to analyse it. Each method 

is suited for reasoning about a different aspect of this protocol. Two of 

the methods— the BAN belief logic [3] and a logic for authentication 

[4]—are special-purpose logics designed specifically for reasoning 

about certain security-related properties. The third method—the process 

algebra CSP [5]—is a general-purpose language for describing and 

reasoning about protocols with emergent behaviour. Taken together, 

these systems highlight the very subtle nature of security properties and 

the need for a variety of views into even a single protocol. They also 

illustrate how formal methods can identify weaknesses and hidden 

assumptions underlying security protocols. 

8.1 Security primer 

Principals are people, keys, processes or machines that send and 

receive information and that access information resources (databases, 

processors, printers, etc.). Security properties describe the ability of 
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principals to access information or resources. Key security properties 

include: 

- privacy or confidentiality: knowing with accuracy which 

principals can read data;  

- integrity: detecting corruption of information;  

- authentication: knowing the identity of a principal or the source 

of information;  

- access control: restricting the use of a resource to privileged 

principals;  

- non-repudiation: preventing principals from subse-quently 

denying their actions;  

- availability of service: guaranteeing authorized princi-pals 

always have access to services.  

The Handbook of Applied Cryptography [6] describes each of these 

properties in more detail. 

Public-key infrastructure 

In public-key cryptography, encryption and decryption are provided 

through pairs of related keys: each principal has both a public key 

(which is made known to others) and a private key (which should be 

known only to the principal). These keys act as mutual inverses: 

anything encoded with one of these keys may be decoded with the 

other. Thus public-key cryptography supports both privacy and digital 

signatures. 

If principal A wishes to send a secret message M to principal B, she 

encrypts M with B’s public key: intuitively, only B has knowledge of 

his private key and hence only B can decrypt the message. In contrast, 

if A wishes to sign a message M, she encrypts it with her own private 

key: intuitively, anyone with access to her public key can verify her 

signature, but no one should be able to forge her signature without 

knowledge of her private key. 

A public-key infrastructure (PKI) supports the distribution, 

management and use of public keys and certificates to provide 

authentication, privacy and other security properties. PKIs are based on 
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certification authorities that vouch for the integrity of cryptographic 

information and they form the basis of current Internet security. 

Basic security foundations 

A system’s overall security depends on several items, including: 

- the cryptographic strength of the system (e.g., the computational 

infeasibility of decrypting messages without the proper keys);  

- the protocols built on top of the cryptographic algorithms (e.g., 

the secure sockets layer (SSL) protocol used by web browsers);  

- the correct association of specific cryptographic keys with 

specific principals.  

Cryptographic strength is assessed over time by a combination of 

complexity analysis and resistance to cryptanalysis [7]. The use of 

formal methods to analyse cryptographic strength is not addressed here. 

Assessing security protocols often involves an analysis of ways to 

defeat a protocol by using bits of previously successful protocol runs 

(known as replay attacks) or by some form of impersonation (e.g., ‘man 

in the middle’ attacks). These analyses are particularly important, 

because these protocols are run repeatedly over time and typically over 

public networks: many security protocols depend critically on the 

freshness of secrets. 

Associating cryptographic keys with principals is typi-cally done 

using certificates that are digitally signed by recognized certification 

authorities, as in the X.509 public-key certificate standard [8]. 

Determining the public key of a principal is done using a chain of 

certificates that enable one principal to move from one certificate 

authority to another in a secure (i.e. digitally signed and checked) way 

to fetch and check the certificate of another principal. The network of 

certification authorities is referred to as a trust model or trust topology. 
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Figure 8.1. Needham-Schroeder protocol. 

1. 𝐀 → 𝐒: 𝐀, 𝐁 
2. 𝐒 → 𝐀: {𝐊𝐛, 𝐁}𝐊𝐬−𝟏  

3. 𝐀 → 𝐁: {𝐍𝐚, 𝐀}𝐊𝐛  

4. 𝐁 → 𝐒: 𝐁, 𝐀 
5. 𝐒 → 𝐁: {𝐊𝐚, 𝐀}𝐊𝐬−𝟏  

6. 𝐁 → 𝐀: {𝐍𝐚,𝐍𝐛}𝐊𝐚
 

7. 𝐀 → 𝐁: {𝐍𝐛}𝐤𝐛  

Figure 8.2. Needham-Schroeder message exchanges 

8.2 Needham–schroeder protocol 

An important class of security protocols is the class of key-

distribution protocols that enable secure communication sessions where 

both parties are active at the same time. Examples of such sessions 

include secure remote logins, secure file transfers and secure electronic-

commerce transactions. 
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The Needham–Schroeder protocol [2] is designed to allow two 

principals to mutually authenticate themselves through a series of 

message exchanges, as a prelude for some secure session. A diagram of 

the message exchanges appears in Figure 8.1, and Figure 8.2 details the 

message exchanges in linear form. 

In these descriptions, the principals are A, B and S, where S is a 

certification authority (CA) recognized by principals A and B. Their 

public keys are (respectively) Ka , Kb, and Ks; the private key of S 

corresponding to the public key Ks is Ks
−1

. Na and Nb are nonce 

identifiers: a nonce is a fresh value created for the current run of a 

protocol, which has not been seen in previous runs. Let us use common 

notation for describing security protocols: A → B denotes principal A 

sending a message to principal B; comma (‘,’) denotes conjunction or 

concatenation (e.g., ‘X, Y ’ denotes a message containing both X and Y 

); and {X}K denotes the message X encrypted using key K. 

Principal A—wishing to communicate with principal B— must get 

B’s public key from S and then convey a nonce Na to B (messages 1–3). 

B then needs to get A’s public key from S and convey a nonce Nb to A 

in such a way that convinces A that she is interacting with B (messages 

4–6). Finally, A must convince B that he is interacting with A and that A 

has received the nonce Nb (message 7). 

Messages 1 and 2—as well as messages 4 and 5— correspond to 

certificate requests from A and B to an authority S for the other’s public 

key. As messages 1 and 4 are transmitted in the clear, they have no 

cryptographic significance. In message 3, the nonce Na is conveyed to 

B. Nevertheless, B cannot know for sure who sent Na : he must assume 

that the identifier A is correct. In message 6, B sends to A both nonce Na 

and Nb to identify himself as B to A, as well as to convey the nonce Nb 

to A. The basic notion operating here is that A and B can identify shared 

secrets (the nonces Na and Nb) to each other to convince each of the 

other’s identity. 

This protocol has several weaknesses, which are ad-dressed in the 

subsequent sections. The principals in the protocol implicitly assume 

that messages 2 and 5 are fresh and are not replays of messages 
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containing compromised keys; this situation is analysed on belief 

logics. The protocol is also vulnerable to a ‘man in the middle’ attack. 

8.3 Belief logics 

One approach to reasoning about key-exchange protocols is to 

analyse what principals believe about important components and 

properties of protocols. These components include secret and public 

keys, encrypted messages, messages combined with secrets, and nonces 

(objects created for a specific run of a protocol). Important properties 

include freshness (the property of never having been used in a prior run 

of a protocol), jurisdiction or authority over keys, and binding of secret 

and public keys to principals. 

The Burroughs, Abadi and Needham (BAN) logic [3] is 

representative of several belief logics [9, 10] that support reasoning 

about these properties. It focuses on proving goals such as ‘A believes 

Kb is B’s public key’. One of the central concerns that BAN logic 

addresses is the possibility of replay attacks, where messages sent 

during previously successful protocol runs are re-used or replayed to 

trick principals into using compromised keys or to dupe principals into 

thinking an intruder is a legitimate participant. 

The notion of time in the BAN logic is very simple. Time is divided 

into two categories: the present (i.e. the current run of the protocol) and 

the past (i.e. any protocol run preceding the current run). 

Syntax and semantics 

Let us present only the subset of BAN logic’s syntax and semantics 

necessary to describe part of the Needham– Schroeder protocol. A 

complete description of BAN logic appears in [3]. The logic includes 

the following types of statements. 

- P |≡ X, read as ‘Principal P believes X’. P behaves as if X is true; 

- P ◄ X, read as ‘P sees X’. A principal has sent P a message 

containing X; 

- P |∼ X, read as ‘P once said X’. P at some time (either in the 

present or the past) believed X and sent it as part of a message; 



 

209 

 

 

 

 

- P |⇒ X, read as ‘P has jurisdiction over X’. Principal P has 

authority over X and is trusted on this matter. 

- # (X), read as ‘X is fresh’. X has not appeared in a past run of the 

protocol. K|
𝑲
→P , read as ‘P has public key K’. The corresponding 

private key is denoted by K−1 and assumed to be known only by 

P; 

While there are over 19 inference rules that define the semantics of 

the BAN logic, the following three inference rules capture the essence 

of the logic for public-key applications. 

(1) Message-Meaning Rule for Public Keys. If P believes that Q’s 

public key is K, and if P sees a message X encrypted with Q’s private 

key K
−1

, then P believes Q once said X:  

𝑷|≡ |
𝑲
→ 𝐐 𝐏 < {𝐗}

𝐊−𝟏
 

𝑷 |≡(𝐐 |∼𝐗)
. 

This rule uses the belief in the association of a public key with a 

principal to establish the source of a message. 

(2) Nonce-Verification Rule. If P believes that X is fresh (i.e. is 

new to the current protocol run) and that Q once said X, then P believes 

that Q believes X in the current run of the protocol: 
𝑷|≡# (𝐗) 𝑷|≡(𝐐 |∼𝐗)

𝑷|≡(𝐐 |∼𝐗)
. 

This rule uses the belief about the freshness of a message (usually 

based on nonces), coupled with knowing the message source, to 

establish that a principal uttered a message in the current protocol run. 

(3) Jurisdiction Rule. If P believes that Q has authority over X 

and that Q believes X, then P will believe in X:  

𝑷|≡(𝐐⇒ 𝐗) 𝑷|(𝐐|≡𝐗 ) 

𝑷 |≡𝐗
. 

This rule applies to certification authorities. A principal will adopt 

an authority’s belief if that principal recognizes the certification 

authority. For example, if 𝑷| ≡  (𝐐 | ≡ 
𝐊𝐛
→  𝐁) and 𝑷| ≡  (𝐐 ⇒ 
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(
𝐊𝐛
→  𝐁)) then 𝑷 | ≡ 

𝐊𝐛
→  𝑩.That is, P believes Kb is B’s public key when 

P recognizes Q as a key certification authority. 

Analysis of the protocol 

When the Needham–Schroeder protocol is analysed using the BAN 

logic, two possible weaknesses come to light. In steps 2 and 5 of the 

protocol, certification authority S sends to A and B (respectively) the 

messages {𝑲𝒃, 𝑩}𝑲𝒔−𝟏 and {𝑲𝒃, 𝑨}𝑲𝒔−𝟏; that is, A and B both receive the 

public key of the principal with whom they wish to communicate. 

After A receives {𝑲𝒃, 𝑩}𝑲𝒔−𝟏  in step 2, the desired result on A's 

behalf is 𝑨 | ≡ (
𝑲𝒃
→ 𝑩): believes that 𝑲𝒃 is B's public key. From the 

Jurisdiction Rule, this requires two other beliefs: 

𝑨| ≡ (𝑺 ⇒ (
𝑲𝒃
→ 𝑩))    (1) 

𝑨| ≡ (𝑺 | ≡ (
𝑲𝒃
→ 𝑩))   (2) 

That is, A must believe that S has authority over 𝑲𝒃 and that S 

believes 𝑲𝒃 is B's public key. 

The first belief corresponds to A believing that S is a certification 

authority having the proper authority to certify B's cryptographic 

information. This is a reasonable assumption. Establishing the second 

belief requires the application of both the Message-Meaning and 

Nonce-Verification Rules. 

It is reasonable to assume that A knows S's public key: (і. е. 𝑨| ≡  (
𝑲𝒔
→ 𝑺)) From the Message-Meaning Rule and the receipt of certificate 

{𝑲𝒃, 𝑩}𝑲𝒔−𝟏 from S we can establish that 𝑨 | ≡ (𝑺 | ∼ (
𝐊𝐛
→ 𝐁)). 

That is, A believes that S once said that  𝑲𝒃 was B's public key. We 

can then use the Nonce-Verification Rule to establish that 𝑨| ≡ (𝐒| ≡ (
𝐊𝐛
→ 𝐁)), that 𝑨| ≡ #(

𝐊𝐛
→ 𝐁). This proviso highlights a potential 

weakness, as there is nothing in message 2 that corresponds to a nonce: 
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A must assume that anything with the public key from the authority S is 

fresh. Consequently, the protocol is potentially vulnerable to a replay 

attack based on reusing old keys. 

A similar analysis holds true for A’s public key in step 5. 

8.4 Process algebras 

Process algebras such as CSP [5, 11] and CCS [12] provide a way 

to describe system behaviour in terms of the events (i.e. abstract actions 

deemed ‘observable’) that can occur. The collection of events that a 

process can engage in is known as its alphabet, typically denoted by _. 

The trace model of CSP formally describes a process’s behaviour in 

terms of the set of traces—that is, sequences of events—that it can 

perform. These trace sets provide a basis for comparing, equating and 

refining processes. Two processes are trace-equivalent when they have 

precisely the same sets of traces. A process Q refines P in the trace 

model (written P Q) if every trace of Q is also a trace of P . Intuitively, 

if P corresponds to a specification of permissible behaviour and Q 

refines P , then Q is guaranteed to exhibit only permissible behaviours. 

Using the trace model and the FDR2 model checker [13], Lowe 

uncovered a previously unknown flaw in the Needham–Schroeder 

protocol [14, 15]. An informal description of the approach in this 

section, first introducing the relevant CSP notation is provided. 

CSP syntax and semantics 

Informally, CSP processes (ranged over by P ) can have the 

following forms.
 

- STOP is the process that does nothing; 

- e → P performs event e and then behaves like P; 

- P1 ᴨ P2 non-deterministically chooses to behave like P1 or to 

behave like P2. 

- P1 [|X|] P2 is a parallel composition of P1 and P2, where the set 

of events X constrains certain actions. Any event in the set X can 

occur only if P1 and P2 both perform it simultaneously; in 
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contrast, events in ∑ - X occur only as independent actions of P1 

or P2; 

- P \X behaves like P, but the events in X are hidden (i.e. 

considered unobservable); 

- P [e1 ← e1_, . . . , en ← en_] behaves like P, except that each 

event ei is relabelled to ei_. As a special case, in P [e ← e1, e ← 

e2], the event e is replaced by a non-deterministic choice 

between the events e1 and e2. 

Formally, we introduce a family of relations 
𝒂
⇒ that describe 

processes’ trace behaviour, writing 𝑷
𝒂
⇒ 𝑷′ to indicate that process P 

can perform the trace a and become the process 𝑃′ This family of 

relations can be defined as the smallest relations satisfying the axioms 

and inference rules in Figure 8.3. The first two rules are primarily 

bookkeeping rules: the first expresses that every process, by doing 

nothing (_ denotes the empty trace), remains unchanged; the second 

reflects that computations’ intermediate states can be abstracted away (· 

denotes sequence concatenation). The remaining rules are syntax-

directed and formalize the informal explanations of the different 

process terms given previously. In particular, there is no explicit rule 

for STOP, because STOP never does anything. 
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𝐏
𝐞
⇒𝐏 

𝐏
𝐚
⇒𝐏𝟏  𝐏𝟏

𝛃
⇒𝐏𝟐

𝐏 
𝛂∙𝛃
⇒ 𝐏𝟐

 

(𝐞 → 𝐏)
𝐞
⇒  𝐏 

𝐏𝟏ᴨ 𝐏𝟐
𝐞
⇒𝐏𝟏 𝐏𝟏ᴨ𝐏𝟐

𝐞
⇒𝐏𝟐 

𝐏𝟏
𝐞
⇒ 𝐏𝟏

′  𝐞 ∉ 𝐗

𝐏𝟏[|𝐗|]𝐏𝟐
𝐞
⇒𝐏𝟏

′ [|𝐗|]𝐏𝟐
 

𝐏𝟐
𝐞
⇒𝐏𝟐 

′ 𝐞 ∉ 𝐗

𝐏𝟏[|𝐗|]𝐏𝟐
𝐞
⇒𝐏𝟏 [|𝐗|]𝐏𝟐

′
 

𝐏𝟏
𝐞
⇒𝐏𝟏

′  𝐏𝟐
𝐞
⇒𝐏𝟐

′  𝐞 ∈ 𝐗

𝐏𝟏[|𝐗|]𝐏𝟐
𝐞
⇒𝐏𝟏

′ [|𝐗|]𝐏𝟐
′
 

𝐏
𝐞
⇒𝐏′ 𝐞 ∉ 𝐗

𝐏
𝐗⁄
𝐞
⇒𝐏′

 
𝐏
𝐞
⇒𝐏′ 𝐞 ∈ 𝐗

𝐏
𝐗⁄
𝐞
⇒𝐏′

 

𝐏
𝐞𝐢
⇒𝐏′

𝐏 [𝐞𝟏 ← 𝐞𝟏
′ , … , 𝐞𝐧 ← 𝐞𝐧

′ ]
𝐞𝐢
′

⇒𝐏′ [𝐞𝟏← 𝐞𝟏
′ , … , 𝐞𝐧 ← 𝐞𝐧

′ ]

 

𝐞
⇒𝐏′ 𝐞 ∉ {𝐞𝟏, … , 𝐞𝐧}

𝐏 [𝐞𝟏 ← 𝐞𝟏
′ , … , 𝐞𝐧 ← 𝐞𝐧

′ ]
𝐞
⇒𝐏′ [𝐞𝟏← 𝐞𝟏

′ , … , 𝐞𝐧 ← 𝐞𝐧
′ ]

 

 
Figure 8.3: Transition relations for CSP 

 

By way of illustration, consider the following simple processes: 

Q ≡ a → b → c → STOP 

R ≡ c → c → STOP 

The following series of examples illustrates these definitions. 

(1) Q has precisely four traces: 〈 〉, 〈𝒂〉, 〈𝒂, 𝒃〉, 〈𝒂, 𝒃, 𝒄〉. 
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(2) The traces of Q ᴨ R are simply those of Q and R: 

〈 〉, 〈𝒂〉, 〈𝒂, 𝒃〉, 〈𝒂, 𝒃, 𝒄〉, 〈𝒄〉, 〈𝒄, 𝒄〉.  
(3) The parallel composition Q [|{b, d}|] R has the following traces: 

〈 〉, 〈𝒂〉, 〈𝒄〉, 〈𝒂, 𝒄〉, 〈𝒄, 𝒂〉, 〈𝒄, 𝒄〉, 〈𝒂, 𝒄, 𝒄〉, 
 〈𝒄, 𝒂, 𝒄〉, 〈𝒄, 𝒄, 𝒂〉. Note that Q, denied cooperation from R, is unable 

to perform its b event. 

(4) In contrast, Q [|{c, d}|] R has these four traces: 

〈 〉, 〈𝒂〉, 〈𝒂, 𝒃〉, 〈𝒂, 𝒃, 𝒄〉. R must delay c events until Q is ready to 

cooperate; furthermore, R can only perform one c event, because Q 

provides only one opportunity to do so. 

(5) The traces of (Q ᴨ R)\{b, d} are as follows: 

〈 〉, 〈𝒂〉, 〈𝒂, 𝒄〉, 〈𝒄〉, 〈𝒄, 𝒄〉.  
(6) Finally, (Q ᴨ R)[b ← a, c ← e, c ← d] has precisely these 

traces: 〈 〉, 〈𝒂〉, 〈𝒂, 𝒂〉, 〈𝒂, 𝒂, 𝒅〉, 〈𝒂, 𝒂, 𝒆〉, 〈𝒅〉, 〈𝒆〉, 〈𝒅, 𝒅〉, 〈𝒅, 𝒆〉, 〈𝒆, 𝒅〉,  
〈𝒆, 𝒆〉. Note that every occurrence of b in a trace of Q ᴨ R is replaced by 

a; every occurrence of c is replaced either by d or by e. 

In practice, it is useful to have events with multiple fields: for 

example, a description of a bank account might use events such as 

deposit.50, deposit.100 and withdraw.100. Furthermore, a bank account 

should be prepared to accept deposits of any amount: the notation 

deposit?x represents a choice among all deposit events and the variable 

x becomes bound to the actual value of the second field. Thus, for 

example, the process in?w → out.w → STOP has among its traces 
〈𝒊𝒏. 𝟏𝟑, 𝒐𝒖𝒕. 𝟏𝟑 〉 and 〈𝒊𝒏. 𝟒𝟓, 𝒐𝒖𝒕. 𝟒𝟓 〉. 

Modelling the protocol’s messages 

For simplicity of presentation, let us consider a simplified version 

of the protocol in which A and B already know each other’s public 

keys. Under these circumstances, A and B can forgo the 

communications with the key server S, resulting in a protocol in which 

only three messages need to be exchanged: 

- A → B : {Na , A}Kb; 

- B → A : {Na , Nb}Ka; 
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- A → B : {Nb}Kb. 

 

INITIATOR(a,na) = 
Irunning.a?b →comm.msg1.a.b.Encrypt.Kb.na.A 
                      →comm.msg2.b.a.Encrypt.Ka ?n?nb 

              →if not (n == na) 
then STOP 

                                    else (comm.msg3.a.b.Encrypt.Kb.nb 
             →Icommit.a.b 

                          →session.a.b →STOP) 
Figure 8.4. The process Initiator(𝐚, 𝐧𝐚) 

This simplification does not affect the final result of the analysis: 

the flaw uncovered also exists in the seven-message version of the 

protocol. 

In the analysis that follows, three forms of compound events will 

represent these messages: 

- msg1.A.B.Encrypt.Kb.Na.A; 

- msg2.B.A.Encrypt.Ka .Na.Nb; 

- msg3.A.B.Encrypt.Kb.Nb. 

In each case, the event captures the message’s role in the protocol, 

its sender and receiver, the key used to encrypt, and the contents of the 

encrypted message. 

These events are further extended with prefixes (comm, intercept, 

fake) to represent messages that are communicated safely between A 

and B, intercepted by an intruder, or forged, respectively. 

Modelling the agents 

A CSP description for a generic initiator of this protocol ap-pears in 

Figure 8.4. Intuitively, the process INITIATOR(a, na) represents an 

initiator a who originally possesses the single nonce na and has public 

key Ka. The event Irunning.a?b represents a’s intent to initiate a run of 

the protocol with some agent b; the portion ‘?b’ of this event indicates 
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that b can be instantiated to any valid principal of the system. (There is 

a similar event Rrunning.b?a
'
 that represents a recipient b’s belief that it 

is engaged in a run of the protocol with a principal claiming to be a
'
.) 

The initiator’s transmission of the first message in the protocol is 

represented by the event comm.msg1.a.b.Encrypt.Kb.na.a, where Kb is 

the public key associated with b; the initiator then waits for the 

response message from b, as represented by the event
2
 

comm.msg2.b.a.Encrypt.Ka?n?nb. 

The initiator terminates the protocol if the nonce n received is not 

the nonce that it originally transmitted; this termination is represented 

by the deadlock process STOP. 

If the nonce does match, then the initiator transmits the final 

message to b (per the event comm.msg3.a.b.Encrypt.Kb.nb) and 

commits to the protocol (represented by the event Icommit.a.b). The 

final event session.a.b abstracts the actual session between a and b. 

As given, the process INITIATOR(a, na) does not incorporate the 

possibility of intercepted or faked messages. We can include these 

possibilities via a simple renaming, as in Figure 8.5, where we are able 

to fix a particular initiator A with nonce NA. This renaming captures the 

notion that the Initiator’s communications can be intercepted and that 

the messages it receives could be forged by an intruder, unbeknown to 

the Initiator (i.e. the Initiator behaves as if every communication is 

legitimate). 

INIT = INITIATOR(A,NA) [comm.msg1 ← comm.msg1, 
comm.msg1 ← intercept.msg1, 

comm.msg2 ← comm.msg2, 
comm.msg2 ← fake.msg2, 

comm.msg3 ← comm.msg3, 
comm.msg3 ← intercept.msg3] 

Figure 8.5. The revised initiator Init 

A responder process can be written in a similar fashion, after which 

the pair of agents are placed in parallel: 
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AGENTS = INIT [|comm, session|] RESP 

Here, comm and session are used to constrain the behaviour of the 

processes: comm and session events may occur only if both agents 

participate in them simultaneously. 

Modelling the intruder 

In modelling the intruder, it pays to be as general as possible: if we 

encode particular types of attacks, then at best we can argue that the 

protocol is invulnerable to those specific attacks. Instead, we encode 

only the following general (and standard) assumptions about the 

intruder: 

(1) the intruder can potentially overhear and intercept any 

message in the system;  

(2) the intruder can decrypt any message encoded with her own 

public key;  

(3) the intruder can replay intercepted messages (and alter any 

plaintext components of them), even if she cannot decrypt the message 

itself;  

(4) the intruder can introduce new messages into the system, 

using any nonces she has available to her.  

In particular, we can assume that the intruder cannot decrypt 

messages encrypted with keys that she does not possess. However, we 

can make no assumptions about the intruder’s status within the 

network: the intruder may be an insider or an outsider. 

The complete CSP description is fairly straightforward but rather 

long. As a simplification that illustrates the approach, Figure 8.6 

provides a CSP description for an intruder in a system where the only 

messages being passed around are of the second type (i.e. those that 

contain two nonces encrypted); the true description of the intruder 

process also incorporates comm, fake and intercept events involving 

messages 1 and 3. The process INTR(Ms, Ns) is parameterized by two 

sets: Ms, which contains the undecrypted messages the intruder has 

intercepted so far, and Ns, the set of nonces she has collected so far. 

The comm events correspond to communications in which the intruder 
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is a legitimate participant (i.e. the intruder is the original sender or 

intended recipient). The fake events correspond to replays that the 

intruder performs: she can replay any message that she has already 

seen,
3
 and she can modify the plaintext fields (i.e. the identities of 

senders and receivers) at will. Finally, the intercept events correspond 

to message interceptions: if the message is encoded with her own key, 

the intruder can decrypt it and add the two (now decrypted) nonces to 

her collection of known nonces; if not, then the message becomes one 

that she can replay at a later date. 

INTR(Ms, Ns) = 
comm.msg2?b.a.Encrypt.k.n1.n2 

→if (k == Ki ) 
then INTR (Ms, Ns ∪ {n1, n2}) 

else INTR (Ms ∪ {Encrypt.k.n1.n2}, Ns) 

ᴨ fake.msg2?a?b?m:Ms → INTR(Ms, Ns) 
ᴨ fake.msg2?a?b.Encrypt?k?n : Ns?n

_:Ns → INTR(Ms, Ns) 

ᴨ intercept.msg2?b.a.Encrypt.k.n1.n2 
→if (k == Ki ) 

then INTR(Ms, Ns ∪ {n1, n2}) 

else INTR(Ms ∪ {Encrypt.k.n1.n2}, Ns) 

Figure 8.6. The intruder process INTR(𝐌𝐒, 𝐍𝐒) 

Finally, the entire system is defined by placing the agents and an 

intruder with nonce NI in parallel: 

SYSTEM=AGENTS[|𝒄𝒐𝒎𝒎, 𝒇𝒂𝒌𝒆, 𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕|] INTR(∅, {𝑵𝑰}) 

Specifying and assessing authentication 

Authentication requires that whenever a principal A thinks she has 

established a session with B, B has indeed been running the protocol 

with A. Because we wish to verify two-way authentication, there are 

two properties to specify: 

(1) the initiator A commits to the session only if the responder B 

thinks he has participated in the protocol with A; and (2) the responder 
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B commits to the session only if the initiator A thinks she has 

participated in the protocol with B. 

These two properties can be expressed in CSP as the processes RA 

(receiver authentication) and IA (initiator authentication): 

RA = Rrunning.A.B → Icommit.A.B → RA 

IA = Irunning.A.B → Rcommit.A.B → IA 

To verify that the authentication properties hold, it suffices to 

perform the following two refinement checks: 

RA SYSTEM \ (∑ − {Rrunning.A.B, Icommit.A.B}) 

IA SYSTEM \ (∑ − {Irunning.A,B, Rcommit.A.B}) 

That is, if every trace of SYSTEM (with all events other than 

Rrunning.A.B and Icommit.A.B hidden) is also a trace of RA, then the 

property RA is guaranteed to hold (and similarly for the property IA).  

It turns out that the first refinement check succeeds, but the second 

check fails: there are traces of SYSTEM in which the event Rcommit.A.B 

occurs without a preceding Irunning.A.B event. For example, SYSTEM 

can perform the can the following sequence of events:  

Irunning.A.I         (1) 

intercept.msg1.A.I.Encrypt.KI .NA.A  (2) 

fake.msg1.A.B.Encrypt.KB.NA.A   (3) 

Rrunning.A.B         (4) 

intercept.msg2.B.A.Encrypt.KA.NA.NB  (5) 

fake.msg2.I.A.Encrypt.KA.NA.NB   (6) 

intercept.msg3.A.I.Encrypt.KI .NB   (7) 

fake.msg3.A.B.Encrypt.KB.NB    (8) 

Rcommit.A.B         (9) 

The existence of this trace highlights a potential ‘man in the 

middle’ attack, whereby the intruder participates as a legitimate 

recipient in one run of the protocol with A (the events in lines (1)–(2) 

and (6)–(7)) while impersonating A in a second run of the protocol with 

B (lines (3)–(5) and (8)–(9)). Ultimately, B commits to a session with 

A, despite the fact that A never even attempted to interact with B. 
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8.5 Associating keys and principals 

Up until now, we have taken for granted the association between 

principals and keys. Correctly making this association is crucial, 

particularly when using a PKI. Associating keys with principals 

typically depends on two components. 

(1) Certification authorities: principals who are recog-nized as 

having the authority to vouch for the correct-ness of the associations 

between keys and principals.  

(2) Certificates: data structures that associate keys with 

principals. They are digitally signed by certification authorities to 

preserve the integrity of the cryptographic information.  

Certificates are much like driver’s licenses and certification 

authorities are like the network of authorities who issue those licenses. 

Chief among standards for public-key authentication services is the 

X.509 standard [8]. 

Figure 8.7 contains an example of a very simple multiple 

certification-authority (MCA) network, where principal CA1 is the 

certification authority for principal A, CA2 is the certification authority 

for principal B, and CA1 has a certificate for CA2. In this example, 

using the notation of X.509, the following certificates exist. 

- CA1〈〈𝑪𝑨𝟐〉〉: a certificate digitally signed with CA1’s private key 

certifying that key CA2p is CA2’s public key. The integrity of this 

certificate is checked using CA1’s public key CA1p; 

- CA2〈〈𝑩〉〉: a certificate digitally signed with CA2’s private key 

certifying that key Bp is B’s public key. The integrity of this 

certificate is checked using CA2’s public key CA2p. 
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Figure 8.7. Multiple certification authorities 

Informally, principal A can get principal B's pudlic key using the 

above certeficates, provided that A knows CAI's public key (i.e. 𝑪𝑨𝑰𝒑 ). 

First, A uses 𝑪𝑨𝑰𝒑 and the certeficate CAI 〈〈𝑪𝑨𝟐〉〉 to get an integrity-

chacked copy of CA2's pudlic key (𝑪𝑨𝟐𝒑). In the notation of X.509, 

this step is represented by the equation  

𝑪𝑨𝟐𝒑 = 𝑪𝑨𝑰𝒑 • 𝑪𝑨𝑰〈〈𝑪𝑨𝟐〉〉 

where • denotes the operator that extracts a key from a certificate 

and checks its integrity using the supplied public key. Using CA2p, A 

then extracts from the certificate 𝑪𝑨𝟐〈〈𝑩〉〉 an integrity-checked copy 

of Bp: 

𝑩𝒑 = 𝑪𝑨𝟐𝒑 • 𝑪𝑨𝟐〈〈𝐁〉〉 

Reasoning about certification 

Lampson et al. [4] created a logic to reason about authentication in 

distributed systems. One of the main purposes of the logic is to answer 

questions such as ‘Who is speaking?’ and ‘Whom does this key speak 

for or represent?’. While space considerations do not allow a complete 

description of the logic here, we give a flavour of the logic and its use 

by examining the MCA example with it. 

There are two central notions necessary for our analysis. 

(1) Principals making statements. This notion is denoted by P 

says s, where P is a principal and s is some (logical) statement. Implicit 

in says statements is the notion that the statement can be traced back to 
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some digitally signed statement. Principals can be people, machines, 

operating systems or cryptographic keys.  

(2) Principals speaking for principals. The notion of principal P 

speaking for principal Q is denoted by P ⇒ Q. A common idiom is Pp 

⇒ P , which indicates that P ’s public key Pp speaks for P : statements 

that are digitally signed using Pp will be inferred to be statements made 

by P. 

The logic is defined by approximately 19 axioms, including the 

following handoff axiom: 

(P says (Q ⇒ P)) ⊃ (Q ⇒ P). 

This handoff axiom says that whenever a principal P states that 

another principal Q speaks on P ’s behalf, then Q does speak on P ’s 

behalf. Related to this axiom is the property 

(P ⇒ Q) ⊃ ((P says s) ⊃ (Q says s)). 

This property—derivable from the logic’s axioms—states that 

whenever a principal P speaks for Q and makes a statement s, it is safe 

to behave as if Q made the statement s. 

Analysis of the MCA example 

Returning to the example of Figure 8.7, it was shown how this logic 

helps us to reason about the certificates and the implicit trust 

assumptions that underlie A’s trust in Bp as B’s public key. That is, we 

are able to isolate sufficient assumptions under which A can conclude 

that Bp ⇒ B. 

It turns out that the following five assumptions are sufficient for 

concluding Bp ⇒ B. 

(1) CA1p ⇒ CA1. A knows the public key of its certification 

authority (i.e. from A’s perspective, the key CA1p speaks for CA1). 

(2) CA1p says (CA2p ⇒ CA2). CA1’s public key CA1p is used to 

verify the validity of the certificate CA1〈〈𝑪𝑨𝟐〉〉. 
(3) CA2p says (Bp ⇒ B). Similarly, the key CA2p is used to verify 

the certificate CA2〈〈𝑩〉〉.  
(4) CA1 ⇒ CA2. A trusts its certificate authority to speak for other 
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certificate authorities (CA2 in this case). 

(5) CA2 ⇒ B. A knows that B’s certificate authority is CA2. 

The proof of 𝑩𝒑⇒  𝑩 from these assumptions is straightforward. 

From the derived property (𝑷 ⇒ 𝐐) ⊃  ((𝐏 𝐬𝐚𝐲𝐬 𝐬) ⊃ (𝐐 𝐬𝐚𝐲𝐬 𝐬)) and 

assumptions (1) and (2), we can deduce that CAI says (𝑪𝑨𝟐𝒑 ⇒ 𝑪𝑨𝟐). 

Likewise, we can then use assumption (4) to deduce that 

𝑪𝑨𝟐 𝒔𝒂𝒚𝒔 (𝑪𝑨𝟐𝒑 ⇒ 𝑪𝑨𝟐). 

From the handoff axiom, we get that 𝑪𝑨𝟐𝒑 ⇒ 𝑪𝑨𝟐. At this point, 

the certificate for B in assumption (3) allow us to conclude that 

𝑪𝑨𝟐 𝒔𝒂𝒚𝒔 (𝑩𝒑⇒  𝑩). Another application of the derived property, this 

time using assumption (5), lets us deduce that 𝑩 𝒔𝒂𝒚𝒔 (𝑩𝒑⇒  𝑩). 

Finally, the handoff axiom lets us conclude that (𝑩𝒑⇒  𝑩), which was 

our original goal. The value of this analysis is twofold: (1) it makes 

explicit the trust assumptions being made, and (2) it assures a consistent 

treatment of certificates and assumptions about certification authorities. 

8.6 Conclusions 

In this chapter there is no attempt to give an exhaustive description 

of the applications of formal methods to the problem of assuring 

security: we have examined only a single session-based protocol, 

designed to provide mutual authentication using a PKI. In particular, 

we have ignored shared-key cryptographic systems as well as store-

and-forward security (e.g., secure electronic mail). 

Instead, we focused on a single protocol and sketched how multiple 

logical systems and formal models can provide insight into security 

issues from a variety of viewpoints. The choice of a particular 

formalism is driven in part by the properties one wishes to prove and 

also by the tools available. Both the BAN logic and the authentication 

of logic of are special-purpose modal logics, specifically designed to 

support reasoning about freshness and trust. They focus attention on 

what principals must be prepared to accept and to believe in order to 

trust in the correctness of a protocol. In contrast, the process algebra 
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CSP is a general-purpose language for describing and reasoning about 

the behaviour of concurrent systems. For this reason, it is well suited 

for reasoning about the high-level interactions and events that may 

occur during a run of a protocol. 

These analyses demonstrate the subtlety of security properties and 

the importance of having rigorous methods for assessing the security of 

a system. Security properties are affected by timing and timeliness 

(e.g., present versus past runs of a protocol), trust (or lack thereof) in 

various principals and authorities, and cryptographic properties. 

Furthermore, there are nuances that arise between different levels of 

abstraction. The value of these formal methods is that they help in the 

detection of weaknesses and possible attacks, as well as making explicit 

any necessary assumptions that have been made. 

Finally, the methods described in this chapter are all accessible to 

engineers with an understanding of predicate logic. The specialized 

logics can be embedded into theorem provers: [15] describes the 

embedding of a BAN-like logic into the HOL theorem prover [16]. 

Likewise, there are tools such as Lowe’s Casper [17] that automatically 

translate abstract descriptions of security protocols into process-

algebraic descriptions that can be analysed with model checkers. 

 

Advancement questions 

1. How can we use the formal methods to analyse protocol? 

2. What is the BAN belief logic? 

3. What does the security properties describe? 

4. What do the key-distribution protocols enable? 

5. What is the Needham–Schroeder protocol is designed for? 

6. What do the CSP and CCS process algebras provide? 

7. What the components the associating keys with principals 

depends on? 

8. What are the main principals of the modelling the protocol’s 

messages? 
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9. What are the main principals of the modelling the intruder? 

10. What are the main principals of the specifying and assessing 

the authentication? 
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CHAPTER 9. FORMAL METHODS FOR THE ANALYSIS 

OF SECURITY PROTOCOLS 
 

Content of the CHAPTER 9 

 

Soundness of Formal Encryption 

Relating Symbolic and Computational cryptography has attracted 

the interest of the research community. Several different directions 

have been taken to bridge the gap between the two models: some 

extend the existing results by including more primitives; some by 

adapting existing results from the passive adversary scenario to the 

active adversary scenario; some others by including new primitives 

from computational cryptography. 

This chapter is one more effort to bridge the gap between these two 

communities. Mainly, let us try to bridge two gaps that exist since the 

early results of Abadi and Rogaway. The first is the non-existence of 

soundness results in the presence of key-cycles. Key-cycles do not 

present a problem from the symbolic point of view. One may even 

argue that protocols that create messages with encryption cycles may be 

avoided and are just result of bad engineering. But, even if our 

protocols are restricted to the cases where no cycles are created, no one 

can ensure us that an adversary is not able to create cyclic encryptions 

and that these would not cause problems. Studying this is part of the 

work in this chapter. We can show that it is possible to close this gap 

but for that the use of new definitions of security is needed. 

The second gap is to be closen is to extend the original Abadi and 

Rogaway result when the encryption scheme used provides less security 

guarantees. The encryption scheme used in their original result is very 

strong and arguably impossible to realise in many contexts. The aim is 

to relax such conditions by allowing the use of weaker encryption 

schemes but still achieving similar soundness results. It will allow 

encryption schemes that reveal the length of the encrypted plaintext. 

Let us study this particular example and then show a uniform 
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framework with which it will be able to characterise a large family of 

encryption schemes. 

9.1 The Abadi-Rogaway Soundness Theorem 

The main definitions and results of Abadi and Rogaway’s original 

work are briefly summarised [4, 2]. In particular, let us start presenting 

the formal model, then describe the computational model, and then 

introduce the notion of soundness. Furthermore, let us introduce the 

notion of completeness, which can be viewed as the counter-point to 

soundness. 

The Formal Model 

In this model, messages (or expressions) are defined at a very high 

level of abstraction. The simplest expressions are symbols for atomic 

keys and bit-strings. More complex expressions are created from 

simpler ones via encryption and concatenation, which are defined as 

abstract, ‘black-box’ constructors. 

Definition 9.1 (Symmetric Expressions). Let Keys = 
{𝐊𝟏; 𝐊𝟐;  𝐊𝟑;… } be an infinite discrete set of symbols, called the set of 

symmetric keys. Let Blocks be a finite subset of {𝟎, 𝟏}∗. We define the 

set of expressions, Exp, by the grammar: 

Exp ::= Keys | Blocks | (Exp; Exp) | {𝐄𝐱𝐩}𝐊𝐞𝐲𝐬 

Let Enc ::= {𝐄𝐱𝐩}𝐊𝐞𝐲𝐬. We will denote by Keys(M) the set of all 

keys occurring in M. Expressions of the form {𝑴}𝑲 are called 

encryption terms. 

Expressions may represent either a single message sent during an 

execution of the protocol, or the entire knowledge available to the 

adversary. In this second case, the expression contains not only the 

messages sent so far, but also any additional knowledge in the 

adversary’s possession. 

Let us define two formal expressions are indistinguishable to the 

adversary. Intuitively, this occurs when the only differences between 

the two messages lie within encryption terms that the adversary cannot 

decrypt. In order to rigorously define this notion, we first need to 
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formalise when an encryption term is ‘undecryptable’ by the adversary, 

which in turn requires us to define the set of keys that the adversary can 

learn from an expression. 

An expression might contain keys in the clear. The adversary will 

learn these keys, and can then use them to decrypt encryption terms of 

the expression—which might reveal yet more keys. By repeating this 

process, the adversary can learn the set of recoverable decryption keys: 

Definition 9.2 (Subexpressions, Visible Subexpressions, 

Recoverable Keys, Undecryptable Terms, B-Keys). We define the set 

of subexpressions of an expression M, sub (M), as the small-est subset 

of expressions containing M such that: 

- (M1; M2) ∈ sub (M)  M1 ∈ sub (M) and M2 ∈ sub (M), and 
{𝑴′}𝑲 ∈ sub (M)  𝑴′ ∈ sub (M).  

We say that N is a subexpression of M, and denote it by N M, if N ∈ 

sub (M). 

The set of visible subexpressions of a symmetric expression M, vis 

(M), is the smallest subset of expressions containing M such that: 

- (M1; M2) ∈ vis (M)  M1 ∈ vis (M) and M2 ∈ vis (M), and 
{𝑴′}𝑲 and K ∈ vis (M)  𝑴′ ∈ vis (M).  

The recoverable keys of a (symmetric) expression M, R-Keys(M), 

are those that an adversary can recover by looking at an expression. 

That is, R-Keys(M) = vis (M)  Keys(M). 

We say that an encryption term {𝑴′}𝑲 ∈ vis (M) is undecryptable in 

M if K ∉ R-Keys(M). Among the non-recoverable keys of an expression 

M, there is an important subset denoted by B-Keys(M). The set B-

Keys(M) contains those keys which encrypt the outermost 

undecryptable terms. Formally, for an expression M, we define B-

Keys(M) as  

B-Keys(M)={𝑲 ∈  𝑲𝒆𝒚𝒔(𝑴) | {𝑴}𝑲  ∈  𝒗𝒊𝒔 (𝑴) 𝐛𝐮𝐭 𝑲 ∉  𝑹 −
𝑲𝒆𝒚𝒔(𝑴)𝒈 } 

Example 9.1. Let M be the following expression 

(({𝑸}𝑲𝟔 , {{𝑲𝟕}𝑲𝟏}𝑲𝟒
((𝑲𝟐, {({𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓)}𝑲𝟓

) , {𝑲𝟓} 𝑲𝟐  )). 
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In this case, Keys(M) = {𝑲𝟏;  𝑲𝟐;  𝑲𝟑;  𝑲𝟒;  𝑲𝟓;  𝑲𝟔; 𝑲𝟕}. The set 

of recoverable keys of M is R-Keys(M) ={ 𝑲𝟐; 𝑲𝟓;  𝑲𝟔}, because an 

adversary sees the non-encrypted K2, and with that he can decrypt 

{ 𝑲𝟓}𝑲𝟐 , hence recovering K5; then, decrypting twice with K5, K6 can 

be revealed. We also have that B-Keys(M) = { 𝑲𝟑;  𝑲𝟒}. 
The formal model allows expressions to contain key cycles: 

Definition 9.3 (Key-Cycles). An expression M contains a key-cycle 

if it contains encryption terms {𝑴𝟏}𝑲𝟏 , {𝑴𝟐}𝑲𝟐 , … , {𝑴𝒏}𝑲𝒏 (where 

{𝑴𝒊}𝑲𝒊denotes the encryption of the message Mi with the key Ki) and 

Ki+1 v Mi and K1 v Mn. In this case we say that we have a key-cycle of 

length n. 

According to our definition, expressions such as {{𝑴}𝑲}𝑲 are not 

considered cyclic. The original result of Abadi and Rogaway does not 

apply to expressions with key cycles. The aim is to correct this 

weaknes. 

The AR Equivalence of Formal Expressions 

A visible encryption term will appear ‘opaque’ to the adversary if 

and only if it is protected by at least one non-recoverable decryption 

key. Thus, we can to say that two expressions are equivalent if they 

differ only in the contents of their ‘opaque’ encryption terms. To 

express this, Abadi and Rogaway define the pattern of an expression 

through which equivalence of expressions will be obtained: 

Definition 9.4 (Pattern (Classical)). We define the set of patterns, 

Pat, by the grammar: 

Pat ::= Keys | Blocks | (Pat; Pat) | {𝐏𝐚𝐭}𝐊𝐞𝐲𝐬 

The pattern of an expression M, denoted by pattern(M), is derived 

from M by replacing each encryption term {𝑴′}𝑲 ∈ vis (M) (where K ∉ 

= R-Keys(M)) by for two patterns P and Q, P = Q is defined the 

following way: 

- if P ∈ Blocks ∪ Keys, then P = Q iff P and Q are identical; 

- if P is of the form, then P = Q iff Q is of the form; 
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- if P is of the form (P1; P2), then P = Q iff Q is of the form (Q1; 

Q2) where P1 = Q1 and P2 = Q2; 

- if P is of the form {𝑷′}𝑲, then P = Q iff Q is of the form 
{𝑸′}𝑲where P'=Q'. 

(Note that we call these ‘classical’ patterns. This is to distinguish 

them from the more complex patterns that we will consider later.) 

Two expressions are equivalent if their patterns are equal. However, 

consider two very simple formal expressions K1 and K2. Then these 

formal expressions would not be equivalent. On the other hand, these 

two expressions have the same meaning: a randomly drawn key. 

Despite being given different names, they both represent samples from 

the same distribution. It does not matter if we replace one of them with 

the other. More generally, we are able to formalise the notion of 

equivalence in such a way that renaming the keys yields in equivalent 

expression. Therefore, two formal expressions should be equivalent if 

their patterns differ only in the names of their keys. 

Definition 9.5 (Key-Renaming Function). A bijection 𝛔 : Keys → 

Keys is called a key-renaming function. For any expression (or pattern) 

M, M 𝛔 denotes the expression (or pattern) obtained from M by 

replacing all occurrences of keys K in M by 𝛔 (K). 

We are finally able to formalise the symbolic notion of equivalence: 

Definition 9.6 (Equivalence of Expressions). We say that two 

expressions M and N are equiv- alent, denoted by M =̃ N, if there exists 

a key-renaming function 𝛔 such that pattern(M) = pattern(N 𝛔). 

The Computational Model 

The fundamental objects of the computational world are strings, 

strings = {𝟎, 𝟏}∗, and families of probability distributions over strings. 

These families are indexed by a security parameter η ∈ parameters = ℕ 

(which can be roughly understood as key-lengths). Two distribution 

families {𝑫𝛈}𝛈∈ℕ
 and {𝑫𝛈

′ }
𝛈∈ℕ

 are indistinguishable if no efficient 

algorithm can determine from which distribution a value was sampled: 
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Definition 9.7 (Negligible Function). A function f : ℕ → ℝ is said 

to be negligible, written  

f(n) ≤ neg (n), if for any c > 0 there is an nc ∈ ℕ such that f(n) ≤ 

𝒏𝒄−whenever n ≥ nc. 

Definition 9.8 (Indistinguishability). Two families {𝑫𝛈}𝛈∈ℕ
 and 

{𝑫𝛈
′ }
𝛈∈ℕ

, are indistinguish-able, written 𝑫𝛈 ≈ 𝑫𝛈
′ , if for all PPT 

adversaries A, 

|𝑷𝒓 [𝒅 ← 𝑫𝛈; 𝑨(𝟏
𝛈, 𝒅) = 𝟏] − 𝑷𝒓[𝒅 ← 𝑫𝛈

′ ; 𝑨(𝟏𝛈, 𝒅) = 𝟏]|

≤ 𝒏𝒆𝒈(𝛈) 
In this model, pairing is an injective pairing function [.,.] : strings × 

strings → strings such that the length of the result only depends on the 

length of the paired strings. An encryption scheme is a triple of 

algorithms (K; E; D) with key generation K, encryption E and 

decryption D. Let plaintexts, ciphertexts, and keys be nonempty subsets 

of strings. The set coins is some probability field that stands for coin-

tossing, i.e., randomness. 

Definition 9.9 (Symmetric Encryption Scheme). A computational 

symmetric encryption scheme is a triple ∏ = (K; E; D) where 

- K : parameters × coins → keys is a key-generation algorithm; 

- E : keys × strings × coins → ciphertexts is an encryption 

function; 

- D : keys × strings → plaintexts is such that for all k ∈ keys and 

𝝎 ∈ coins,  

D(K,E(k,m,w))=m for all m ∈ plaintexts 

D(K,E(k,m',w))=⊥ for all m' ∉ plaintexts 

All of K, E and D are computable in polynomial-time in the length 

of the security parameter. This definition, note, does not include any 

notion of security, and this must be defined separately. In fact, there are 

several different such definitions. Abadi and Rogaway, in their work, 

consider a spectrum of notions of their own devising, from ‘type-0’ to 

‘type-7.’ Their main result uses the strongest of these notions, type-0. 
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Definition 9.10 (Type-0 Security). We say that a computational 

encryption scheme is type-0 secure if no probabilistic polynomial-time 

adversary A can distinguish the pair of oracles (E(k;  ∙ ); E(k';  ∙ )) from 

the pair of oracles (E(k; 0); E(k; 0)) as k and k
'
 are randomly generated. 

That is, for any probabilistic polynomial-time algorithm, A, 

𝑷𝒓[𝒌, 𝒌′ ← 𝑲(𝟏𝛈): 𝑨𝑬(𝒌,∙ ),𝑬(𝒌
′,∙ )(𝟏𝛈) = 𝟏]

− 𝑷𝒓[𝒌 ← 𝑲(𝟏𝛈): 𝑨𝑬(𝒌,𝟎),𝑬(𝒌,∙𝟎)(𝟏𝛈) = 𝟏] ≤ 𝒏𝒆𝒈(𝛈) 
Intuitively the above formula says the following: The adversary is 

given one of two pairs of oracles, either (E(k;  ∙); E(k
'
;  ∙)) or (E(k; 0); 

E(k; 0)) (where the keys were randomly generated prior to handing the 

pair to the adversary), but it does not know which. Then, the adversary 

can perform any (probabilistic polynomial-time) computation, 

including several queries to the oracles. It can even query the oracles 

with messages that depend on previously given answers of the oracles. 

(The keys used by the oracles for encryption do not change while the 

adversary queries the oracles.) After this game, the adversary has to 

decide with which pair of oracles it was interacting. The adversary wins 

the game if he can decide for the correct one with a probability bigger 

than 
𝟏

𝟐
, or (equivalently) if it can distinguish between the two. If this 

difference is negligible, as a function of 𝛈, we say the encryption 

scheme is type-0 secure. 

As Abadi and Rogaway show, type-0 security is strong enough to 

provide soundness to the formal model. But to see this, we must first 

explain how the two models can be related. 

The Interpretation Function, Soundness and Completeness 

In order to prove any relationship between the formal and 

computational worlds, we need to define the interpretation of 

expressions and patterns. Once an encryption scheme is picked, we can 

define the interpretation function Φ, which assigns to each expression 

or pattern M a family of random variables {𝚽𝛈(𝑴)}𝛈∈ℕ
 such that each 
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𝚽𝛈(𝑴) takes values in strings. As in Abadi and Rogaway [2], this 

interpretation is defined in an algorithmic way. Intuitively, 

- blocks are interpreted as strings;  

- each key is interpreted by running the key generation algorithm;  

- pairs are translated into computational pairs; 

- formal encryptions terms are interpreted by running the 

encryption algorithm on the inter-pretation of the plaintext and 

the interpretation of the key. 

For an expression M, we will denote by ⟦𝑴⟧𝚽𝛈the distribution of 

𝚽𝛈(𝑴) and by ⟦𝑴⟧𝚽 the ensemble of {⟦𝑴⟧𝚽𝛈}𝛈∈ℕ
. 

Then soundness and completeness are defined in the following way: 

Definition 9.11 (Soundness (Classical)). We say that an 

interpretation is sound in the classical sense, or that an encryption 

scheme provides classical soundness, if the interpretation Φ (result-ing 

from the encryption scheme) is such that for any given pairs of 

expressions M and N 

𝑴 ≅ 𝑵 ⇒ ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽 
The primary result of Abadi and Rogaway given in [2] is that type-

0 security provides classical soundness if the expressions M and N have 

no key-cycles. 

Soundness has a counterpart, completeness. One can consider 

soundness to be the property that formal indistinguishability always 

becomes computational indistinguishability. One can think of 

completeness as the converse: computational indistinguishability is 

always the result of formal indistinguishability: 

Definition 9.12 (Completeness (Classical)). We say that an 

interpretation is complete (in the classical sense), or that an encryption 

scheme provides (classical) completeness, if the interpre-tation Φ 

(resulting from the encryption scheme) is such that 

⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽 ⇒𝑴 ≅ 𝑵 
for any expressions M and N. 
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We remark that for the proofs of the soundness and completeness 

results, it was convenient for Abadi and Rogaway to introduce the 

interpretation of any pattern M (although this is not absolutely 

necessary). Therefore, boxes are interpreted as well, such that  is 

interpreted by running the encryption algorithm on the fixed plaintext 0 

and a ran-domly generated key.  

The precise definition of 𝚽𝛈(𝑴) for any pattern M is given by the 

algorithms in Figure 9.1. We are able to note that these algorithms are 

fully defined for patterns, and because the grammar for patterns 

contains the grammar for expressions as a sub-grammar, they are fully 

defined for expressions as well. 

     algorithm INITIALIZE(𝟏𝛈; M) 
for K ∈ Keys(M) do 𝛕(K) ←K(𝟏𝛈)  

let 𝐤𝟎 ←K(𝟏𝛈) 
algorithm CONVERT(M) 

if M = K where K ∈ Keys then return 𝛕 (K) 
if M = B where B ∈ Blocks then return B 

if M = (M1; M2) then 
𝐱 ← CONVERT(M1)  

𝐲 ← CONVERT(M2) return [x; y] 
if M = {𝐌𝟏}𝐊 then 

𝐱 ← CONVERT(M1) 𝐲 ← 𝐄(𝛕(𝐊), 𝐱) 
 return y 

if M = , then 𝐲 ←  𝐄(𝐤𝟎, 𝟎) 
return y 

Figure 9.1: Algorithmic components of the interpretation function 

9.2 Soundness in the Presence of Key-Cycles 

Key-cycles do not cause a problem with completeness, however, 

one of the weaknesses of the original Abadi-Rogaway’s result is that it 

is not possible to prove soundness for expressions that included key-

cycles. So let us address this problem in this section starting by 

showing that, soundness in the presence of key-cycles is not possible to 
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prove with the security notion adopted by Abadi and Rogaway. Let us 

consier a new notion of security, KDM-security as a solution for the 

problem. In order to prove soundness, it also needed to extend our 

formal model, and after that show that with this new definition of 

security it is possible to obtain soundness even in the presence of key-

cycles. 

Type-0 Security is Not Enough 

In this section let us show that type-0 security is not strong enough 

to ensure soundness in the case of key-cycles. That is, let us 

demonstrate that it is possible to construct encryption schemes that are 

type-0, but fail to provide soundness in the presence of key-cycles. 

Theorem 9.1. Type-0 security does not imply soundness. That is, if 

there exists an encryption scheme that is type-0 secure, then there exists 

another encryption scheme which is also type-0 secure but does not 

provide soundness. 

Proof. This is shown via a simple counter-example. Assuming that 

there exists a type-0 se-cure encryption scheme, we will use it to 

construct another scheme which is also type-0 secure. However, we 

will show that this new scheme allows the adversary to distinguish one 

particular expression M from another particular expression N, even 

though M ≅ N. 

Let M be {𝑲}𝑲 and let N be the expression {𝑲𝟏}𝑲𝟐. Since these two 

expressions are equiv-alent, an encryption scheme that enforces 

soundness requires that the family of distributions: 
{𝒌 ← 𝐊(𝟏𝛈); 𝐜 ← 𝐄(𝐤, 𝐤): 𝐜}𝛈∈ℕ 

be indistinguishable from the family of distributions: 

{𝒌𝟏 ← 𝐊(𝟏
𝛈); 𝒌𝟐 ← 𝐊(𝟏

𝛈); 𝐜 ← 𝐄(𝐤𝟏, 𝐤𝟐): 𝐜}𝛈∈ℕ 

However, this is not implied by Definition 2.10. Let ∏ = (K; E; D) 

be a type-0 secure encryption scheme. We assume that ¦ is such that 

keys and ciphertexts have different formats. Then, using ¦, we can 

construct a second type-0 secure encryption scheme ∏ ' = (K', E', D') as 

follows:  
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- Let K'= K,  
- Let E'

 be the following algorithm:  

𝑬′(𝒌,𝒎) =  

𝒌
𝑬(𝒌, 𝒌)

𝑬(𝒌,𝒎)
 
𝒊𝒇 𝒎 = 𝒌

𝒊𝒇 𝑬(𝒌,𝒎) = 𝒌
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

- Let D' be the following algorithm: 

𝑫′(𝒌, 𝒄) =  

𝒌
𝑫(𝒌, 𝒌)

𝑫(𝒌, 𝒄)
 
𝒊𝒇 𝒄 = 𝒌

 𝒊𝒇 𝒄 = 𝑬(𝒌, 𝒌)

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

The scheme ∏' acts exactly like ∏ unless the encryption algorithm 

E
' 
is called on a pair (k; k). It is easy to see that this scheme is also type-

0 secure. 

To see this, suppose that ∏' is not type-0 secure. That is, there 

exists some adversary A which can distinguish the pair of oracles (E' 

(k, •), E' (k', •)) from the pair (E' (k, 0), E' (k, 0)). There are two 

possibilities. Suppose that the adversary queried the oracle on k or k'. 

Then it would certainly be able to distinguish the oracle-pairs, but this 

also means that the adversary can produce the secret symmetric key to 

the scheme ∏. Thus, the encryption scheme ∏ cannot be secure in any 

sense, much less type-0. Suppose, on the other hand, the adversary did 

not query the oracles on k or k
'
 but managed to distinguish between the 

oracle pairs anyway. Then it was able to do so even though the 

encryption scheme ∏' acted exactly like ∏, and so ∏ cannot be type-0 

secure. 

Thus, the new scheme ∏' must also be type-0 secure. However, it 

does not guarantee in-distinguishability for the two distributions above. 

The first distribution will output always the encryption key while the 

second outputs a ciphertext, and these two distributions are easily dis-

tinguished by form alone. 

Remark 9.1. We note that in the proof, the expression M contains a 

key-cycle of length 1. What if all key-cycles are of length 2 or more? 

This question remains open. That is, there is no known type-0 secure 

encryption scheme which fails to provide soundness for key-cycles that 

are of length two or more. 
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Because type-0 encryption implies types 1 through 7, Theorem 9.1 

implies that soundness with key-cycles cannot be provided by the 

security definitions devised by Abadi and Rogaway. In the next section,  

shows that the soundness property can be met with new computational 

definitions. 

KDM-Security 

In the last section, it was shown that the notions of security found in 

[4, 2] are not strong enough to enforce soundness in the presence of 

key-cycles. However, key-dependent message (KDM) security, which 

was introduced by Black et al. [3] (and in a weaker form by Camenisch 

and Lysyanskaya [5]), is strong enough to enforce soundness even in 

this case. 

KDM security both strengthens and weakens type-0 security. Recall 

that type-0 security allows the adversary to submit messages to an 

oracle which does one of two things: 

- it could encrypt the message twice, under two different keys, or it 

could encrypt the bit 0 twice, under the same key.  
An encryption scheme is type-0 secure if no adversary can tell 

which of these is being done. For KDM security, however, the game is 

slightly different. To over-simplify: 

- the oracle in the KDM-security encrypts once, under only one 

key; 
- further, it encrypts either the message, or a string of 0’s of 

equivalent length; 
- however, it is willing to encrypt not just messages from the 

adversary, but also (more generally) functions of the secret key.  
The first two of these differences make KDM security weaker than 

type-0 security. Specifically type-0 security conceals both the length of 

the plaintext and whether two ciphertext were created using the same 

encryption key or different ones. KDM security does not necessarily 

conceal either of these things. The last difference, however, is a 

significant strengthening. As its name suggests, KDM security remains 
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strong even when the messages depend on the secret key— which, as 

Theorem 2.1 shows, is not necessarily true for type-0 security. 

To provide the full picture, KDM security is defined in terms of 

vectors of keys and functions over these vectors. It is also defined in 

terms of oracles 𝑹𝒆𝒂𝒍�̅� and 𝑭𝒂𝒌𝒆�̅� , which work as follows: 

- suppose that for a fixed security parameter η ∈ ℕ , a vector of 

keys is given �̅� = {𝒌𝒊 ← 𝐊(𝟏
𝛈)}𝒊∈ ℕ  (In each run of the key-

generation algorithm independent coins are used.) The adversary 

can now query the oracles providing them with a pair (j, g), 

where j ∈  ℕ and g : 𝒌𝒆𝒚𝒔∞ → {𝟎, 𝟏}∗ is a constant length, 

deterministic function: 

96. - The oracle 𝑹𝒆𝒂𝒍�̅� when receiving this input returns c ← 

𝑬(𝒌𝒋, 𝒈(�̅�)). 

97. - The oracle 𝑭𝒂𝒌𝒆�̅� when receiving this same input returns c 

← 𝑬(𝒌𝒋, 𝟎
|𝒈(�̅�)|).  

The challenge facing the adversary is to decide whether it has 

interacted with oracle 𝑹𝒆𝒂𝒍�̅� or oracle 𝑭𝒂𝒌𝒆�̅�. Formally: 

Definition 9.13 (Symmetric-KDM Security). Let ∏ = (K,E,D) be a 

symmetric encryption scheme. Let the two oracles 𝑹𝒆𝒂𝒍�̅� and 𝑭𝒂𝒌𝒆�̅� 

be as defined above. We say that the encryption scheme is (symmetric) 

KDM-secure if for all PPT adversaries A: 

𝐏𝐫[�̅� ← 𝐊(𝟏𝛈): 𝐀𝑹𝒆𝒂𝒍�̅� (𝟏𝛈) = 𝟏]

− 𝐏𝐫[�̅� ← 𝐊(𝟏𝛈): 𝐀𝑭𝒂𝒌𝒆�̅� (𝟏𝛈) = 𝟏] ≤ 𝒏𝒆𝒈(𝛈) 
Remark 9.2. We note that although all known implementations of 

KDM-security are in the random-oracle model, this definition is well-

founded even in the standard model. We also note that this definition is 

phrased in terms of indistinguishability. One could also imagine 

analogous defini-tions phrased in terms of non-malleability, but an 

exploration of those are beyond the scope of this dissertation. 

We note that KDM-security implies type-3 security: 

Definition 9.14 (Type-3 Security). Let ∏ = (K,E,D) be a symmetric 

encryption scheme. We say that the encryption-scheme is type-3 secure 
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if no PPT adversary A can distinguish the oracles 𝑬(𝒌,•) and 

𝑬(𝒌; 𝟎|•|) as k is randomly generated, that is, for all PPT adversaries 

A: 

𝑷𝒓 [𝒌 ← 𝐊(𝟏𝛈): 𝐀𝑬(𝒌,•)] −  𝑷𝒓 [𝒌 ← 𝐊(𝟏𝛈): 𝐀𝑬(𝒌; 𝟎
|•|) (𝟏𝛈) = 𝟏]

≤ 𝒏𝒆𝒈(𝛈) 
In fact, the definition of type-3 encryption is exactly the same as 

that for KDM-security, except that the adversary must submit concrete 

messages to the encryption oracle instead of functions. But since the 

functions submitted in KDM security can be constant function that 

always produce a single output, the type-3 security ‘game’ is a special 

case of that for KDM security. 

On the other hand, KDM security does not attempt to conceal the 

length of the plaintext (type-1 security) or that two ciphertexts were 

created with the same key (type-2 security). It will be impossible, 

therefore, for KDM security to provide soundness in the classical sense 

(Defini-tion 2.11). Nonetheless, a weaker form of soundness can be 

achieved if the formal model is also weakened slightly. 

A New Formal Model 

In this section, let us consider a weaker version of the formal 

model—one that allows formal en-cryption to leak partial information 

about the plaintext and key. Here let us focus on the partial leakage 

allowed (in the computational model) by KDM security: the length of 

the plaintext, and whether two different ciphertexts were created using 

the same key. 

To model the leakage of plaintext length, we first need to add the 

very concept of ‘length’ to the formal model. 

Definition 9.15 (Formal Length). A formal length-function is a 

function symbol with fresh letter l satisfying at least the following 

identities: 

- for all blocks B1 and B2, l (B1) = l (B2) iff |𝑩𝟏| = |𝑩𝟐|; 
- for all expression M and key-renaming function σ, l (M) = l (M σ) 

- if l (M1) = l (N1), l (M2) = l (N2) then l ((M1; M2)) = l ((N1; N2)), 
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and 

- if l (M) = l (N), then for all Ki, l ({𝑴}𝑲𝒊)= l ({𝑵}𝑲𝒊).  

These are the identities that a formal length function mini-mally has 

to satisfy. There may be more. In fact, if only these properties are 

assumed, there is no hope to obtain completeness. It follows that for 

any key-renaming function σ, and expression M, l (M) = l (M σ). 

Given this, it is straightforward to add the required leakage to the 

formal model. If patterns represents those aspects of an expression that 

can be learned by the adversary, then patterns must now reveal the 

plaintext-length and key-names for undecryptable terms: 

Definition 9.16 (Pattern (Type-3)). We define the set of patterns, 

Pat, by the grammar: 

Pat ::= Keys | Blocks | (Pat; Pat) | {𝑷𝒂𝒕}𝑲𝒆𝒚𝒔 | 𝑲𝒆𝒚𝒔,𝒍(𝐄𝐱𝐩) 

The type-3 pattern of an expression M, denoted by pattern3(M), is 

derived from M by replacing each encryption term {𝑴′}𝑲  ∈

𝒗𝒊𝒔 (𝑴)(𝒘𝒉𝒆𝒓𝒆 𝑲 ∉ 𝑹 − 𝑲𝒆𝒚𝒔 (𝑴))𝒃𝒚 𝑲,𝒍(𝐌′).  

Note that the only difference between a type-3 pattern and a 

classical pattern is that an unde-cryptable term {𝑴}𝑲becomes 𝑲,𝒍(𝐌) 

(i.e. labelled with the key and length) in type-3 patterns instead of 

merely  in classical patterns. 

Our notion of formal equality must be updated as well. For two 

patterns P and Q, 𝑷 ≅𝟑 𝑸 is defined the following way: 

Definition 9.17 (Formal Equivalence (Type-3)). We first introduce 

the relation =3 between patterns: 

- if P ∈ Blocks ∪ Keys, then P =3 Q iff P and Q are identical; 

- if P is of the form 𝑲,𝒍(𝐌′), then P =3 Q iff Q is of the form 

𝑲,𝒍(𝐍′), and l (M') = l (N') in the sense of Definition 2.15; 

- if P is of the form (P1; P2), then P =3 Q iff Q is of the form (Q1; 

Q2) where P1 =3 Q1 and P2 =3 Q2.; 

-  if P is of the form {𝑷′}𝑲, then P =3 Q iff Q is of the form {𝑸′}𝑲, 

where P 
'
 =3 Q'. 
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With this, we say that expressions M and N are equivalent in the 

type-3 sense (writen 𝑴 ≅𝟑 𝑵) if there exists a key-renaming function σ 

such that pattern3 (M) =3 pattern3 (Nσ). (Since a key-renaming function 

replaces all occurrences of K with σ(K), we note σ, 𝑲,𝒍(𝐌) will 

become 𝛔 (𝐊),𝒍(𝑴𝛔)•) 

Lastly, the above change to formal equivalence requires that the 

notions of soundness and completeness be similarly altered: 

Definition 9.18 (Soundness (Type-3)). We say that an interpretation 

is type-3 sound, or that an encryption scheme provides soundness in the 

type-3 sense, if the interpretation Φ (resulting from the encryption 

scheme) is such that 

𝑴 ≅𝟑 𝑵 ⇒ ⟦𝐌⟧𝚽 ≈ ⟦𝐍⟧𝚽 
for any pair of expressions M and N. 

Definition 9.19 (Completeness (Type-3)). We say that an 

interpretation is type-3 complete, or that an encryption scheme provides 

completeness in the type-3 sense, if the interpretation 𝚽 (resulting from 

the encryption scheme) is such that for any pair of expressions M and 

N, 
⟦𝐌⟧𝚽 ≈ ⟦𝐍⟧𝚽 ⇒  𝑴 ≅𝟑 𝑵. 

Soundness for Key-Cycles 

Below, we present our two main soundness results: if an encryption 

scheme is KDM secure, it also provides type-3 soundness even in the 

presence of key-cycles. 

Theorem 9.2 (Symmetric KDM Security Implies Soundness). Let Π 

= (K; E; D) be a com-putational symmetric encryption scheme such 

that |𝑬(𝒌,𝒎,𝒘)| = |𝑬(𝒌,𝒎,𝒘′)| for all k ∈ keys; m ∈ plaintexts and 

w; w' ∈ coins. Then, if the length-function l satisfies only the equalities 

listed in Definition 2.15, and Π is KDM-secure, then Π provides type-3 

soundness. 

Proof. We first redefine the interpretation of patterns. The only 

thing we have to change is the interpretation of a box. Now, the 

interpretation of a pattern 𝑲,𝒍(𝐌) for a given security parameter η is 
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given by 𝚽𝛈({𝟎
|𝚽𝛈(𝑴)|}

𝑲
) . That is, the interpretation function used to 

encrypt a single 0 under a random key. Now, it encrypts a string of 0s 

of the same requisite length (length of 𝚽𝛈(M)), and it encrypts them 

under the correct key 𝝉(K). 

The proof in this case is a somewhat reduced hybrid argument. In a 

standard hybrid argument, like the one Abadi and Rogaway used to 

prove their soundness result, several patterns are put between M and N; 

then, using security, it is proven that soundness holds between each two 

consecutive patterns, and therefore soundness holds for M and N. In our 

case, we first directly prove that ⟦𝑴⟧𝚽 is indistinguishable from 

⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑 𝑴⟧𝚽. Then, since that holds for N too, and since 

pattern3(M) differs from pattern3(N) only in the name of keys, 

⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑 𝑴⟧𝚽is indistinguishable from ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑 𝑵⟧𝚽, therefore 

the result follows. KDM security is used when we show that ⟦𝑴⟧𝚽 and 

⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑 𝑴⟧𝚽 are indistinguishable. 

For an arbitrary (formal) key K, let i(K) denote the index of K. For 

an expression M, a set of formal (unrecoverable) keys S, and a function 

𝝉:𝑲𝒆𝒚𝒔\𝑺 → 𝒌𝒆𝒚𝒔, we define a function 𝒇𝑴,𝑺,𝝉 ∶  𝒄𝒐𝒊𝒏𝒔
𝒆(𝑴)  ×

𝒌𝒆𝒚𝒔∞ → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔 (where e(M) is the number of encryptions in M) 

inductively in the following way: 

- for 𝑴 = 𝑩 ∈ 𝑩𝒍𝒐𝒄𝒌𝒔, 𝑙𝒆𝒕 𝒇𝑩,𝑺,𝝉 ∶  𝒌𝒆𝒚𝒔
∞  → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔 𝒃𝒆 

𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒇𝑩,𝑺,𝝉(�̅�) = 𝑩; 

- for 𝑴 = 𝑲 ∈ 𝑲𝒆𝒚𝒔 ∩ 𝑺, 𝒍𝒆𝒕 𝒇𝑲,𝑺,𝝉 ∶  𝒌𝒆𝒚𝒔
∞  → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔 𝒃𝒆  

𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒇𝑲,𝑺,𝝉(�̅�) = 𝒌𝒊(𝑲); 

- for 𝑴 = 𝑲 ∈ 𝑲𝒆𝒚𝒔 ∩ �̅�, 𝒍𝒆𝒕 𝒇𝑲,𝑺,𝝉 ∶  𝒌𝒆𝒚𝒔
∞  → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔 𝒃𝒆  

𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒇𝑲,𝑺,𝝉(�̅�) = 𝝉(𝑲); 

- for 𝑴 = (𝑴𝟏,𝑴𝟐), 𝒍𝒆𝒕 𝒇(𝑴𝟏, 𝑴𝟐),𝑺,𝝉 : 𝒄𝒐𝒊𝒏𝒔
𝒆(𝑴𝟏)  ×

 𝒄𝒐𝒊𝒏𝒔𝒆(𝑴𝟐) × 𝒌𝒆𝒚𝒔∞  →
𝒔𝒕𝒓𝒊𝒏𝒈𝒔 𝒃𝒆 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒇(𝑴𝟏,𝑴𝟐),𝑺,𝝉(𝝎𝑴𝟏, 𝝎𝑴𝟐, �̅�) =

[𝒇(𝑴𝟏),𝑺,𝝉(𝝎𝑴𝟏, �̅�), 𝒇( 𝑴𝟐),𝑺,𝝉(𝝎𝑴𝟐, �̅�)]; 
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- for 𝑴 = {𝑵}𝑲 𝒂𝒏𝒅 𝑲 ∈ 𝑺, 𝒍𝒆𝒕 𝒇{𝑵}𝑲,𝑺,𝝉 ∶ 𝒄𝒐𝒊𝒏𝒔 ×

 𝒄𝒐𝒊𝒏𝒔𝒆(𝑵)  ×  𝒌𝒆𝒚𝒔∞  →
𝒔𝒕𝒓𝒊𝒏𝒈𝒔 𝒃𝒆 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒇{𝑵}𝑲,𝑺,𝝉(𝝎,𝝎𝑵, �̅�) =

𝑬(𝒌𝒊(𝑲), 𝒇𝑵,𝑺,𝝉(𝝎𝑵, �̅�), 𝝎). 

- for 𝑴 = {𝑵}𝑲 𝒂𝒏𝒅 𝑲 ∉  𝑺, 𝒍𝒆𝒕 𝒇{𝑵}𝑲,𝑺,𝝉 ∶ 𝒄𝒐𝒊𝒏𝒔 ×

 𝒄𝒐𝒊𝒏𝒔𝒆(𝑵)  ×  𝒌𝒆𝒚𝒔∞  →
𝒔𝒕𝒓𝒊𝒏𝒈𝒔 𝒃𝒆 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒇{𝑵}𝑲,𝑺,𝝉(𝝎,𝝎𝑵, �̅�) =

𝑬(𝝉(𝑲), 𝒇𝑵,𝑺,𝝉(𝝎𝑵, �̅�), 𝝎). 
We note that this function is constant length because the keys are 

constant-length (for the same η) and the length of an encryption only 

depends on the length of the message and η. 

We first prove that ⟦𝑴⟧𝚽 ≈ ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑴)⟧𝚽. Suppose that 

⟦𝑴⟧𝚽  ≈  ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑴)⟧𝚽. This means that there is an adversary A 

that distinguishes the two distributions, that is 

𝑷𝒓 (𝒙 ← ⟦𝑴⟧𝚽𝛈: 𝑨(𝟏
𝛈, 𝒙) = 𝟏) − 𝐏𝐫 (𝒙

← ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑴)⟧𝚽𝛈: 𝑨(𝟏
𝛈, 𝒙) = 𝟏) 

is a non-negligible function of 𝛈. Let us show that this contradicts 

the fact that the system is (symmetric) KDM-secure. To this end, we 

can construct an adversary that can distinguish between the oracles 

𝑹𝒆𝒂𝒍�̅� and 𝑭𝒂𝒌𝒆�̅�. From now on, let S = Keys \ R-Keys(M). Consider 

the following algorithm: 

algorithm 𝑩𝑭 (𝟏𝛈,𝐌) 
for  K ∈ 𝑹 −𝑲𝒆𝒚𝒔(𝑴)𝐝𝐨 𝝉(𝑲) ← 𝑲(𝟏𝛈) 
y ← CONVERT2(M,M) 

b ← A(𝟏𝛈, 𝒚) 

return b 

algorithm CONVERT2(M
'
; M) with   

if M' = K where K ∈ R-Keys(M) then 

return 𝝉(K) 

if M = B where B ∈ Blocks then return B 

if M
'
 = (M1; M2) then 
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  x ← CONVERT2(𝑴𝟏,M) 

 y ← CONVERT2(𝑴𝟐,M) 

return [x; y] 

if M' = {𝐌𝟏}𝐊 with K ∈ R-Keys(M) then 

  x ← CONVERT2(𝑴𝟏,M) 

 y ← E(𝝉(𝑲), 𝒙) 

if M' = {𝐌𝟏}𝐊 with K ∉ R-Keys(M) then 

  𝝎 ← 𝒄𝒐𝒊𝒏𝒔𝒆(𝑴𝟏) 
 y ← F(𝒊(𝑲), 𝒇𝑴𝟏,𝑺,𝝉(𝝎, . )) 

return y 

This algorithm applies the distinguisher A (𝟏𝛈,•) on the distribution 

⟦𝑴⟧𝚽 when F is 𝑹𝒆𝒂𝒍�̅� , and the distribution of ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑴)⟧𝚽 

when F is 𝑭𝒂𝒌𝒆�̅�. So if (𝟏𝛈,•) can distringuish ⟦𝑴⟧𝚽 and 

⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑴)⟧𝚽, then 𝑩𝑭(𝟏𝛈,•) can distringuish 𝑹𝒆𝒂𝒍�̅� and 𝑭𝒂𝒌𝒆�̅�. 

But we assumed that 𝑹𝒆𝒂𝒍�̅� and 𝑭𝒂𝒌𝒆�̅� cannot be distringuished, so 

⟦𝑴⟧𝚽 ≈ ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑴)⟧𝚽. 

In a similar manner, we can show that ⟦𝑵⟧𝚽 ≈ ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑵)⟧𝚽. 

Finally, it is easy to see that ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑴)⟧𝚽 =
 ⟦𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟑(𝑵)⟧𝚽 , because the two patterns differ only by key-

renaming. Hence ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽. 

Let us conclude the consideration of KDM security by 

demonstrating what Black et al. claimed informally: the notion of KDM 

security is ‘orthogonal’ to the previous definitions of security. In 

particular, we can claim that KDM security neither implies nor is 

implied by type-0 security. The former is proved directly, Theorem 9.4, 

while the latter is a corollary of previous theorems: 

Corollary 9.1. Type-0 security does not imply (symmetric) KDM-

security. If there exists an encryption scheme that is type-0 secure, 

there exists an encryption scheme which is also type-0 secure but not 

KDM-secure. 

Proof. Suppose that there exists a type-0 secure encryption scheme. 

By Theorem 9.1 there is a type-0 secure scheme Π such that Π does not 

satisfy soundness. If all type-0 encryptions schemes are KDM-secure, 
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then Π is as well. By Theorem 9.2, this means that Π satisfies 

soundness—a contradiction.  

Theorem 9.4. KDM security does not imply type-0 security. That is, 

there is an encryption scheme that is KDM-secure, but not type-0 

secure. 

Proof. This is easily seen by inspecting the KDM-secure encryption 

scheme given by Black et al. in the random oracle model [3]. Let RO be 

the random oracle, which implements a random function from {𝟎, 𝟏}∗ to 
{𝟎, 𝟏}∞ . Let Pad ⊕ M and M ⊕ Pad (where M ∈ {𝟎, 𝟏}∗; 1g

¤
 and Pad 

∈ {𝟎, 𝟏}∞) be the bit-wise exclusive-or of M and the first |𝑴| bits of 

Pad. (Note that |𝑷𝒂𝒅 ⊕𝐌| =  |𝑴| exactly.) Let η be the security 

parameter. Then: 

- K produces a random bit-string 𝑲 ← {𝟎, 𝟏}𝛈; 

- The encryption algorithm E, on input (K, M), selects a random 

bit-string 𝒓 ← {𝟎, 𝟏}𝛈 and returns the pair (𝒓,𝑴⊕𝑹𝑶(𝒓| |𝑲)); 

- D, on input (K; C = (𝒄𝟏, 𝒄𝟐)), returns (𝒄𝟐⊕𝑹𝑶(𝒄𝟏| |𝑲). 
This scheme is not type-0 secure because ciphertexts reveal the 

length of the plaintext. In par-ticular, if c is a ciphertext for plaintext m, 

then |𝒄| = |𝒎| + 𝛈. Thus, one can easily distinguish between an oracle 

that encrypts the input message m and an oracle that always encrypts 

the 1-bit string 0.  

9.3 Partial Leakage of Information 

In the previous section, we were forced by the definition of KDM 

security to consider encryption schemes that (possibly) revealed partial 

information about the plaintext (in particular its length) or the key (such 

as whether two ciphertexts were made using the same one). For the rest 

of this discussion, the issue of key-cycles and concentrate our attention 

upon the issues of such partial leakage was left behind. In particular, let 

us consider fully general notions of partial leakage. To motive these 

results, let us present soundness and completeness theorems for two 

specific examples. In this section, let us separate the leakage of 

plaintext-length (type-1 encryption) from the leakage of key-sharing 
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(type-2 encryption) and consider each separately. In particular, let us 

show in this section that soundness can survive such leakage in the 

computational model if the formal model is appropriately weakened to 

match. 

Soundness and Completeness for Type-1 Schemes 

Let us consider the case of ‘type-1’ encryption schemes: encryption 

schemes which may reveal plaintext-length, but which conceals 

whether or not two ciphertexts were created using the same key. (In the 

terminology of Abadi and Rogaway, type-1 encryption is message-

concealing and which-key concealing, but may be length-revealing.) 

An equivalent way to express this security definition is that no 

adversary should be able to tell whether two ciphertexts were created 

using the same key or different (independent) keys, even if the 

adversary is allowed to choose the plaintexts, so long as those 

plaintexts have the same length: 

Definition 9.20 (Type-1 Security). Let ∏ = (K; E; D) be a 

symmetric encryption scheme. We say that the encryption-scheme is 

type-1 secure if no PPT adversary A can distinguish the pair of oracles 

(E(k,•), E(k', •))) and (𝑬(𝒌, 𝟎|•|), 𝑬(𝒌, 𝟎|•|)) as k and k' are 

independently generated, that is, for all PPT adversaries A:  

𝑷𝒓[𝒌, 𝒌′ ← 𝑲(𝟏𝛈): 𝑨𝑬(𝒌,•),𝑬(𝒌
′,•)(𝟏𝛈) = 𝟏]

−  𝑷𝒓 [𝒌 ← 𝑲(𝟏𝛈): 𝑨𝑬(𝒌,𝟎
|•|),𝑬(𝒌,𝟎|•|)(𝟏𝛈) ≤ 𝒏𝒆𝒈 (𝛈)] 

Type-1 security does not provide soundness for the logic of 

Definition 9.1. For example, one can see immediately that {𝟎}𝑲𝟏 ≅

{𝟎𝟎}𝑲𝟏, but ⟦{𝟎}𝑲𝟏⟧𝚽
≈  ⟦{𝟎𝟎}𝑲𝟏⟧𝚽

 if the encryption scheme reveals 

the length of the plaintext. 

To show soundness or completeness, patterns must reflect those 

aspects of an expression that an adversary can and cannot see. The idea 

is similar to the one in Definition 9.16, but now “boxes” are indexed 

with the only properties leaked by type-1 encryption: the formal length 
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of the plaintext. (Note, however, that the notions of visible-

subexpressions, recoverable keys and formal length remain unchanged.) 

Definition 9.21 (Pattern (Type-1)). We define the set of patterns, 

Pat, by the grammar: 

Pat ::= Keys | Blocks | (Pat; Pat) | {𝑷𝒂𝒕}𝑲𝒆𝒚𝒔 | 𝒍(𝐄𝐱𝐩) 

The type-1 pattern of an expression M, denoted by pattern1(M), is 

derived from M by replacing each term {𝑴′}𝑲 ∈ 𝐯𝐢𝐬 (𝐌) (𝐰𝐡𝐞𝐫𝐞 𝐊 ∉
𝐑 − 𝐊𝐞𝐲𝐬(𝐌)) by 𝒍(𝐌′). 

We say that two expressions M and N are type-1 equivalent, and 

denote it by 𝑴 ≅𝟏 𝑵, if there exists a key-renaming function 𝝈 

pattern1(M) =𝟏 pattern1(N𝝈) where =𝟏 is defined in the following way: 

- if P ∈ Blocks ∪ Keys, then P =1 Q iff P and Q are identical; 

- if P is of the form 𝒍(𝐌′), then P =1 Q iff Q is of the form 

𝒍(𝐍′),, and l(M') = l(N') in the sense of Definition 9.15; 

- if P is of the form (P1; P2), then P =1 Q iff Q is of the form (Q1; 

Q2) where P1 =1 Q1 and P2 =1 Q2; 

- if P is of the form {𝑷′}𝑲 , then P =1 Q iff Q is of the form {𝑸′}𝑲 

where P ' =1 Q
'
.  

Again, the symbol 𝒍(𝐌′) in a pattern reveals that some plaintext is 

encrypted and its length is l(M'). 

Example 9.2. Let N be the expression 

(({𝟎}𝑲𝟖 , {𝟏𝟎𝟎}𝑲𝟏), ((𝑲𝟕, {({𝟏𝟎𝟏}𝑲𝟗 , {𝑲𝟖}𝑲𝟓)}𝑲𝟓
, {𝑲𝟓}𝑲𝟕)). 

We have that R-Keys(N) = {𝑲𝟓, 𝑲𝟕, 𝑲𝟖}, and so, in this case, 

pattern1(N) is 

(({𝟎}𝑲𝟖 , 𝒍(𝟏𝟎𝟎) ), ((𝑲𝟕, {( 𝒍(𝟏𝟎𝟏), {𝑲𝟖}𝑲𝟓)}𝑲𝟓
) , {𝑲𝟓}𝑲𝟕)). 

Defining M as in Example 9.1, pattern1(M) is  

 (({𝟎}𝑲𝟔 , 𝒍({𝑲𝟕}𝑲𝟏)
) , ((𝑲𝟐, {( 𝒍(𝟎𝟎𝟏), {𝑲𝟔}𝑲𝟓)}𝑲𝟓

) , {𝑲𝟓}𝑲𝟐)). 

Now, if we replace 𝑲𝟔 → 𝑲𝟖,  𝑲2 → 𝑲𝟕 𝐚𝐧𝐝 𝑲𝟓 → 𝑲𝟓 in M, we 

have that 𝑴 ≅𝟏 𝑵 𝐢𝐟𝐟 𝒍(𝟏𝟎𝟎) = 𝒍({𝑲𝟕}𝑲𝟏). 
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With these definitions, the following soundness and completeness 

theorems can be proved. 

Theorem 9.5 (Type-1 Soundness). Let ∏ be a type-1 secure 

encryption scheme such that for all k ∈ keys; m ∈ plaintexts and w; w' 

∈ coins we have |𝑬(𝒌,𝒎,𝒘)| =  |𝑬(𝒌,𝒎,𝒘′)| . Then, if the length-

function satisfies only the equalities defined in Definition 2.15, then for 

any M and N expressions such that B-Keys(M) and B-Keys(N) are not 

cyclic in M and N respectively, 

𝐌 ≅𝟏 𝐍 implies ⟦𝐌⟧𝚽 ≈  ⟦𝐍⟧𝚽. 

Otherwise, for arbitrary length-function l (that is, one satisfying 

possible more equations), if for all pairs of expressions M and N, l (M) 

= l (N) implies that the binary length of ⟦𝑴⟧𝜱𝜼 is the same as the 

binary length of ⟦𝑵⟧𝜱𝜼 for each security parameter ´, then for any M 

and N expressions, 

𝑴 ≅𝟏 𝑵 implies ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽. 

In addition to soundness, also let us demonstrate the completeness. 

If soundness shows that formal in-distinguishability implies 

computational indistinguishability, completeness shows the converse. 

Rephrased, completeness implies that formal distinguishability (as 

opposed to indistinguishability) implies computational 

distinguishability. For this to be true, the interpretation function must 

en-force a handful of ‘atomic’ distinguishability properties: 

Theorem 9.6 (Type-1 Completeness). Let ∏ be a type-1 secure 

encryption scheme such that |𝑬(𝒌,𝒎,𝒘)| =  |𝑬(𝒌,𝒎,𝒘′)|  for all k ∈ 

keys; m ∈ plaintexts and w; w' ∈ coins. We have: 

⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽 implies 𝑴 ≅𝟏 𝑵  

for all M and N pairs of expressions if and only if the following 

conditions hold:  for any 

K; K'; K'' ∈ Keys, B ∈ Blocks, M; M'; N ∈ Exp, 

(i) no pair of ⟦𝑲⟧𝚽, ⟦𝑩⟧𝚽, ⟦𝑲(𝑴,𝑵)⟧𝚽, ⟦{𝑴
′}𝑲′⟧𝚽 are equivalent 

with respect to ≈,  

(ii) if  ⟦(𝑲, {𝑴}𝑲)⟧𝚽 ≈  ⟦(𝑲′′, {𝑴′}𝑲′)⟧𝚽  , then K
'
 = K'', and  

(iii) if ⟦{𝑴}𝑲⟧𝚽 ≈ ⟦{𝑴′}𝑲′⟧𝚽 then l(M) = l (M').  
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Some aspects of this theorem merit further discussion. First, note 

that the theorem does not mention key-cycles. Secondly, note that 

Condition (i) requires that different types of ob-jects, blocks, keys, pairs 

and encryption terms should be distinguishable to achieve complete-

ness; this can be ensured by tagging each object with its type, as 

suggested in [2]. Thirdly, Condition (ii) (which we call weak confusion-

freeness) is equivalent to the property of weak key-authenticity 

introduced by Horvitz and Gligor [6] in the case of type-0 schemes. 

This property essentially means that decrypting with the wrong key 

should be detectable in a proba-bilistic sense. Finally, condition (iii) 

requires that encryption of messages with different length should be 

detectable. Definition 2.20 allows that encryptions of messages of 

different length may be detected but does not enforce it. That suffices 

for soundness, but completeness requires that it should be detectable 

when ciphertexts contain messages of different lengths. A purely 

computational condition that implies condition (iii) is the notion of 

strictly length revealing: 

Definition 9.22 (Strictly Length Revealing Scheme). Let ∏ = (K; E; 

D) be a symmetric en-cryption scheme. We say that the encryption-

scheme is strictly length revealing if it is type-1 secure but there exists 

a PPT adversary A such that the following function is a non-negligible 

function of η: 

𝑷𝒓[𝒌 ← 𝑲(𝟏𝛈) ∶ 𝑨𝑬(𝒌,•)(𝟏𝛈) = 𝟏]

− 𝑷𝒓 [𝒌 ← 𝑲(𝟏𝛈) ∶ 𝑨𝑬(𝒌,𝟎
≠|•|)(𝟏𝛈) = 𝟏] 

We use 𝟎≠|•| to denote 0
n
, where 𝒏 ≠ |•|. 

Soundness and Completeness for Type-2 Schemes 

Having considered the leakage of plaintext-length in the previous 

section, let us turn to the other to the kinds of leakage seen in KDM-

security: whether or not two ciphertext share a key. However, we can 

now assume that the plaintext conceals the plaintext-length. (‘Type-2’ 

in the terminology of Abadi and Rogaway, as well as message-

concealing, length-concealing, and which-key reveal-ing.) For this type 
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of encryption, no adversary should be able to tell whether a ciphertext 

contains a (possibly long) plaintext or the single-bit plaintext 0: 

Definition 9.23 (Type-2 Security). Let ∏ = (K; E; D) be a 

symmetric encryption scheme. We say that the encryption-scheme is 

type-2 secure if no PPT adversary A can distinguish the oracles E(k; •) 

and E(k; 0) as k is randomly generated, that is, for all PPT adversaries 

A: 

𝑷𝒓[𝒌 ← 𝑲(𝟏𝛈) ∶ 𝑨𝑬(𝒌,•)(𝟏𝛈) = 𝟏]

− 𝑷𝒓[𝒌 ← 𝑲(𝟏𝛈) ∶ 𝑨𝑬(𝒌,𝟎)(𝟏𝛈) = 𝟏] ≤ 𝒏𝒆𝒈(𝛈) 
Again, patterns must be re-defined to reflect all the information 

about an expression which may be available to the adversary, but only 

that information: 

Definition 9.24 (Pattern (Type-2)). We define the set of patterns, 

Pat, by the grammar: 

Pat ::= Keys | Blocks | (Pat; Pat) | {𝑷𝒂𝒕}𝑲𝒆𝒚𝒔 | 𝑲𝒆𝒚𝒔 

The type-2 pattern of expression M, denoted be pattern2(M), is 

derived from M by replacing each term {𝑴′}𝑲 ∈ vis (M) (where K ∉ R-

Keys(M)) by 𝑲. 

We say that two expression M and N are type-2 equivalent, and 

denote it by 𝑴 ≅𝟐 𝑵, if there exist a key-renaming function σ such that 

𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟐(𝑴) =𝟐 𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝟐(𝑵𝝈) where =𝟐 is defined in the 

following way:𝟐 

- if P ∈ Blocks ∪ Keys, then P =2 Q iff P and Q are identical; 

- if P is of the form 𝑲 , then P =2 Q iff Q is also of the form 𝑲 ; 

- if P is of the form (P1; P2), then P =2 Q iff Q is of the form (Q1; 

Q2) where P1 =2 Q1 and P2 =2 Q2.; 

- if P is of the form {𝑷′}𝑲, then P =2 Q iff Q is of the form {𝑸′}𝑲, 

where P ' =2 Q'. 

Example 9.3. Let N be the same expression as in Example 9.2, 

(({𝟎}𝑲𝟖 , {𝟏𝟎𝟎}𝑲𝟏), ((𝑲𝟕{({𝟏𝟎𝟏}𝑲𝟗 , {𝑲𝟖}𝑲𝟓)}𝑲𝟓
) , {𝑲𝟓}𝑲𝟕)). 
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We have that R-Keys(N) = {𝑲𝟓, 𝑲𝟕, 𝑲𝟖} , and so, in this case, 

pattern2(N) is 

(({𝟎}𝑲𝟖 , 𝑲𝟏  ), ((𝑲𝟕{( 𝑲𝟗 , {𝑲𝟖}𝑲𝟓)}𝑲𝟓
) , {𝑲𝟓}𝑲𝟕)). 

Defining M as in Example 9.1, pattern2(M) is 

(({𝟎}𝑲𝟔 , 𝑲𝟒  ), ((𝑲𝟐{( 𝑲𝟑 , {𝑲𝟔}𝑲𝟓)}𝑲𝟓
) , {𝑲𝟓}𝑲𝟐)). 

Now, if we replace 𝑲𝟔 → 𝑲𝟖, 𝑲𝟒 → 𝑲𝟏, 𝑲𝟐 → 𝑲𝟕, 𝑲𝟑 → 𝑲𝟗, and 

𝑲𝟓 → 𝑲𝟓, in M , we have that 𝑴 ≅𝟐 𝑵. 

With these definitions, the following soundness and completeness 

theorems can be proved. 

Theorem 9.8 (Type-2 Completeness). Let ∏ be a type-2 secure 

encryption scheme. We have  

⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝑴 ≅𝟐 𝑵 
that, for any pairs of expressions M and N if and only if the 

following conditions hold:  for any 

K; K
'
; K

''
 ∈ Keys, B ∈ Blocks, M; M

'
; N; N

' ∈ Exp, 

(i) no pair of ⟦𝑲⟧𝚽, ⟦𝑩⟧𝚽, ⟦(𝑴,𝑵)⟧𝚽, ⟦{𝑴
′}𝑲′⟧𝚽 are equivalent 

with respect to≈; 

(ii) if ⟦(𝑲, {𝑴}𝑲)⟧𝚽 ≈  ⟦(𝑲′′, {𝑴′}𝑲′)⟧𝚽, then K' = K''; 

(iii) if ⟦({𝑴}𝑲, {𝑴′}𝑲⟧𝚽 ≈ ⟦({𝑵}𝑲′, {𝑵′}𝑲′′⟧𝚽 then K' = K''. 

The conditions of the completeness theorem are similar to the ones 

for the type-1 case ex-cept for condition (iii). This condition requires 

that encryption with different keys should be detectable. Definition 9.23 

allows that encrypting with different keys may be detectable, but it does 

not require it. That suffices for soundness, but such detection is 

required for completeness. It is easily shown that condition (iii) is 

implied by the purely computational definition of a strictly key 

revealing encryption scheme: 

Definition 9.25 (Strictly Key Revealing Scheme). Let ∏ = (K; E; 
D) be a symmetric encryp-tion scheme. We say that the encryption-

scheme is strictly key revealing if it is type-2 secure but there exists a 
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PPT adversary A such that the following function is a non-negligible 

function of η: 

𝑷𝒓[𝒌, 𝒌′ ← 𝑲(𝟏𝛈) ∶ 𝑨𝑬(𝒌,•),𝑬(𝒌′,•)(𝟏𝛈) = 𝟏]

− 𝑷𝒓[𝒌 ← 𝑲(𝟏𝛈) ∶ 𝑨𝑬(𝒌,•),𝑬(𝒌,•)(𝟏𝛈) = 𝟏] 
9.3.3 Soundness and Completeness for Type-3 Schemes 

Type-3 encryption schemes (Definition 9.14, also called message-

concealing, which-key reveal-ing and length-revealing in the 

terminology of Abadi and Rogaway) can be thought of as leaking the 

information leaked by both type-1 and type-2 schemes. Both soundness 

and completeness results follow using the notion of patterns from 

Definition 9.16. As with type-1 and type-2 en-cryption, completeness 

requires that it is possible to distinguish ciphertexts that were encrypted 

with different keys, and to distinguish ciphertexts for which the 

plaintexts have different lengths. That is, the encryption scheme must 

be both strictly key revealing and strictly length revealing (Definitions 

2.25 and 2.22 respectively). 

9.4 Information-Theoretic Interpretations: Soundness and 

Completeness for One-Time Pad  

Besides the computational definition, there are other possible 

important notions of ‘indistin-guishability.’ For example, we could say 

that two distributions are ‘indistinguishable’ if and only if they are 

identical. Such a notion would lead to new (but analogous) notions of 

soundness and completeness, and we can explore these new notions 

using (as a specific encryption scheme) the One-Time Pad (OTP). 

Let strings ≔ {𝟎, 𝟏}∗with the following pairing function: For any 

two strings x; y ∈ strings we can define the pairing of x and y as 

[𝒙, 𝒚] ≔ 〈𝒙, 𝒚, 𝟎, 𝟏|𝒚|〉 𝒘𝒉𝒆𝒓𝒆 〈 , , … , 〉i denotes the concatenation of the 

strings separated by the commas, 1m stands for m many 1’s, and for any 

x 𝒙 ∈ {𝟎, 𝟏}∗, |𝒙|denotes the length of the string. The number of 1’s at 

the end indicate how long the second string is in the pair, and the 0 

separates the strings from the 1’s. Let blocks be those strings that end 
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with 001. The ending is just a tag, it shows that the meaning of the 

string is a block. 

Key-Generation. In case of the OTP, the length of the encrypting 

key must match the length of the plaintext. Thus, we need a separate 

key-generation for each length. That is, for each n > 3, Kn is a random 

variable over some discrete probability field  such that 

its values are equally distributed over 

𝒌𝒆𝒚𝒔𝒏 ≔ {𝒌 | 𝒌 ∈ 𝒔𝒕𝒓𝒊𝒏𝒈𝒔, |𝒌| = 𝒏, 𝒌 𝒆𝒏𝒅𝒔 𝒘𝒊𝒕𝒉 𝟎𝟏𝟎}. Let 

𝒌𝒆𝒚𝒔 ∶=∪𝟒
∞  𝒌𝒆𝒚𝒔𝒏. For k ∈ keys, let core(k) denote the string that we 

get from k by cutting the tag 010. 

Encryption. Let the domain of the encryption function, DomE , be 

those elements (k; x) ∈ keys × strings, for which |𝒌| = |𝒙| + 𝟑, and let 

𝑬(𝒌, 𝒙) ≔ 〈𝒄𝒐𝒓𝒆(𝒌)⊕ 𝐱, 𝟏𝟏𝟎〉 . The tag 110 informs us that the string 

is a ciphertext. Notice that this encryption is not probabilistic, hence 

𝑬(𝒌, 𝒙) is not a random variable. Notice also, that the tag of the 

plaintext is not dropped, that part is also encrypted. 

Decryption. The decryption function 𝑫(𝒌, 𝒙) is defined 

whenever |𝒌| = |𝒙|, and, naturally the value of 𝑫(𝒌, 𝒙) is the first 

|𝒌| − 𝟑 𝒃𝒊𝒕𝒔 𝒐𝒇 𝒌 ⊕ 𝐱. 

Indistinguishability. Let us now call two distributions 

indistinguishable, if they are identical, and denote this relation by =d. 

As in the case of type-3 encryption, lengths of the messages are 

revealed. Therefore, we must again define the length of an expression. 

Definition 9.26. We assume that some length function 𝒍 ∶ 𝑲𝒆𝒚𝒔 →
{𝟒, 𝟓,… } is given on the keys symbols. The length of a block is defined 

as 𝒍(𝑩) ≔ |𝑩| + 𝟑. We added 3 to match the length of the tag. We 

define the length function on any expression in Exp by induction: 

- 𝒍((𝑴,𝑵)) ≔ 𝒍(𝑴) + 𝟐𝒍(𝑵) + 𝟏, 

- 𝒍({𝑴}𝑲) ≔ 𝒍(𝑴) + 𝟑, 𝒊𝒇 𝒍(𝑴) = 𝒍(𝑲) − 𝟑, 𝒂𝒏𝒅 

- 𝒍({𝑴}𝑲) ≔ 𝟎, 𝑖𝒇 𝒍(𝑴) ≠ 𝒍(𝑲) − 𝟑. 
The valid expressions are defined as those expressions in which the 

length of the encrypted subexpressions match the length of the 

encrypting key, and, in which no key is used twice to en-crypt. (This 
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latter condition is necessary to prevent leaking information because of 

the properties of the OTP.) 

Definition 9.27. We define the valid expressions for OTP as 

𝑬𝒙𝒑𝑶𝑻𝑷 = {
𝑴 ∈ 𝑬𝒙𝒑 | 𝑴′ 𝑴 𝐢𝐦𝐩𝐥𝐢𝐞𝐬 𝒍(𝑴′) > 𝟎,

𝐚𝐧𝐝 𝐞𝐚𝐜𝐡 𝐤𝐞𝐲 𝐞𝐧𝐜𝐫𝐲𝐩𝐭𝐬 𝐚𝐭 𝐦𝐨𝐬𝐭 𝐨𝐧𝐜𝐞 𝐢𝐧 𝑴 
}. 

The interpretation function for the OTP is defined similarly to the 

other cases, with some mi-nor changes regarding the tagging of the 

messages. Also, there is no security parameter in this encryption 

scheme, so the interpretation outputs a single random variable for each 

formal ex-pression (rather than a family of such variables). Let us 

consider the full algorithm: 

algorithm 𝑰𝑵𝑻𝑬𝑹𝑷𝑹𝑬𝑻𝑨𝑻𝑰𝑶𝑵𝑶𝑻𝑷(𝑴) 
for K ∈ Keys(M) do 𝝉(𝑲) ← 𝑲𝒍(𝑲) 𝒚 ← 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝑶𝑻𝑷(𝑴) 

return y 

algorithm 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝑶𝑻𝑷(𝑵) 
if N = K where K ∈ Keys then return 𝝉(K) 

if N = B where B ∈ Blocks then return 〈𝑩;  𝟏𝟎𝟎〉 
if N = (N1; N2) then 

return [𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝑶𝑻𝑷(𝑵𝟏); 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝑶𝑻𝑷(𝑵𝟐)] 
if N = {𝑵𝟏}𝑲 then 

return 〈𝑬(𝝉(𝑲), 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝑶𝑻𝑷(𝑵𝟏)), 𝟏𝟏𝟎〉 
As in the previous cases, we must again find a suitable equivalence 

relation for formal expres-sions. One possibility is to index the boxes 

again with the encrypting keys. Another possibility is to label the boxes 

with the length as well, but in the OTP scheme, the key reveals the 

length of the ciphertext. Therefore, we can use the first, that is a simpler 

possibility. Thus OTP-patterns are defined as follows: 

Definition 9.28 (Pattern (OTP)). We define the set of patterns, 

Pat, by the grammar: 

Pat ::= Keys | Blocks | (Pat; Pat) | {𝑷𝒂𝒕}𝑲𝒆𝒚𝒔 | 𝑲𝒆𝒚𝒔 
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The OTP pattern of a valid expression M, denoted by 

𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝑶𝑻𝑷(𝑴), is derived from M by replacing each term {𝑴′}𝑲  ∈
𝒗𝒊𝒔 (𝑴) (where K ∉ R-Keys(M)) by 𝑲 . 

We say that two expressions and are OTP equivalent, and denote it 

by ≅𝑶𝑻𝑷N, if there exists a length-preserving key-renaming function 𝝈 

such that patternOTP(M) =2 patternOTP(N 𝝈) with =2 as in Definition 9.24 

Then, then following soundness and completeness theorems can be 

proved. 

Theorem 9.9 (OTP Soundness). Let M and N be two valid 

expressions in ExpOTP such that B-Keys(M) and B-Keys(N) are not 

cyclic in M and N respectively. Then, 𝑴 ≅𝑶𝑻𝑷 𝑵 implies that 
⟦𝑴⟧𝚽 𝒂𝒏𝒅 ⟦𝑵⟧𝚽 are the same probability distributions.  

Theorem 9.10 (OTP Completeness). Let M and N be two valid 

expressions in 𝑬𝒙𝒑𝑶𝑻𝑷. Then if ⟦𝑴⟧𝚽 𝒂𝒏𝒅 ⟦𝑵⟧𝚽 have the same 

probability distributions, we have that 𝑴 ≅𝑶𝑻𝑷 𝑵. 
Note that the completeness theorem for OTP does not contain any 

side conditions like those of Theorems 9.6 and 9.8. This is because 

here, what would have been condition (i) from Theo-rem 9.6 is 

immediate due to the tagging. The natural condition (ii) also follows 

from the tagging since decrypting with the wrong key will result in a 

meaningless text. The natural Condition (iii) is meaningless in this case 

since we just encrypt at most once with each key. 

9.5 A General Treatment for Symmetric Encryption 

In this section, let us provide a general treatment of soundness and 

completeness for the Abadi-Rogaway type logics of formal encryptions. 

The following contain the cases discussed in the pre-vious two sections 

as special cases. Let us consider a general probabilistic framework for 

symmetric encryptions, which includes both the computational and the 

information-theoretic encryption schemes. Then let us show a general 

way to handle partial leaking of encryption in the formal view. This 

will be done essentially via an equivalence relation on the set of 

encryption terms, which is meant to express which encryption terms are 
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in-distinguishable for an adversary. Also let us introduce the important 

notion that we call properness of this equivalence relation. This is 

essential, because this is exactly the property that will make an Abadi-

Rogaway type hybrid argument go through. Finally, this section 

presents the interpretation, the general soundness and completeness 

results and how the theorems for the type-1, type-2 and OTP cases that 

were presented before follow from the general theorems. 

A General Treatment for Symmetric Encryptions 

Let us provide a general probabilistic framework for symmetric 

encryption, which contains both the computational and the information-

theoretic description as special cases. Keys, plaintexts and ciphertexts 

are elements of some discrete set 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. This is ({𝟎, 𝟏}∗)∞ in the 

case of a computational treatment, and it is {𝟎, 𝟏}∗ for the information-

theoretic description. The ele-ments of ({𝟎, 𝟏}∗)∞ are sequences in 
{𝟎, 𝟏}∗, corresponding to a parameterisation by the security parameter. 

A fixed subset, 𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⊆  𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ represents the messages 

that are allowed to be en-crypted. Another subset,  𝒌𝒆𝒚𝒔 ̅̅ ̅̅ ̅̅ ̅̅  ⊆  𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
is the possible set encrypting keys that corresponds to the range of the 

key generation algorithm K. In order to be able to build up longer 

messages from shorter ones, let us assume that an injective pairing 

function is given: [. , . ] ∶  𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The range 

of the pairing function will be called 𝒑𝒂𝒊𝒓𝒔̅̅ ̅̅ ̅̅ ̅̅ : 𝒑𝒂𝒊𝒓𝒔̅̅ ̅̅ ̅̅ ̅̅ :=𝑹𝒂𝒏[.,.] . A 

symmetric encryption scheme has the following constituents: 

Key-generation. Key-generation is represented by a random 

variable 𝑲 ∶  𝛀𝑲 → 𝒌𝒆𝒚𝒔̅̅ ̅̅ ̅̅ ̅, over a discrete probability field (𝛀𝑲, 𝑷𝒓𝑲). 
In a given scheme, more than one key-generation is allowed. 

Encryption. For a given k ∈ 𝒌𝒆𝒚𝒔̅̅ ̅̅ ̅̅ ̅, and a given x ∈ 𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

E(k; x) is a random variable over some discrete probability field (𝛀𝑬 

; 𝑷𝒓𝑬 ). The values of this random variable are in strings and are 

denoted by E (𝒌, 𝒙)(𝝎), whenever ∈ 𝛀𝑬 . 
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Decryption. An encryption must be decryptable, so we assume that 

for each 𝒌 ∈ 𝒌𝒆𝒚𝒔, a function 𝑫 ∶ (𝒌, 𝒙) ↦ 𝑫(𝒌, 𝒙) is given satisfying 

𝑫𝒌(𝑬(𝒌, 𝒙)(𝝎)) = 𝒙 𝐟𝐨𝐫 𝐚𝐥𝐥 𝝎 ∈  𝛀𝑬 𝐚𝐧𝐝 𝒙 ∈  𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

The notion of indistinguishability is important both in case of 

computational and information-theoretic treatments of cryptography. It 

expresses when there is only very small probability to tell two 

probability distributions apart. 

Indistinguishability. We assume that an equivalence relation called 

indistinguishability is defined on distributions over 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. We will 

denote this relation by ≈. We will also say that two random variables 

taking values in 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are equivalent (indistinguishable) if (and only 

if) their distributions are equivalent; we will use ≈ for denoting this 

equivalence between random variables as well. For ≈, we require the 

followings: 

(i) Random variables with the same distribution are 

indistinguishable;  

(ii) Constant random variables are indistinguishable if and only if 

the constants are the same;  

(iii) For random variables 𝑭 ∶  𝛀𝑭 → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑮 ∶  𝛀𝑮 →
𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, if F ≈ G, the following must hold: If  𝝅𝒊 denotes the 

projection onto one of the components of 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, then 

𝝅𝒊 𝚶 [• , •]−𝟏𝚶 𝐅 ≈  𝝅𝒊 𝚶 [• , •]−𝟏 𝚶   𝑮 𝒇𝒐𝒓 𝒊 = 𝟏, 𝟐 ;  
(iv) If 𝑭′ ∶  𝛀𝑭 → 𝒔𝒕𝒓𝒊𝒏𝒈̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝑮′ ∶  𝛀𝑮 → 𝒔𝒕𝒓𝒊𝒏𝒈̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are also 

indistinguishable random variables such that F and 𝑭′ are independent 

and G and 𝑮′ are also independent, then  𝝎𝑭 ↦ [𝐅(𝝎𝑭 ),   𝐅
′(𝝎𝑭 )] 

and 𝝎𝑮 ↦ [𝐆(𝝎𝑮 ),   𝐆
′(𝝎𝑮 )] are indistinguishable random variables; 

more-over, if 𝜶,𝜷 ∶  𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ →  𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are functions that preserve 

≈ (𝒊. 𝒆. 𝜶 𝛐 𝐅 ≈  𝛂 𝛐 𝐆 𝐚𝐧𝐝 𝛃 𝛐 𝐅 𝛃 𝛐 𝐆 𝐰𝐡𝐞𝐧𝐞𝐯𝐞𝐫 𝐅 ≈ 𝐆 ) then 𝝎𝑭 

↦ [(𝛂 𝛐 𝐅)(𝝎𝑭), (𝛃 𝛐 𝐅)(𝝎𝑭) ] and 𝝎𝑮 

↦ [(𝛂 𝛐 𝐆)(𝝎𝑮), (𝛃 𝛐 𝐆)(𝝎𝑮) ] are indistinguishable random 

variables if 𝑭 ≈ 𝑮. 
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Indistinguishability needs to satisfy some further properties under 

encryption and decryption that we will specify under the definition of 

encryption schemes below. 

Example 9.4. The simplest example for indistinguishability is that it 

holds between two random variables if and only if their distributions 

are identical. 

Example 9.5. The standard notion of computational 

indistinguishability in [7] is also a special case of the general definition. 

In this case 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  = ({𝟎, 𝟏}∗)∞ = 𝒔𝒕𝒓𝒊𝒏𝒈𝒔∞. Ran-dom variables of 

computational interest have the form 𝑭 ∶  𝛀𝑭 → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔
∞ and have 

inde-pendent components; i.e., for η ∈ ℕ security parameter, denoting 

the η’th component of F by 𝑭𝛈 ∶  𝛀𝑭 → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔
∞, it is required that 

𝑭𝛈 and 𝑭𝛈′ are independent random variables for 𝛈 ≠  𝛈′. 

Indistinguishability then is phrased with the ensemble of probability 

distributions of the components of the random variables. 

Definition 9.29. An encryption scheme is a quadruple Π =
({𝑲𝒊}𝒊∈𝑰, 𝑬, 𝑫,≈) where {𝑲𝒊}𝒊∈𝑰 is a set of key-generations for some 

index set I, E is an encryption, D decrypts ciphertexts encrypted by E, 

and ≈ is the indistinguishability defined above. We require that for any 

𝒊 ∈ I, the probability distribution of Ki be distinguishable from any 

constant in 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, the distributions of Ki and of Kj be distinguishable 

whenever 𝒊 ≠ 𝒋, and also that the distribution of (k; k') be 

distinguishable from the distribution of (k; k') if k and k' are 

independently generated: 𝒌 ← 𝑲𝒊, 𝒌
′ ← 𝑲𝒋 for any 𝒊, 𝒋 ∈ 𝑰. The 

indistinguishability relation ≈, besides satisfying the properties stated 

before, needs to be such that if F and G are random variables taking 

values in 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, and Ki is a key-generation such that the distribution 

of [Ki; F ] is indistinguishable from the distribution of [Ki; G], then: 

- (𝝎𝑬, 𝝎𝑲,𝒊, 𝝎) ↦ 𝐄(𝐊𝐢(𝝎𝑲,𝒊), 𝐅(𝛚))(𝝎𝑬) and (𝝎𝑬, 𝝎𝑲,𝒊, 𝝎) ↦

𝐄(𝐊𝐢(𝝎𝑲,𝒊), 𝐆(𝛚))(𝝎𝑬) are indistinguishable random variables;  

- (𝝎𝑲,𝒊, 𝝎)↦ 𝐃(𝐊𝐢(𝝎𝑲,𝒊), 𝐅(𝛚)) and (𝝎𝑲,𝒊, 𝝎) are also indistin-

guishable random variables.  
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Here the probability over 𝛀𝑲𝒊 × 𝛀𝑭 is the joint probability of Ki and 

F , which are here not necessarily independent. Similarly for G. 

Equivalence of Expressions 

In their treatment, Abadi and Rogaway defined equivalence of 

expressions via replacing encryp-tion terms encrypted with non-

recoverable keys in an expression by a box; two expressions then were 

declared equivalent if once these encryption terms were replaced, the 

obtained patterns looked the same up to key-renaming. This method 

implicitly assumes, that an adversary cannot distinguish any 

undecryptable terms. However, if we want to allow leakage of partial 

information, we need to modify the notion of equivalence. 

Before introducing our notion of equivalence of expressions, let us 

postulate an equivalence notion ≡𝑲 on the set of keys, and another 

equivalence, ≡𝑪 on the set of valid encryption terms. The word valid, 

defined precisely below, is meant for those encryption terms (and 

expressions) that “make sense”. Then, the equivalence on the set of 

valid expressions will be defined with the help of ≡𝑲 and ≡𝑪. 

The reason for postulating equivalence on the set of keys is that 

there is need to allow many key-generation processes in the 

probabilistic setting. We therefore have to be able to distinguish formal 

keys that were generated by different key-generation processes. 

Therefore, we assume that an equivalence relation ≡𝑲 is given on the 

set of keys such that each equivalence class contains infinitely many 

keys. Let 𝑸𝑲𝒆𝒚𝒔 ≔ 𝑲𝒆𝒚𝒔/≡𝑲. 

Definition 9.30 (Key-Renaming Function). A bijection 𝝈 ∶ 𝑲𝒆𝒚𝒔 →
𝑲𝒆𝒚𝒔 is called key-renaming function, if 𝝈(𝑲) ≡𝑲 K for all K ∈ Keys. 

For any expression M, M 𝝈 denotes the expression obtained from M by 

replacing all occurrences of keys K in M by 𝝈 (K). 

Definition 9.31. We define the support of a key-renaming function 

𝜎, and denote it by supp(𝝈), as the subset of Keys such that 𝝈 (K) ≠ K. 

We say that two key-renaming functions 𝝈 and 𝝉 are compatible if 

for all keys K ∈ supp(𝝈) ∩ supp(𝝉) we have that 𝝈 (K) = 𝝉 (K). 
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The set Exp is often too big to suit our purposes. For example, 

sometimes we require that certain messages can be encrypted with 

certain keys only. We therefore define the set of valid expressions: 

Definition 9.32. A set of valid expressions is a subset 𝑬𝒙𝒑𝒗 of Exp 

such that: 

(i)      all keys and all blocks are contained in 𝑬𝒙𝒑𝒗;  

(ii) if M ∈ 𝑬𝒙𝒑𝒗 then sub(M) ⊂ 𝑬𝒙𝒑𝒗 and any number of pairs of 

elements in sub(M) are also in 𝑬𝒙𝒑𝒗;  

(iii) for any key-renaming function 𝝈, M ∈ 𝑬𝒙𝒑𝒗 iff M 𝝈 ∈ 𝑬𝒙𝒑𝒗.  

Given a set of valid expressions, the set of valid encryption terms is 

𝑬𝒏𝒄𝒗 := Enc ∩ 𝑬𝒙𝒑𝒗. 

Given a set of valid expressions, the set of valid encryption terms is 

𝑬𝒏𝒄𝒗 := Enc ∩ 𝑬𝒙𝒑𝒗. 

Equivalence of valid expressions is meant to incorporate the notion 

of security into the model: two expressions have to be equivalent when 

they look the same to an adversary. If the encryption is so secure that 

no partial information is revealed, then all undecryptable terms should 

look the same to an adversary. If partial information, say repetition of 

the encrypting key, or length is revealed, then the notion of equivalence 

accordingly have to be adjusted. This can be done by introducing an 

equivalence relation on the set of valid encryption terms in order to 

capture which ciphertexts an adversary can and cannot distinguish; in 

other words, what partial information (length, key, etc...) can an 

adversary retrieve from the ciphertext. 

Hence, let us assume that there is an equivalence relation, ≡𝑪 given 

on the set of valid encryption terms, with the property that for any M; N 

∈ 𝑬𝒏𝒄𝒗 and 𝝈 key-renaming function, 𝑴 ≡𝑪 𝑵 if and only if 

𝑴𝝈 ≡𝑪 𝑵𝝈. Let 𝑸𝑲𝒆𝒚𝒔 ≔ 𝑬𝒏𝒄𝒗/≡𝑪. 

Since it must be required that 𝑴 ≡𝑪 𝑵 ∈  𝑬𝒏𝒄𝒗 if and only if 

𝑴𝝈 ≡𝑪 𝑵𝝈 whenever 𝝈 is a key-renaming function, 𝝈 induces a 

renaming on QEnc, which also is denoted by 𝝈. 

Example 9.6 (Length-Revealing). Two encryption terms were 

considered to be indistinguishable for an adversary if and only if they 
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had the same length. In this case, let us define ≡𝑪 so that it equates 

encryption terms with the same length, and hence an element of QEnc 

will contain all encryption terms that have a specific length. 

Example 9.7 (Which-Key Revealing). We have already considered 

the situation when an adversary can recognise that two encryption 

terms were encrypted with different keys. For this case, we will need to 

define ≡𝑪 so that two encryption terms are equivalent if and only if 

they are encrypted with the same key. 

Definition 9.33 (Formal Logic of Symmetric Encryption). A formal 

logic for symmetric en-cryption is a triple ∆ = (𝑬𝒙𝒑𝒗; ≡𝑲; ≡𝑪) where 

ExpV is a set of valid expressions, ≡𝑲 is an equivalence relation on 

Keys, and ≡𝑪 is an equivalence relation on EncV; we require the ele-

ments of QKeys to be infinite sets, and that for any 𝝈 key renaming 

function relative to QKeys, 

(i) if M ∈ Exp, then M ∈ ExpV if and only if M 𝝈 ∈ ExpV;  

(ii) if M, N ∈ EncV, then M  ≡𝑪 N if and only if M 𝝈  ≡𝑪 N 𝝈;  

(iii) replacing an encryption term within a valid expression with 

another equivalent valid en-cryption term results in a valid expression.  

To define the equivalence of expressions, let us assign to each valid 

expression an element in the set of patterns, Pat, defined the following 

way: 

Definition 9.34 (Pattern). We define the set of patterns, Pat, by the 

grammar: 

Pat ::= Keys | Blocks | (Pat; Pat) | {𝑷𝒂𝒕}𝑲𝒆𝒚𝒔 | 𝑸𝑬𝒏𝒄  

The pattern of a valid expression M, denoted by pattern(M), is 

obtained from M by replacing each undecryptable term 

{𝑴′}𝑲  𝑴(𝑲 ∉ 𝐑 − 𝐊𝐞𝐲𝐬) ) by  𝝁({𝑴′}
𝑲
)
, where 𝝁({𝑴′}𝑲) ∈ 

QEnc denotes the equivalence class containing {𝑴′}𝑲 . 

Definition 9.35 (Equivalence of Expressions). We say that two 

valid expressions M and N are equivalent, and denote it by 𝑴 ≅  𝑵, if 

there exists a key-renaming function 𝝈 such that pattern(M) = 

pattern(N𝝈), where for any pattern Q, Q𝝈 denotes the pattern obtained 
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by re-naming all the keys and the box-indexes (which are equivalence 

classes in QEnc) in Q with 𝝈. 

Example 9.8. In the case when the elements of QEnc contain 

encryption terms encrypted with the same key, Example 9.7, there is a 

one-to-one correspondence between QEnc and Keys, and therefore we 

can index the boxes with keys instead of the elements in QEnc:  𝑲
 , K 

∈ Keys. Then if N is the same expression as in Example 9.3, the pattern 

according to the above definition is the same as we had in that example. 

In that example M and N are equivalent according to the definition of 

equivalence above. 

Proper Equivalence of Ciphers 

In order to make the soundness and completeness proofs work, we 

need to have some restrictions on ≡𝑪 ; without any restrictions, the 

proofs will never work. The condition that we found the most natural 

for our purposes is what we call proper equivalence, defined below. 

This condition will make soundness work. For completeness, besides 

proper equivalence, we need to assume something for the relationship 

of ≡𝑪  and ≡𝑲 . We call our assumption independence, and it is defined 

in Definition 2.37. Let us start by defining the set 𝝁𝒌𝒆𝒚, for each 𝝁 ∈ 

QEnc, as 

𝝁𝒌𝒆𝒚 ∶= {
𝑲 ∈  𝐊𝐞𝐲𝐬 | 𝐭𝐡𝐞𝐫𝐞 𝐢𝐬 𝐚 𝐯𝐚𝐥𝐢𝐝 𝐞𝐱𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝑴 

𝐬𝐮𝐜𝐡 𝐭𝐡𝐚𝐭 {𝐌}𝐊 ∈ 𝝁 
}. 

Definition 9.36 (Proper Equivalence of Ciphers). We say that an 

equivalence relation ≡𝑪  on EncV is proper, if for any finite set of keys 

S, if 𝝁 ∈ QEnc contains an element of the form {𝑵}𝑲 with K ∉ S, we 

have that: 

- if |𝝁𝒌𝒆𝒚| is finite then 𝝁 also contains an element C such that 

Keys(C)∩S = ∅ , and K C;  

- if |𝝁𝒌𝒆𝒚| = ∞ then 𝝁 also contains an element C such that 

Keys(C) ∩ (S∪ {𝐊}) = ∅.  
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In other words, if 𝝁 contains an element encrypted with a key K not 

in S, then 𝝁 has a representative in which no key of S appears, and in 

which K may only appear as an encrypting key, but not as a 

subexpression, or in the case of a class with infinitely many encrypting 

keys there is an element in which no keys from S ∪ {𝐊} appear. In fact, 

it was shown that the cardinality of the set 𝝁𝒌𝒆𝒚 is equal to either 1 or 

∞. 

Example 9.9. If ≡𝑪  denotes the equivalence of Example 2.7 (i.e. 

two ciphers are equivalent if they have the same encrypting key, hence 

|𝝁𝒌𝒆𝒚| = 1), then it is clearly proper, since if {𝑴}𝑲 ∈  𝝁, and K ∉ S, 

then C = {𝑲′}𝑲 works for any K' ∉ S; there is such a K', since we 

assumed that there are infinitely many keys. C = {𝑩}𝑲 (B ∈ Blocks) is 

also a good choice since Blocks is not empty. 

Example 9.10. If ≡𝑪 denotes the equivalence of Example 2.6, then 

it is clearly proper (|𝝁𝒌𝒆𝒚|=∞). If {𝑴}𝑲 ∈  𝝁, K ∉ S, then C = {𝑴′}𝑲′ is 

a good choice where C is constructed by assigning to each key in {𝑴}𝑲, 

a new key K'' not in S ∪ {𝐊}. We can do this since we assumed that 

there are infinitely many keys. Then, since key-renaming does not 

change the length, l(M) = l (M'), and 𝝁 contains all encryption terms of 

the same length, C ∈  𝝁 and properness follows. 

The following propositions will be useful for proving our general 

soundness and complete-ness results. 

Proposition 9.1. Let ∆ = (ExpV; ≡𝑲 ; ≡𝑪 ) be such that ≡𝑪  is 

proper. Then, the equivalence relation ≡𝑪  is such that for any 

equivalence class 𝝁 ∈ QEnc, 𝝁 key has either one, or infinitey many 

elements. 

Proof. Let 𝝁 ∈ QEnc, and assume that there are more than one 

encrypting key in 𝝁 key (but |𝝁𝒌𝒆𝒚| finite), that is, there are two different 

keys K and K1 such that {𝑴}𝑲, {𝑴𝟏}𝑲𝟏 ∈  𝝁 for some valid expressions 

M and M1. Since ≡𝑪 ) is proper and {𝑴𝟏}𝑲𝟏 ∈  𝝁, if we consider S = 

{𝑲}(𝑲𝟏 ≠ 𝑲 𝐭𝐡𝐮𝐬 𝑲𝟏 ∉ 𝐒) then 𝝁 has an element of the form {𝑴′}𝑲′ 
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in which no key of S appears and in which K1 may only appear as an 

encrypting key, but not as a subexpression. In particular we have that 

𝑲 ∉ 𝑲𝒆𝒚𝒔(𝑴′)𝒂𝒏𝒅𝑲 ≠ 𝑲′ 
Since we assumed that each equivalence class in QKeys contains 

infinitely many elements (recall Definition 2.33), there is a key L ≠ K 

such that L ≡𝑲 K, and 𝑳 ∉ 𝐊𝐞𝐲𝐬({𝐌}𝐊) ∪ 𝐊𝐞𝐲𝐬({𝐌
′}𝐊′).  

Then, defining 𝝈 to do nothing else but to switch the keys L and K, 

we have using (2.2) that 

{𝑀}𝑲𝝈 = {𝑴𝝈}𝑳 
and (by (2.1) and (2.2))  {𝑴′}𝑲′𝝈 = {𝑴′}𝑲′  

But, since {𝑴}𝑲 ≡𝑪 {𝑴′}𝑲′, we have (by definition of formal logic) 

that 

{𝑴}𝑲𝝈 ≡𝑪 {𝑴′}𝑲′𝝈 

that is 

{𝑴𝝈}𝑳 ≡𝑪 {𝑴′}𝑲′ 
Since {𝑴′}𝑲′  ∈  𝝁, it must hold that {𝑴𝝈}𝑳  ∈  𝝁. Therefore, there 

are infinitely many encrypting keys in 𝝁 since there are infinitely many 

choices for L. 

Proposition 9.2. Let ∆= (𝑬𝒙𝒑𝒗, ≡𝑲, ≡𝑪) be such that ≡𝑪 is proper. 

If 𝝈 is a key-renaming function (relative to ≡𝑲), then for any 𝝁 ∈

𝑸𝑬𝒏𝒄, |𝝁𝒌𝒆𝒚| = |𝝈(𝝁)𝒌𝒆𝒚|. 

Proof. If |𝝁𝒌𝒆𝒚| = ∞, then|𝝈(𝝁)𝒌𝒆𝒚| = ∞, since for any {𝑴}𝑲 ∈ 𝝁, 

{𝑴}𝑲𝝈 = {𝑴𝝈}𝝈(𝑲) ∈ 𝝈(𝝁). Since 𝝈 is a bijection, and since any 𝝁 

contains either only one or infinitely many elements, the claim follows.  

The meaning of the next proposition is that if ≡𝑪 is proper, then 

given a set of valid ciphers 𝑪 = {{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏

 such that none of the 

encrypting keys are in S, and if 𝝁𝟏, … , 𝝁𝒍 are all the equivalence classes 

of the elements in C, then it is possible to choose a representative of 

each of 𝝁𝒋, denoted by 𝑪𝝁𝒋 , such that no key of S occurs in any of 𝑪𝝁𝒋 , 

none of the Li’s occur as a subexpression in any 𝑪𝝁𝒋, and no key occurs 

in two of 𝑪𝝁𝒋unless the corresponding two equivalence classes both 

have only the same, single encrypting key. 
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Proposition 9.3. Let ∆ = (𝑬𝒙𝒑𝒗, ≡𝑲, ≡𝑪)) be such that ≡𝑪 is 

proper. Let 𝑪 = {{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏

be a set of valid encryption terms, and S a 

finite set of keys with 𝑳𝒊 ∉ 𝐒(𝐢 ∈ {𝟏,… , 𝐧}). Let 𝝁( ) denote the set of 

all equivalence-classes with respect to ≡𝑪 of all elements in . Then, 

for each 𝒗 ∈ 𝝁( ), there is an element 𝑪𝒗 ∈ 𝒗 such that: 

98. Keys(𝑪𝒗) ∩ 𝐒 = ∅ 

99. 𝑳𝒊  𝑪𝒗 for all 𝒊 ∈  {𝟏,… , 𝒏} 

100. 𝒊𝒇 𝒗 ≠ 𝒗′|𝒗𝒌𝒆𝒚| ≠ ∞ 𝒂𝒏𝒅 |𝒗′𝒌𝒆𝒚| ≠ ∞, then Keys(𝑪𝒗 ) ∩

 Keys(𝑪𝒗′) = ∅ ; if and only if 𝒗𝒌𝒆𝒚 = 𝒗′𝒌𝒆𝒚 {𝑲} for some key 

K, and in this case: 

- Keys(𝑪𝒗 ) ∩Keys(𝑪𝒗′) = {𝑲} ,  
- 𝑪𝒗 and 𝑪𝒗′ are both of the form {•}𝑲 with the same K, and  

- K   𝑪𝒗 , K  𝑪𝒗′.  

101. if 𝒗 ≠ 𝒗′ and either |𝒗𝒌𝒆𝒚| = ∞ or |𝒗′𝒌𝒆𝒚| = ∞, then 

Keys(𝑪𝒗 ) ∩Keys(𝑪𝒗′)) = ∅.  

Proof. Observe, that if 𝝁𝒊 denotes the equivalence class of {𝑵𝒊}𝑳𝒊 in 

QEnc, then v ∈  𝝁(𝑪) if and only if v = 𝝁𝒊 for some ∈ {𝟏,…𝒏} . Proof 

goes by induction. 

The statement is clearly true if n = 1, since ≡𝑪 is proper. 

Suppose now that the result is true for n - 1. Let {𝑵𝟏}𝑳𝟏 , {𝑵𝟐}𝑳𝟐 ,..., 

{𝑵𝒏}𝑳𝒏 be valid expressions, and let S be a set of keys such that Li ∉ S. 

Without loss of generality, we can assume, that the numbering is such 

that there is an , 𝟏 ≤ 𝒍 ≤ 𝒏 , such that |(𝝁𝒊)𝒌𝒆𝒚| if 𝒊 ≤ 𝒍 and 

|(𝝁𝒊)𝒌𝒆𝒚|  = ∞ 𝒊𝒇 > 𝒍. 

Case 9.1: Let us first assume that l = n, i.e., |(𝝁𝒊)𝒌𝒆𝒚| = 𝟏 for all 

𝟏 ≤ 𝒊 ≤ 𝒏 , and that there is an 𝒎 ∈ {𝟏,… , 𝒏 − 𝟏} such that Ln = Lm. 

Since the statement is assumed to be true for n-1 , we have that for the 
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family of encryption terms 

′

{{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏−𝟏

 and the set S we can 

choose 𝑪𝝁𝒊 for all 𝒊 ≤ 𝒏 − 𝟏 such that conditions (i'), (ii'), (iii') and (iv') 

hold for these , that is, 

(i') Keys(𝑪𝝁𝒊) ⋂ S = ∅; for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏 ,  

(ii') 𝑳𝒊  𝑪𝝁𝒋 for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏 , and 

(iii') if 𝝁𝒊 ≠ 𝝁𝒋 , |(𝝁𝒊)𝒌𝒆𝒚| ≠ ∞ and |(𝝁𝒋)𝒌𝒆𝒚|
≠ ∞, then 

𝑲𝒆𝒚𝒔(𝑪𝝁𝒊) ⋂ 𝑲𝒆𝒚𝒔(𝑪𝝁𝒋)  ≠ ∅ ; if and only if (𝝁𝒊)𝒌𝒆𝒚 = (𝝁𝒋)𝒌𝒆𝒚 =

{𝑲} for some key K, and in that case 

102. 𝑲𝒆𝒚𝒔(𝑪𝝁𝒊) ⋂ 𝑲𝒆𝒚𝒔(𝑪𝝁𝒋)  =  {𝑲},  

103. 𝑪𝝁𝒊 and 𝑪𝝁𝒋 are both of the form {•}𝑲 with the same K, 

and  

104. 𝑲  𝑪𝝁𝒊 , 𝑲  𝑪𝝁𝒋.  

(iv') if 𝝁𝒊 ≠ 𝝁𝒋 and either |(𝝁𝒊)𝒌𝒆𝒚| = ∞ or |(𝝁𝒋)𝒌𝒆𝒚
| = ∞, then 

𝑲𝒆𝒚𝒔(𝑪𝝁𝒊) ⋂ 𝑲𝒆𝒚𝒔(𝑪𝝁𝒋) = ∅ . 

We can immediately discard (iv
'
) since we suppose that |(𝝁𝒊)𝒌𝒆𝒚| =

𝟏 for all 𝟏 ≤ 𝒊 ≤ 𝒏. Suppose now that 𝝁𝒏 = 𝝁𝒋 for some 𝒊 ≤ 𝒏 − 𝟏, 

then there is nothing to prove, 𝑪𝝁𝒏 = 𝑪𝝁𝒊 has already been chosen and 

so (i), (ii) and (iii) are obviously satisfied by IH. 

If there is no such i, then consider 

𝑺𝒏−𝟏 ≔ ((⋃𝑲𝒆𝒚𝒔(𝑪𝝁𝒊) ∪

𝒏−𝟏

𝒊=𝟏

{𝑳𝒊})\{𝑳𝒏}) ∪ 𝑺 

Since ≡𝑪 is proper (using 𝑺𝒏−𝟏 and {𝑵𝒏}𝑳𝒏 ∈  𝝁𝒏 ), there is a 

𝑪 ∈ 𝝁𝒏 such that 𝑲𝒆𝒚𝒔(𝑪) ∪ 𝑺𝒏−𝟏 = ∅ and 𝑳𝒏 𝑪. Let us define 

𝑪𝝁𝒏 = 𝑪. Then: 

(i) 𝑲𝒆𝒚𝒔(𝑪)⋂𝑺  = ∅ ; follows from the fact that 

𝑲𝒆𝒚𝒔(𝑪) ⋂ 𝑺𝒏−𝟏  = ; and 𝑺 ⊆  𝑺𝒏−𝟏 ;  
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(ii) 𝑳𝒊 𝑪𝝁𝒋 for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 since:  

1. 𝑳𝒊 𝑪𝝁𝒋 , for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏 by (ii'),  

2. 𝑳𝒏 𝐶𝝁𝒋 , 𝟏 ≤ 𝒋 ≤ 𝒏 − 𝟏 because we assumed that Ln = Lm 

and 𝑳𝒎 𝑪𝝁𝒋 by (ii'),  

3. 𝑳𝒊 𝑪, for all 𝑳𝒊 ≠ 𝑳𝒎 such that 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏 (remember 

that Ln = Lm) since 𝑳𝒊 ∈ 𝑺𝒏−𝟏 and 𝑲𝒆𝒚𝒔(𝑪) ⋂ 𝑺𝒏−𝟏 = ∅, 

and  

4. 𝑳𝒏 𝑪 by the way that C was chosen (hence 𝑳𝒎 𝑪).  

(iii)  

1. for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏  it is true by (iii');  

2. Suppose now that 𝝁𝒏 ≠ 𝝁𝒌 and (𝑪) ⋂ 𝑲𝒆𝒚𝒔(𝑪𝝁𝒌)  ≠ ∅ ; 

for some 𝟏 ≤ 𝒌 ≤ 𝒏 − 𝟏. If we combine these with the fact 

that 𝑲𝒆𝒚𝒔(𝑪) ⋂ 𝑺𝒏−𝟏 = ∅, we need to have that  

𝑲𝒆𝒚𝒔(𝑪) ⋂ 𝑲𝒆𝒚𝒔(𝑪𝝁𝒌)  =  {𝑳𝒏}. 

It is now easy to see from the equation above that C and 𝑪𝝁𝒌 are 

both of the form {•}𝑳𝒏. For that notice that by (ii.d) just proved above, 

𝑳𝒏 𝑪 and by (ii.a) 𝑳𝒏 𝑪𝝁𝒌. The only thing left to show is that 

(𝝁𝒏)𝒌𝒆𝒚 = (𝝁𝒌)𝒌𝒆𝒚 = {𝑳𝒏} . This comes straightforward from the fact 

that C and 𝑪𝝁𝒌are both of the form {•}𝑳𝒏 and from the fact that 

|(𝝁𝒊)𝒌𝒆𝒚| = 𝟏 for all 𝟏 ≤ 𝒊 ≤ 𝒏. Combining these we have 

(𝝁𝒏)𝒌𝒆𝒚 = (𝝁𝒌)𝒌𝒆𝒚 = {𝑳𝒏}. 

The converse is very simple. Suppose that (𝝁𝒏)𝒌𝒆𝒚 = (𝝁𝒌)𝒌𝒆𝒚 =

{𝑳𝒏}. Since 𝑪 ∈ 𝝁𝒏 and 𝑪𝝁𝒌 ∈ 𝝁𝒌 we have that both are of the form 

{•}𝑳𝒏 and thus 𝑲𝒆𝒚𝒔(𝑪) ⋂ 𝑲𝒆𝒚𝒔(𝑪𝝁𝒌)  ≠ ∅. The rest follows as 

above. 

(iv) Verified since by hypothesis we suppose that |(𝝁𝒊)𝒌𝒆𝒚| = 𝟏 for 

all 𝟏 ≤ 𝒊 ≤ 𝒏. 
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Case 9.2: Suppose now that l = n, but there is no 𝒎 ∈ {𝟏,… , 𝒏 − 𝟏} 
such that Ln = Lm. Since the result is true for n-1, we have that for the 

family of encryption terms '{{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏−𝟏

 and the set 𝑺′ = 𝑺 ∪ {𝑳𝒏} 

(note that 𝑳𝒊 ∉ 𝑺′ for all 𝒊 ≤ 𝒏 − 𝟏) we can choose 𝑪𝝁𝒊 for all 𝒊 ≤ 𝒏 −

𝟏 such that conditions (i'), (ii'), (iii') and (iv') hold for these , that is, 

(i') Keys(𝑪𝝁𝒊)⋂(𝑺 ∪ {𝑳𝒏}) = ∅ for all 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, 

(ii') 𝑳𝒊 𝑪𝝁𝒋 for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏, and 

(iii') if 𝝁𝒊 ≠ 𝝁𝒋, |(𝝁𝒊)𝒌𝒆𝒚| ≠ ∞ and |(𝝁𝒋)𝒌𝒆𝒚|
≠ ∞, then 

𝑲𝒆𝒚𝒔(𝑪𝝁𝒊) ⋂ 𝑲𝒆𝒚𝒔(𝑪𝝁𝒋) ≠ ∅ if and only if (𝝁𝒊)𝒌𝒆𝒚 = (𝝁𝒋)𝒌𝒆𝒚
= {𝑲} 

for some key K; 

(iv') if 𝝁𝒊 ≠ 𝝁𝒋 and either |(𝝁𝒊)𝒌𝒆𝒚| = ∞ or |(𝝁𝒋)𝒌𝒆𝒚
| = ∞, then 

𝑲𝒆𝒚𝒔(𝑪𝝁𝒊) ⋂𝑲𝒆𝒚𝒔 (𝑪𝝁𝒋) = ∅. 

Again, if 𝝁𝒏 = 𝝁𝒊 for some i < n, then there is nothing to prove, let 

𝑪𝝁𝒏 = 𝑪𝝁𝒊 and note that (i) and (iii) are obviously satisfied, and (ii) 

(𝑳𝒏 𝑪𝝁𝒋 , for all 𝟏 ≤ 𝒋 ≤ 𝒏, and 𝑳𝒊 𝑪𝝁𝒏  for all 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏) 

follows from (i') and (ii') respectively. Again (iv) is also true since we 

suppose that |(𝝁𝒊)𝒌𝒆𝒚| = 𝟏 for all 𝟏 ≤ 𝒊 ≤ 𝒏. 

If there is no such i, then consider 

𝑺𝒏−𝟏(⋃𝑲𝒆𝒚𝒔(𝑪𝝁𝒊) ∪ {𝑳𝒊}

𝒏−𝟏

𝒊=𝟏

) ∪ 𝐒. 

By properness (using 𝑺𝒏−𝟏 and {𝑵𝒏}𝑳𝒏 ∈ 𝝁𝒏), and since 𝑳𝒏 ∉  𝑺𝒏−𝟏 

(by (i') assumption 𝑳𝒏 ≠ 𝑳𝒊 for all i < n, and by hypothesis of the 

proposition 𝑳𝒏 ∉  𝐒), there is a 𝑪 ∈ 𝝁𝒏 such that 𝑲𝒆𝒚𝒔(𝑪)⋂𝑺𝒏−𝟏 = ∅, 

and 𝑳𝒏 𝑪. Let us define 𝑪𝝁𝒏 = 𝑪. Then: 

(i)follows from (i') and from the fact that 𝑲𝒆𝒚𝒔(𝑪)⋂𝑺𝒏−𝟏 = ∅; 

(ii) is true, since:  
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1. 𝑳𝒊 𝑪𝝁𝒋 , for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏 by (ii'),  

2. 𝑳𝒏 𝑪𝝁𝒋 , for all 𝟏 ≤ 𝒋 ≤ 𝒏 − 𝟏 by (i'),  

3. 𝑳𝒊 𝑪 for 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏 because by properness 

𝑲𝒆𝒚𝒔(𝑪)⋂𝑺𝒏−𝟏 = ∅, and  

4. 𝑳𝒏 𝑪 because of properness.  

(iii) follows, because: 

1. for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏 it is true by (iii'), and  

2. for the other case it holds since by properness 

𝑲𝒆𝒚𝒔(𝑪)⋂𝑺𝒏−𝟏 = ∅ and thus 𝑲𝒆𝒚𝒔(𝑪)⋂ 𝑲𝒆𝒚𝒔(𝑪𝝁𝒊)  =

∅ for all 𝒊 ≤ 𝒊 ≤ 𝒏 − 𝟏.  

(iv)Verified since by hypothesis we suppose that  |(𝝁𝒊)𝒌𝒆𝒚| = 𝟏  for 

all 𝟏 ≤ 𝒊 ≤ 𝒏.  

Case 9.3: Suppose now that l < n, but there is 𝒎 ∈ {𝟏,… , 𝒏 − 𝟏} 
such that Ln = Lm. Since the result is assumed to be true for n - 1, we 

have that for the family of encryption terms ′ = {{𝑵𝒊}𝑳𝒊}𝒊=𝟏

𝒏−𝟏

 and the 

set S we can choose 𝑪𝝁𝒊  for all 𝒊 ≤ 𝒏 − 𝟏 such that conditions (i'), (ii'), 

(iii') and (iv') hold for these , that is, 

(i') Keys(𝑪𝝁𝒊) ⋂ S = ∅ for all 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏,  

(ii') 𝑳𝒊 𝑪𝝁𝒋  for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏, and 

(iii') if 𝝁𝒊 ≠ 𝝁𝒋, |(𝝁𝒊)𝒌𝒆𝒚| ≠ ∞ 𝒂𝒏𝒅 |(𝝁𝒋)𝒌𝒆𝒚|
≠ ∞, then Keys(𝑪𝝁𝒊) 

⋂ Keys(𝑪𝝁𝒋) ≠ ∅ if and only if (𝝁𝒊)𝒌𝒆𝒚 = (𝝁𝒋)𝒌𝒆𝒚
= {𝑲} for some key 

K; 

(iv') if 𝝁𝒊 ≠ 𝝁𝒋 and either |(𝝁𝒊)𝒌𝒆𝒚| = ∞ or |(𝝁𝒋)𝒌𝒆𝒚|
= ∞, then 

Keys(𝑪𝝁𝒊) ⋂ Keys(𝑪𝝁𝒋) = ∅. 
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Again, suppose now that 𝝁𝒏 = 𝝁𝒊 for some 𝒊 ≤ 𝒏 − 𝟏, then there is 

nothing to prove, 𝑪𝝁𝒏 =has already been chosen and so (i), (ii), (iii) and 

(iv) are obviously satisfied by IH.  

If there is no such i, then consider 

𝑺𝒏−𝟏 ≔ ((⋃𝑲𝒆𝒚𝒔(𝑪𝝁𝒊  ) ∪ {𝑳𝒊})\{𝑳𝒏}) ∪ 𝑺

𝒏−𝟏

𝒊=𝟏

 

Since ≡𝑪 is proper (using 𝑺𝒏−𝟏 and {𝑵𝒏}𝑳𝒏 ∈ 𝝁𝒏, |(𝝁𝒏)𝒌𝒆𝒚| = ∞), 

there is a 𝑪 ∈ 𝝁𝒏 such that Keys(C) ∩ (𝑺𝒏−𝟏 ∪ {𝑳𝒏}) = ∅. Then: 

(i) Keys(C) ∩ 𝑺 = ∅ follows from the fact that Keys(C)∩ ( 𝑺𝒏−𝟏 ∪
{𝑳𝒏}) = ∅ and S ⊆ ( 𝑺𝒏−𝟏 ∪ {𝑳𝒏});  

(ii) 𝑳𝒊 𝑪𝝁𝒋for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 since:  

1. 𝑳𝒏 𝑪𝝁𝒋 , for all 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏 by (ii'),  

2. 𝑳𝒏 𝑪𝝁𝒋 , 𝟏 ≤ 𝒋 ≤ 𝒏 − 𝟏 because we assumed that Ln = 

Lm and Lm 𝑪𝝁𝒋 by (ii'),  

3. 𝑳𝒊 𝑪, for all Li ≠ 𝑳𝒎 such that 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏 

(remember that Ln = Lm) since 𝑳𝒊  ∈  𝑺𝒏−𝟏 and Keys(C)∩
𝑺𝒏−𝟏 = ∅, and  

4. 𝑳𝒏 𝑪 because Keys(C) ∩ (𝑺𝒏−𝟏 ∪ {𝑳𝒏}) = ∅ (hence 

𝑳𝒎 𝑪).  

(iii)  note that if |(𝝁𝒊)𝒌𝒆𝒚| ≠ ∞ 𝒂𝒏𝒅 |(𝝁𝒋)𝒌𝒆𝒚
| ≠ ∞ then 𝟏 ≤ 𝒊, 𝒋 ≤

𝒍 < 𝒏 and thus by HI (iii) holds.  

(iv)  

1. for the case 𝒍 ≤ 𝒋 ≤ 𝒏 − 𝟏 and 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, 

Keys(𝑪𝝁𝒋) ∩ Keys(𝑪𝝁𝒊)= ∅ holds by IH;  

2. it is only left to show that for all 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, 

Keys(𝑪𝝁𝒏) ∩Keys(𝑪𝝁𝒊) = ∅. This is true because by 
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definition Keys(𝑪𝝁𝒏) ∩ (𝑺𝒏−𝟏 ∪ {𝑳𝒏}) = ∅ and Keys(𝑪𝝁𝒊)) 

⊆ (𝑺𝒏−𝟏 ∪ {𝑳𝒏})).  

Case 9.4: The proof of the remaining case, l < n, i.e., |(𝝁𝒊)𝒌𝒆𝒚| =

∞ for l < i ≤ n, and there is no 𝒎 ∈ {𝟏,… , 𝒏 − 𝟏} such that Ln = Lm is a 

combination of the proofs of Case 2 and Case 3. Since the result is true 

for 𝒏 − 𝟏, we have that for the family of encryption terms 
′

{{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏−𝟏

 and the set 𝑺′ = 𝑺 ∪ {𝑳𝒏} (note that 𝑳𝒊 ∉ 𝑺′ for all i 

≤ 𝒏 − 𝟏 ) we can choose 𝑪𝝁𝒊  for all i ≤ 𝒏 − 𝟏 such that conditions (i'), 

(ii'), (iii') and (iv') hold for these , that is, 

(i') Keys(𝑪𝝁𝒊) ∩ (𝑺 ∪ {𝑳𝒏}) = ∅ for all 1 ≤ 𝒊 ≤ 𝒏 − 𝟏; 

(ii') 𝑳𝒏 𝑪𝝁𝒋  for all 1 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏, and 

(iii') if 𝝁𝒊 ≠ 𝝁𝒋, |(𝝁𝒊)𝒌𝒆𝒚| ≠ ∞ and |(𝝁𝒋)𝒌𝒆𝒚|
≠ ∞, then 

Keys(𝑪𝝁𝒊) ∩ Keys(𝑪𝝁𝒋) ≠ ∅ if and only if (𝝁𝒊)𝒌𝒆𝒚 = (𝝁𝒋)𝒌𝒆𝒚
= {𝑲} for 

some key K; 

(iv') if 𝝁𝒊 ≠ 𝝁𝒋 and either |(𝝁𝒊)𝒌𝒆𝒚| = ∞ or |(𝝁𝒊)𝒌𝒆𝒚| = ∞ , then 

Keys(𝑪𝝁𝒊) ∩ Keys(𝑪𝝁𝒋) = ∅. 

Again, if 𝝁𝒏 = 𝝁𝒊 for some i < n, then there is nothing to prove, let 

𝑪𝝁𝒏 = 𝑪𝝁𝒊  and note that (i), (iii) and (iv) are obviously satisfied, and (ii) 

(𝑳𝒏 𝑪𝝁𝒋 , for all 1 ≤ 𝒋 ≤ 𝒏, and 𝑳𝒊 𝑪𝝁𝒏  for all 1 ≤ 𝒊 ≤ 𝒏 − 𝟏) 

follows from (i') and (ii') respectively. 

If there is no such i, then consider 

𝑺𝒏−𝟏 ≔ ((⋃𝑲𝒆𝒚𝒔(𝑪𝝁𝒊  ) ∪ {𝑳𝒊}) ∪ 𝑺

𝒏−𝟏

𝒊=𝟏

 

By properness (using 𝑺𝒏−𝟏 and {𝑵𝒏}𝑳𝒏 ∈ 𝝁𝒏, |(𝝁𝒏)𝒌𝒆𝒚| = ∞), and 

since 𝑳𝒏 ∉ 𝑺𝒏−𝟏 (by (i'), assumption 𝑳𝒏 ≠ 𝑳𝒊 for all i < n, and by 

hypothesis of the proposition Ln ∉ 𝑺), there is a 𝑪 ∈ 𝝁𝒏 such that 

Keys(C) ∩ (𝑺𝒏−𝟏 ∩ {𝑳𝒏}) = ∅. Let us define 𝑪𝝁𝒏  = C. Then:  
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(i)      follows from (i') and from the fact that Keys(C) ∩ 𝑺𝒏−𝟏 = ∅;  

(ii) is true, since:  

1. 𝑳𝒊 𝑪𝝁𝒋 , for all 1 ≤ 𝒊, 𝒋 ≤ 𝒏 − 𝟏 by (ii'),  

2. 𝑳𝒏 𝑪𝝁𝒋 , for all 1 ≤ 𝒋 ≤ 𝒏 − 𝟏 by (i'),  

3. 𝑳𝒊 𝑪 for 1 ≤ 𝒊 ≤ 𝒏 − 𝟏 because by properness 

Keys(C) ∩ 𝑺𝒏−𝟏 = ∅, and  

4. 𝑳𝒏 𝑪 because by definition of C, Keys(C) ∩ 𝑺𝒏−𝟏 

∪ {𝑳𝒏} = ∅.  

(iii) note that if |(𝝁𝒊)𝒌𝒆𝒚| ≠ ∞), and |(𝝁𝒋)𝒌𝒆𝒚
| ≠ ∞), then 1 

≤ 𝒊, 𝒋 ≤ 𝒍 < 𝒏 and thus by HI (iii) holds.  

(iv)  

1. for the case l ≤ 𝒋 ≤ 𝒏 − 𝟏 and 1 ≤ 𝒊 ≤ 𝒏 − 𝟏, Keys(𝑪𝝁𝒋) ∩ 

Keys(𝑪𝝁𝒊) = ∅ holds by IH;  

2. it is only left to show that for all 1 ≤ 𝒊 ≤ 𝒏 − 𝟏, 

Keys(𝑪𝝁𝒏) ∩Keys(𝑪𝝁𝒊) = ∅. This is true because by 

definition Keys(𝑪𝝁𝒏) ∩ (𝑺𝒏−𝟏 ∪ {𝑳𝒏}) = ∅ and Keys(𝑪𝝁𝒊) 

⊆ 𝑺𝒏−𝟏.  

Given sets C and s as iin the conditions og the proposition, let 

R(C,S) denote the nonempty set 
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Another useful property satisfied by all common logics, and that we 

will need for the completeness result is the following: 

Definition 9.37 (Independent ≡𝑲 and ≡𝑪). We say that ≡𝑲 and ≡𝑪 

are independent, if for any finite set of keys S, and any finite set of 

ciphers C such that no key in S appears in any element of C, given any 

key-renaming function 𝝈, there is a key renaming 𝝈' for which 𝝈'(K) = 

K whenever 𝑲 ∈  𝑺, and for all C ∈ C, C 𝝈 ≡𝑪 C 𝝈'. 
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In other words, ≡𝑲 and ≡𝑪 are independent, if for any finite set of 

keys S, and any finite set of ciphers C such that no key in S appears in 

any element of C, it is possible to alter any key-renaming function 𝝈 

such that the altered function leaves all the elements in S unchanged, 

whereas on C it does the same thing as the original 𝝈. We will need this 

property for the general completeness theorem. 

9.5.3 Interpretation 

The idea of the interpretation is to describe messages that are built 

from blocks of strings and keys via pairing and encryption. To each 

valid formal expression M, the interpretation assigns a random variable 

Φ(M) taking values in 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. We do not give one specific 

interpreting function though, we will just say that a function Φ is an 

interpretation if it satisfies certain properties. Let us assume, that a 

function ∅ is fixed in advance, which assigns to each formal key a key-

generation algorithm. If Φ (B) ∈ 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (constant random variable) is 

given for blocks, then, the rest of Φ is determined the following way: 

First, run the key-generation algorithm assigned by ∅ for each key in 

Keys(M). Then, using the outputs of these key-generations, translate the 

formal expressions according to the following rules: for each key, use 

the output of the corresponding key-generation. For blocks, just use 

Φ(B). For each pair, apply [• ; •] to the interpretations of the 

expressions inside the formal pair. For each formal encryption, run the 

encryption algorithm using as key the bitstring that was output by the 

key generation, to encrypt the interpretation of the formal expression 

inside the formal encryption. The randomness of Φ (M) comes from the 

initial key-generation, and from running the encryption algorithm 

independently for each formal encryption. Let us define below this 

notion of interpretation with the following example: 

Example 9.11. For M = (({𝟎}𝑲𝟏𝟎,𝑲𝟓), {𝑲𝟏𝟎}𝑲𝟓), the interpretation 

is Φ(M):(𝛀𝑬 ×𝛀𝑬) × (𝛀𝚽(𝐊𝟓) ×𝛀𝚽(𝐊𝟏𝟎)) → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, where 

𝜱(𝑴)(𝝎𝟏, 𝝎𝟐, 𝝎𝟑, 𝝎𝟒) is 
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[
[𝑬(𝚽(𝐊𝟏𝟎)(𝝎𝟒),𝚽(𝟎))(𝝎𝟏),𝚽(𝐊𝟓)(𝝎𝟑)], 𝑬(𝚽(𝐊𝟓)(𝝎𝟑),

𝚽(𝐊𝟏𝟎)(𝝎𝟒))(𝝎𝟐)
] 

There are four instances of randomness, two coming from the 

generation of keys by the key-generation algorithm (for K5 and for K10), 

and the other two from the two encryptions ({𝟎}𝑲𝟏𝟎) and ({𝑲𝟏𝟎}𝑲𝟓). 

Definition 9.38 (Interpretation of Formal Expressions). Let 

𝚷 = ({𝐊𝐢}𝐢∈𝐈, 𝐄, 𝐃, ≈) be a general symmetric encryption scheme with 

some index set I, with {(𝛀𝑲𝒊 , 𝑷𝒓𝑲𝒊)}𝒊∈𝑰
 denoting the probability fields 

for key generation, and with (𝛀𝑬, 𝑷𝒓𝑬) denoting the probability field 

for the randomness of encryption. Let ExpV be a set of valid 

expressions. For each valid expression M, let the probability space 

(𝛀𝑴, 𝑷𝒓𝑴) be defined recursively as 

(𝛀𝐊, 𝐏𝐫𝐊) := ({𝛚𝟎}, 𝟏{𝐰𝟎}) for K ∈ Keys; 

(𝛀𝐁, 𝐏𝐫𝐁) := ({𝛚𝟎}, 𝟏{𝐰𝟎}) for B ∈ Blocks; 

(𝛀(𝐌,𝐍), 𝐏𝐫 (𝐌,𝐍) := (𝛀𝐌 ×𝛀𝐍, 𝐏𝐫𝐌⊗𝐏𝐫𝐍); 

(𝛀{𝐌}𝐊 , 𝐏𝐫{𝐌}𝐊) := (𝛀𝐄 ×𝛀𝐌, 𝐏𝐫𝐄⊗𝐏𝐫𝐌). 

Where ({𝝎𝟎}, 𝟏{𝒘𝟎}) is just the trivial probability-space with one 

elementary event, 𝝎𝟎 only; the tensor product stands for the product 

probability. Suppose that a function ∅ ∶ 𝑲𝒆𝒚𝒔 → {𝑲𝒊}𝒊∈𝑰 is given 

assigning abstract keys to key generation algorithms, such that ∅(K) = 

∅(𝑲′)and only if 𝑲 ≡𝑲  𝑲
′. Let 𝒊 ∶  {𝟏, … , |𝑲𝒆𝒚𝒔(𝑴)|} → 𝑲𝒆𝒚𝒔(𝑴) 

be a bijection enumerating the keys in Keys(M). Let  

(𝛀𝑲𝒆𝒚𝒔(𝑴), 𝑷𝒓𝑲𝒆𝒚𝒔(𝑴)) ≔ 

(
𝛀𝚽(𝐢(𝟏)) ×…× 𝛀𝚽(𝐢(|𝐊𝐞𝐲𝐬(𝐌)|)), 𝑷𝒓𝚽(𝐢(𝟏))⊗

…⊗𝑷𝒓𝚽(𝐢(|𝐊𝐞𝐲𝐬(𝐌)|))
) 

The function (M, M') ↦ (𝚽𝑴(𝑴′):𝛀𝑴′ × 𝛀𝑲𝒆𝒚𝒔(𝑴) → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

defined whenever M'  M, is ca1lled an interpretation function, if it 

satisfies the following properties: 

𝚽𝑴(𝑩) (𝝎𝟎, 𝝎) = 𝚽𝑵(𝑩)(𝝎𝟎, 𝝎)for all M, N valid expressions, B 

∈ Blocks, B M,  
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B  N, and arbitrary 𝝎 ∈ 𝛀𝑲𝒆𝒚𝒔(𝑴), 𝝎′ ∈ 𝛀𝑲𝒆𝒚𝒔(𝑵). Let 𝚽(𝑩) ≔

𝚽𝑴(𝑩). 

𝚽𝑴(𝑲) (𝝎𝟎, (𝝎𝟏, … ,𝝎|𝑲𝒆𝒚𝒔(𝑴)|)) = ∅(𝑲)(𝝎𝒊−𝟏(𝑲)) for K ∈ 

Keys(M), with 𝝎𝒋 ∈ 𝛀∅(𝒊(𝒋)). 

 

𝚽𝑴((𝑴
′,𝑴′′))((𝝎′, 𝝎′′),𝝎) =

[𝚽𝑴(𝑴′)(𝝎
′, 𝝎),𝚽𝑴(𝑴′′)(𝝎

′′, 𝝎)] for all 𝝎′ ∈ 𝛀𝑴′, 𝝎
′′ ∈ 𝛀𝑴′′, and 

𝝎 ∈ 𝛀𝑲𝒆𝒚𝒔(𝑴)if (M', M'')  M. 

𝚽𝑴({𝑴′}𝑲)((𝝎𝑬, 𝝎
′),𝝎) =

𝑬(𝚽𝑴(𝑲)(𝝎𝟎, 𝝎)𝚽𝑴(𝑴′)(𝝎
′, 𝝎))(𝝎𝑬)for all 𝝎𝑬 ∈ 𝛀𝑬, 

𝝎′ ∈ 𝛀𝑴′ , 𝝎 ∈ 𝛀𝑲𝒆𝒚𝒔(𝑴) if {𝑴′}𝑲 𝑴. 

Let 𝚽(M) := 𝚽𝑴(𝑴), and let ⟦𝑴⟧𝚽 denote the distribution of 

𝚽(M). 

Soundness 

An interpretation assigns a random variable 𝚽(M) (and the 

distribution ⟦𝑴⟧𝚽 of 𝚽(M)) to a formal valid expression M. On the set 

of valid expressions the equivalence ≅ equates expressions that a 

formal adversary supposedly cannot distinguish, whereas the 

equivalence ≈ equates random variables (and distributions) that a 

probabilistic adversary is not supposed to be able to distinguish. The 

question is, how the formal and the probabilistic equivalence are related 

through the interpretation. We say that soundness holds if 𝑴 ≅ 𝑵 

implies ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽, whereas we say that completeness holds if 

⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽 implies 𝑴 ≅ 𝑵. 

The key to a soundness theorem is to have enough boxes in the 

definition of formal equiva-lence, i.e., there should be enough elements 

in QEnc. It is clear that in the extreme case, when the equivalence on 

encryption terms, ≡𝑪, is defined so that two encryption terms are 

equivalent iff they are the same, then soundness holds trivially for all 

interpretations; but this would be completely impractical, it would 
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assume a formal adversary that can see everything inside every 

encryption. It is also immediate, that if soundness holds with a given 

≡𝑪 (and a given interpreta-tion), and ≡𝑪
′  is such that for any to 

encryption terms M and N, M ≡𝑪
′  N implies M ≡𝑪 N (ı.e. ≡𝑪

′ has more 

boxes), then, keeping the same interpretation, soundness holds with the 

new ≡𝑪
′ as well. Hence, in a concrete situation, the aim is to introduce 

enough boxes to achieve soundness, but not too many, to sustain 

practicality. One way to avoid having too many boxes is to require 

completeness: we will see later, that obtaining completeness requires 

that we do not have too many boxes. 

The following theorem claims the equivalence of two conditions. It 

is almost trivial that con-dition (i) implies condition (ii). The claim that 

(ii) implies (i) can be summarised the following way: if soundness 

holds for pairs of valid expressions M and M' with a special relation 

between them (described in (ii)), then soundness holds for all 

expressions (provided that they do not have encryption cycles). In other 

words, if 𝑴 ≅ 𝑴′ implies ⟦𝑴⟧𝚽 ≈ ⟦𝑴′⟧𝚽 pairs M and M' then 𝑴 ≅
 implies ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽 for certain specified.  

Theorem 9.14. Let ∆= (𝑬𝒙𝒑𝒗, ≡𝑲, ≡𝑪) be a formal logic for 

symmetric encryption such ≡𝑪 is proper and for each M ∈ 𝑬𝒙𝒑𝒗, B-

Keys(M) is not cyclic in M. Let π = ({𝑲𝒊}𝒊∈𝑰, 𝑬, 𝑫,≈) be a general 

encryption scheme, Φ an interpretation of 𝑬𝒙𝒑𝒗 in π. Then the 

following conditions are equivalent: 

(i)  Soundness holds for Φ:𝑴 ≅ 𝑵, implies 𝜱(𝑴) ≈ 𝚽(𝐍); 

(ii)  For any 𝑪 = {{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏

 set of valid encryption terms, and S 

finite set of keys with Li ∉ S, (𝒊 ∈ {𝟏,… , 𝒏}), there is an element 

{𝑪𝒗}𝒗∈𝝁(𝑪) of R(C; S) such that the followings hold: 

if {{𝑵𝒊𝒋}𝑲
}
𝒋=𝟏

𝒍
  ⊂ C and M ∈ 𝑬𝒙𝒑𝒗 are such that 

1. {𝑵𝒊𝟏}𝑲
, {𝑵𝒊𝟐}𝑲

, … {𝑵𝒊𝒍}𝑲
 𝑴,  

2. R-Keys(M) ⊆ S, and  
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3. K does not occur anywhere else in M, all visible 

undecryptable encryption terms in M are elements of 

𝑪 ∪ {𝑪𝒗}𝒗∈𝝁(𝑪), then, if we denote by M' the expression 

obtained by replacing in M each {𝑵𝒊𝒋}𝑲
 with𝑪

𝝁({𝑵𝒊𝒋}𝑲
)
 we 

have that ⟦𝑴⟧𝚽 ≈ ⟦𝑴′⟧𝚽. 

Proof. The proof of this theorem is motivated by the soundness 

proof in [2]. The idea of the proof is the following: Starting from two 

acyclic expressions 𝑴𝟎 = 𝑴 ≅ 𝑵 = 𝑵𝟎, we create expressions 

𝑴𝟏, … ,𝑴𝒃 and 𝑵𝟏, … ,𝑵𝒃′ such that 𝑴𝒊+𝟏 is obtained from 𝑴𝒊 via a 

replacement of encryption terms as described in condition (ii). 

Acyclicity ensures that the encrypting key of the replaced encryption 

terms will not occur anywhere else. Similarly for 𝑵𝒊+𝟏 and 𝑵𝒊. We do 

this so that 𝑴𝒃 and 𝑵𝒃′ will differ only in key renaming. Then, by 

condition (ii), ⟦𝑴𝒊+𝟏⟧𝚽 ≈ ⟦𝑴𝒊⟧𝚽, and ⟦𝑵𝒊+𝟏⟧𝚽 ≈ ⟦𝑵𝒊⟧𝚽. But, 

⟦𝑴𝒃⟧𝚽 = ⟦𝑵𝒃′⟧𝚽 and therefore the theorem follows. 

Now in more detail. Condition (ii) follows from (i) easily: for any 

set {𝑪
𝝁({𝑵𝒊𝒋}𝑲

)
}
𝒊=𝟏

𝒍

 provided by Proposition 9.3, the encrypting key of 

𝑪
𝝁({𝑵𝒊𝒋}𝑲

)
is not contained in S hence it is not recoverable key of M. 

Therefore, while computing the pattern of M', 𝑪
𝝁({𝑵𝒊𝒋}𝑲

)
 will be 

replaced by the box 
𝝁({𝑵𝒊𝒋}𝑲

)
, which is the same box as the one that 

replaces {𝑵𝒊𝒋}𝑲
 in M when the pattern of is computed. Hence 𝑴 ≅ 𝑴′ 

and therefore, since soundness is assumed, and B-Keys(M') is not cyclic 

in M', we have 

⟦𝑴⟧𝚽 ≈ ⟦𝑴′⟧𝚽. 

In order to prove that (i) follows from (ii), consider two equivalent 

valid expressions M and N such that 𝑴 ≅ 𝑵. Then, by definition, there 

exists a bijection 𝝈 on Keys(preserving ≡𝑲 such that pattern(M) = 

pattern(N𝝈). This means that the “boxes” occurring in pattern(M) must 
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oc-cur in pattern(N 𝝈) and vice-versa. Also, the subexpressions of 

pattern(M) and of pattern(N 𝝈) outside the boxes must agree as well. 

Hence, 

𝑹−𝑲𝒆𝒚𝒔(𝑴) =  𝑹 − 𝑲𝒆𝒚𝒔(𝑵𝝈) =  𝑹 − 𝑲𝒆𝒚𝒔(𝑵)𝝈. 
Let L1, L2 ,...,Lb (Li ≠ Lj if i ≠ j) denote the keys in B-Keys(M), and 

let L
'
1, L 

'
2,..., L

'
b' (L'i ≠L'j if i ≠ j) denote the keys in B-Keys(N) 𝝈. B-

Keys(M) and B-Keys(N) (and therefore B-Keys(N 𝝈) as well) are not 

cyclic by hypothesis, so without loss of generality, we can assume that 

the Li’s and the L
'
i’s are numbered in such a way that Li encrypts Lj (and 

L
'
i encrypts L'j) only if i < j (for a more detailed argument about this, 

see [2]; intuitively this means that those keys in B-Keys(M) that are 

deeper in M have a higher number). 

Consider now the set of expressions that are subexpressions of M or 

N and have the form {𝑴′}𝑳𝒊  𝒐𝒓 {𝑵′}𝑳′𝒊  , and also, the set S. Condition 

(ii) then provides the set with elements of the form 𝑪𝝁({𝑴′}𝑳𝒊)
 and 

𝑪𝝁({𝑵′}𝑳′𝒊)
. 

Let M0 = M. Let M1 be the expression obtained from M0 by 

replacing all subexpressions in M0 of the form {𝑴′}𝑳𝟏 by 𝑪𝝁({𝑴′}𝑳𝟏)
 

given by the assumption. Let then Mi, i ≥ 2, be the expression obtained 

from 𝑴𝒊−𝟏 by replacing all subexpressions in 𝑴𝒊−𝟏 of the form {𝑴′}𝑳𝒊 

by 𝑪𝝁({𝑴′}𝑳𝒊)
. We do this for all i ≤ b and it is easy to see that in Mb 

replacing the subexpressions of the form 𝑪𝝁({𝑴′}𝑳𝒊)
 by 𝝁({𝑴′}𝑳𝒊)

 for all 

i, we arrive at pattern(M). 

Note that in 𝑴𝒊−𝟏, Li can only occur as an encrypting key. The 

reason for this is that if Li is a subexpression of M, then it has to be 

encrypted with some non-recoverable key, otherwise Li would be 

recoverable; moreover, it has to be encrypted with some key in B-

Keys(M) because a subexpression of M is either recoverable or ends up 

in a box when we construct pattern(M). Now, the element in B-Keys(M) 

that encrypts Li has to be an L j with j < i. But, all subexpres-sions in M 

of the form fM 
0
 gLj were already replaced by 𝑪𝝁({𝑴′}𝑳𝒋)

 when we 
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constructed Mj. According to the properties listed in proposition 2.13, Li 

may only appear in 𝑪𝝁({𝑴′}𝑳𝒋)
 as the encrypting key, and then Li = Lj, a 

contradiction. So Li cannot appear in Mi¡1 in any other place than an 

encrypting key. Observe as well, that R-Keys(Mi) = R-Keys(M). 

From assumption (ii), it follows then that ⟦𝑴𝒊−𝟏⟧𝚽 ≈ ⟦𝑴𝒊⟧𝚽, for 

all i, 𝟏 ≤ 𝒊 ≤ 𝒃. Hence, 

⟦𝐌⟧𝚽 = ⟦𝐌𝟎⟧𝚽 ≈ ⟦𝐌𝐛⟧𝚽    (2.3) 
Carrying out the same process for N𝝈 through (N𝝈)0, (N𝝈1, ..., 

(N𝝈)b' we arrive at 

 ⟦𝛔⟧𝚽 = ⟦(𝐍𝛔)𝟎⟧𝚽 ≈ ⟦(𝐍𝛔)𝐛′⟧𝚽  (2.4)  
Since we supposed that M ≅ N, that is, pattern(M) = pattern(N𝝈), 

and therefore M b » pattern(M) and (N𝝈)b0 = pattern(N𝝈), we have 

⟦𝐌𝐛⟧𝚽= ⟦(𝐍𝛔)𝐛′⟧𝚽      (2.5) 
Then, it is clearly true that 

⟦𝐍⟧𝚽 ≈ ⟦𝐍𝛔⟧𝚽       (2.6) 
because permuting the keys in N does not have any effect in the 

distributions. Putting together Equations (2.3), (2.4), (2.5) and (2.6) the 

soundness result follows: 

⟦𝐌⟧𝚽 ≈ ⟦𝐍⟧𝚽 
Remark 9.3. The reason there is no similar general theorem for key-

cycles and KDM-like security is that this general soundness theorem 

tells us in which conditions the several steps of the Abadi-Rogaway 

hybrid argument can be carried out. One of the conditions is that by 

doing one step of replacement, we must obtain equivalent 

interpretations, provided that we have the appropriate security notion. 

However, in our theorem using KDM security to solve the key-cycles 

issue, there is only one step of replacement! All the replacements of 

undecryptable terms is done at once. Therefore, in a general theorem 

(without assuming a specific security level), the condition of the 

theorem would have to be exactly what we would want to prove. 
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Example 9.12 (Type-1 Soundness). The soundness theorem that 

was presented earlier for type-1 encryption schemes is a special case of 

the theorem above. In this case Expv = Exp; the equivalence relation ≡𝑪 

is proper; and the equivalence relation ≡𝑲 is trivial here, all keys are 

equivalent. The elements 𝝁 ∈ QEnc are in one-to-one correspondence 

with the possible length, so the patterns that we obtain this way are 

essentially the same what we defined earlier, and the equivalence of 

expressions will be ≅𝟏 that we also defined there. In order to see that 

condition (ii) of the general soundness theorem is satisfied for type-1, 

we will use the following equivalent definition of type-1 secure 

encryption schemes: we can also say that an encryption-scheme is type-

1 secure if no PPT adversary A can distinguish the pair of oracles (E(k, 

•, •, 0); E(k', •, •, 0)) and (E(k, •, •, 1); E(k, •, •, 1)) as k and k' are 

independently generated, that is, for all PPT adversaries A: 

𝐏𝐫[𝒌, 𝒌′ ← 𝑲(𝟏𝛈):𝑨𝑬(𝒌,•,•,𝟎),𝑬(𝒌
′,•,•,𝟎)(𝟏𝛈) = 𝟏] − 

𝐏𝐫 [𝒌 ← 𝑲(𝟏𝛈): 𝑨𝑬(𝒌,•,•,𝟏),𝑬(𝒌
′,•,•,𝟏)(𝟏𝛈) = 𝟏] ≤ 𝒏𝒆𝒈(𝛈) 

where the oracle 𝑬(𝒌,•,•, 𝟎), upon the submission of two messages 

with equal lengths encrypts the first, and the oracle 𝑬(𝒌,•,•, 𝟏) encrypts 

the second. 

To show that condition (ii) of Theorem 9.14 holds, we first have to 

choose for {𝑪𝒗}𝒗∈𝝁(𝑪) a given set 𝑪 = {{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏 . We can choose any 

family {𝑪𝒗}𝒗∈𝝁(𝑪) such that all the 𝑪𝒗 are encrypted with the same key, 

let’s call it L0, that is not present in any of the {𝑵𝒊}𝑳𝒊  (neither in M). 

This is possible, because, as it is easy to check, 

𝒗𝒌𝒆𝒚 = 𝑲𝒆𝒚𝒔 𝐟𝐨𝐫 𝐚𝐥𝐥 𝒗 ∈  𝑸𝑬𝒏𝒄. Then, let M be as in condition (ii). 

We need to show that if {{𝑵𝒊𝒋}𝑳}𝒋=𝟏
𝒍  ⊆  𝑪 and if we denote by M' 

the 

expression obtained from M by replacing each {𝑵𝒊𝒋}𝑳 with 𝑪
𝝁({𝑵𝒊𝒋}𝑳

)
, 

then ⟦𝑴⟧𝚽 ≈ ⟦𝑴′⟧𝚽. 

Suppose that ⟦𝑴⟧𝚽 ≈ ⟦𝑴′⟧𝚽, which means that there is an 

adversary A that is able to distin-guish the two distributions, that is 

𝐏𝐫 [𝒙 ← ⟦𝑴⟧𝚽𝛈: 𝑨(𝟏
𝛈, 𝒙) = 𝟏] − 𝐏𝐫 [𝒙 ← ⟦𝑴′⟧𝚽𝛈: 𝑨(𝟏

𝛈, 𝒙) = 𝟏] 
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is a non-negligible function of η. Let us show that this contradicts 

type-1 security. To this end, let us construct an adversary that can 

distinguish between the two pair of oracles above. This adversary is the 

following probabilistic algorithm that access to the oracles f and g: 

algorithm B 
f,g

(𝟏𝛈; M) 

for K ∈ Keys(M) \ {L, L0} do 𝝉(K) ← K(𝟏𝛈) 

𝒚 ← 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝟐(𝑴) 
𝒃 ← (𝟏𝛈, 𝒚) 

return b 

algorithm CONVERT2(N) 

if N = K where K ∈ Keys then return 𝝉 (K) 

if N = B where B ∈ Blocks then return B 

if N = (M1; M2) then 

𝒙 ← 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝟐(𝑴𝟏) 
y ← 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝟐(𝑴𝟐) 
return [x; y] 

if N = {𝑴𝟏}𝑳 then 

𝒙 ← 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝟐(𝑴𝟏) 
y ← 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝟐(𝑴𝒗) (where 𝑪𝝁({𝑴𝟏}𝑳) = {𝑴𝒗}𝑳𝟎) 

𝒛 ← 𝒇(𝒙, 𝒚) 
return z 

if N = {𝑴𝟏}𝑳𝟎 then 

𝒙 ← 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝟐(𝑴𝟏) 
𝒚 ← 𝒈(𝒙, 𝒙) 

return y 

if N = {𝑴𝟏}𝑲 (𝑲 ∉ {𝑳, 𝑳𝟎}) then  

𝒙 ← 𝑪𝑶𝑵𝑽𝑬𝑹𝑻𝟐(𝑴𝟏) 
𝒚 ← 𝑬(𝝉(𝑲), 𝒙) 

 return y 

Note that the algorithm CONVERT2 does almost the same as the 

algorithm CONVERT in Figure 9.1, except that while CONVERT 

carries out all the necessary encryptions, CONVERT2 makes the 

oracles carry out the encryptions for L and L0. Therefore, in the case, 
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when the pair of oracles (f; g) is (E(k, •, •, 0); E(k', •, •, 0)), then 

CONVERT2(M) will be a random sample from ⟦𝑴⟧𝚽𝛈, whereas if the 

pair of oracles used is (E(k, •, •, 1),E(k, •, •, 0)), then CONVERT2(M) 

will be a random sample from ⟦𝑴′⟧𝚽𝛈. Thus, 

𝐏𝐫[𝒌, 𝒌′ ← 𝑲(𝟏𝛈):𝑩𝑬(𝒌,•,•,𝟎),𝑬(𝒌
′,•,•,𝟎)(𝟏𝛈,𝑴) = 𝟏] − 𝐏𝐫 [𝒙

← ⟦𝑴⟧𝚽𝛈: 𝑨(𝟏
𝛈, 𝒙) = 𝟏] 

and 

𝐏𝐫[𝒌 ← 𝑲(𝟏𝛈): 𝑩𝑬(𝒌,•,•,𝟏),𝑬(𝒌,•,•,𝟏)(𝟏𝛈,𝑴) = 𝟏] − 𝐏𝐫 [𝒙

← ⟦𝑴′⟧𝚽𝛈: 𝑨(𝟏
𝛈, 𝒙) = 𝟏] 

But, according to our assumption, ⟦𝑴⟧𝚽 and ⟦𝑴′⟧𝚽 can be 

distinguished, that is, 

𝐏𝐫 [𝒙 ← ⟦𝑴⟧𝚽𝛈 ∶  𝑨(𝟏
𝛈, 𝒙) = 𝟏] − 𝐏𝐫 [𝒙 ← ⟦𝑴′⟧𝚽𝛈𝑨(𝟏

𝛈, 𝒙) = 𝟏] 

is a non-negligible function of 𝛈 and so, there is an adversary B 
f,g

(𝟏𝛈, 𝒙) such that 

𝐏r[𝒌, 𝒌′ ← 𝑲(𝟏𝛈): 𝑩𝑬(𝒌,•,•,𝟎),𝑬(𝒌
′,•,•,𝟎)(𝟏𝛈,𝑴) = 𝟏] − 𝐏𝐫 [𝒌

← 𝑲(𝟏𝛈):𝑩𝑬(𝒌,•,•,𝟏),𝑬(𝒌,•,•,𝟏)(𝟏𝛈,𝑴) = 𝟏] 
is also a non-negligible function of 𝛈. This implies that our scheme 

cannot be type-1 secure, which contradicts the assumption. Hence, we 

cannot have ⟦𝑴⟧𝚽 ≈ ⟦𝑴′⟧𝚽. Hence, condition (ii) of the general 

soundness theorem is satisfied, so soundness holds for the type-1 case. 

Example 9.13 (Type-2 Soundness). The soundness theorem that 

was presented earlier for type-2 encryption schemes is also a special 

case of the theorem above. In this case ExpV = Exp; the equivalence 

relation ≡𝑪 is is proper; and the equivalence relation ≡𝑲 is trivial here, 

all keys are equivalent. The elements 𝝁 ∈ QEnc are in one-to-one 

correspondence with the keys, so we can say QEnc ≡ Keys, and thus the 

boxes are labelled with keys. In this case Φ gives an interpretation in 

the computational setting. Then for a set 𝑪 = {{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏  as in 

condition (ii) of the theorem, we can take 𝑪𝑳𝒊 ≔ {𝟎}𝑳𝒊, and then 

condition (ii) is satisfied, because the following proposition holds: 

Proposition 9.4. Consider an expression M, and a key L ∈ Keys(M). 
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Suppose that for some expressions M1, M2, ..., Ml ∈ Exp, 

{𝑴𝟏}𝑳, {𝑴𝟐}𝑳, … , {𝑴𝒍}𝑳 𝑴 , and assume also that L does not occur 

anywhere else in M. Then, denoting by M' the expression that we get 

from M by replacing each of {𝑴𝒊}𝑳 that are not contained in any of 

𝑴𝒋(𝒋 ≠ 𝒊) by {𝟎}𝑳, ⟦𝑴⟧𝚽 ≈ ⟦𝑴′⟧𝚽 holds when the expressions are 

interpreted with a type-2 encryption scheme. 

Proof. We can assume, without loss of generality, that {𝑴𝒊}𝑳 is a 

subexpression of {𝑴𝒋}𝑳
 only if i < j. Suppose that ⟦𝑴⟧𝚽 ≈ ⟦𝑴′⟧𝚽, 

which means that there is an adversary A that distinguishes the two 

distributions, that is 

𝐏𝐫 (𝒙 ← ⟦𝑴⟧𝚽𝛈 ∶ 𝑨(𝟏
𝛈, 𝒙) = 𝟏) − 𝐏𝐫 (𝒙 ← ⟦𝑴′⟧𝚽𝛈 : 𝑨(𝟏

𝛈, 𝒙) = 𝟏) 

is a non-negligible function of 𝛈. Let us show that this contradicts 

type-2 security. To this end, let us construct an adversary that can 

distinguish between the oracles E(k; •) and E(k; 0). This adversary is 

the following probabilistic algorithm that access to the oracle f: 

algorithm B 
f
 (𝟏𝛈; M) 

for K ∈ 2 Keys(M) \ {L} do 𝝉(𝑲) ← K(𝟏𝛈)  

𝒚 ← CONVERT2(M) 

𝒃 ← A(𝟏𝛈; y) return b 

algorithm CONVERT2(N) 

if N = K where K ∈ Keys then return 𝝉 (K) 

if N = B where B ∈ Blocks then 

return B 

if N = (N1; N2) then 

𝒙 ←CONVERT2(N1) 𝒚 ←CONVERT2(N2) return [x; y] 

if N = {𝑵𝟏}𝑳 then 

𝒙 ← CONVERT2(N1) y 𝒚 ← f(x) 

return y 

if N = {𝑵𝟏}𝑲 (K ≠ L) then  

 𝒙 ← CONVERT2(N1) 

𝒚 ← E(𝝉 (K); x) return y 
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Note that the algorithm CONVERT2 does almost the same as the 

algorithm CONVERT in Figure 9.1, except that while CONVERT 

carries out all necessary encryptions, CONVERT2 makes the oracles 

carry out the encryptions for L. Therefore, in the case, when the oracle f 

is E(k; • ), then CONVERT2(M) will be a random sample from ⟦𝑴⟧𝚽𝛈, 

whereas if the oracle used is E(k; 0), then CONVERT2(M) will be a 

random sample from ⟦𝑴′⟧𝚽𝛈. Thus, 

𝐏𝐫[𝒌 ← 𝑲(𝟏𝛈) ∶  𝑩𝑬(𝒌; • )(𝟏𝛈,𝑴) = 𝟏]

= 𝐏𝐫 [𝒙 ← ⟦𝑴⟧𝚽𝛈: 𝑨(𝟏
𝛈, 𝒙) = 𝟏] 

And 

𝐏𝐫[𝒌 ← 𝑲(𝟏𝛈) ∶  𝑩𝑬(𝒌; 𝟎)(𝟏𝛈,𝑴) = 𝟏]

= 𝐏𝐫 [𝒙 ← ⟦𝑴′⟧𝚽𝛈: 𝑨(𝟏
𝛈, 𝒙) = 𝟏] 

But, according to our assumption, ⟦𝑴⟧𝚽 and ⟦𝑴′⟧𝚽 can be 

distinguished, that is, 

𝐏𝐫 [𝒙 ← ⟦𝑴⟧𝚽𝛈 ∶  𝑨(𝟏
𝛈,𝑴) = 𝟏] − 𝐏𝐫 [𝒙 ← ⟦𝑴′⟧𝚽𝛈: 𝑨(𝟏

𝛈, 𝒙) = 𝟏] 

is a non-negligible function of 𝛈 and so, there is an adversary B 
f
 

(𝟏𝛈, •) that can distinguish the oracles E(k, •) and E(k, 0), for randomly 

generated keys k. This implies that our scheme cannot be type-2 secure, 

which contradicts the assumption. Hence, we cannot have ⟦𝑴⟧𝚽 ≈
⟦𝑴′⟧𝚽. 

Hence, condition (ii) of the general soundness theorem is satisfied, 

so soundness holds for the type-2 case. 

Example 9.14 (Soundness for One-Time Pad). In order to see that 

the formal treatment of Section sec:OTP is a special case of the general 

formalism, take ≡𝑪 so that two encryption terms are equivalent, iff 

(again) the encryption terms have the same encrypting key. The 

equivalence of keys, ≡𝑲 is defined with the help of a length-function l 

on the keys: two keys are equivalent iff they have the same length. The 

boxes will again be indexed by the encrypting keys. Then for a set 

𝑪 = {{𝑵𝒊}𝑳𝒊}𝒊=𝟏
𝒏  as in condition (ii), take 𝑪𝑳𝒊 ≔ {𝟎𝒍(𝑳𝒊)−𝟑}𝑳𝒊 (where 

𝟎𝒍(𝑳𝒊)−𝟑 means l(Li) - 3 many 0’s). It is not hard to check that within 
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this setting, condition (ii) of the soundness theorem is satisfied, which 

is an immediate consequence of the following proposition: 

Proposition 9.5. Consider a valid expression M ∈ ExpOTP, and a key 

K0 ∈ Keys(M). Sup-pose that for some expression M0, {𝑴𝟎}𝑲𝟎 is a 

subexpression of M, and assume also that K0 does not occur anywhere 

else in M. Then, denoting by M' the expression that we get from M by 

replacing {𝑴𝟎}𝑲𝟎 with {𝟎𝒍(𝑳𝒊)−𝟑}𝑲𝟎 (where 𝟎𝒍(𝑳𝒊)−𝟑 denotes as string 

consisting of l(K0) - 3 many 0’s), the following is true when Φ is the 

interpretation for OTP: 

⟦𝐌⟧𝚽 = ⟦𝐌′⟧𝚽         (2.7) 
Proof. The basic properties of the OTP ensure that 𝚽({𝑴𝟎}𝑲𝟎) is 

evenly distributed over the set of l(K0) long strings ending with 110, no 

matter what M0 is. So the distribution of 𝚽({𝑴𝟎}𝑲𝟎) agrees with the 

distribution of 𝚽({𝟎𝒍(𝑲𝟎)−𝟑}𝑲𝟎). Also, since K0 is assumed not to occur 

anywhere else, 𝚽𝑴(K0) is independent of the interpretation of the rest 

of the expression M, and therefore, 𝚽({𝑴𝟎}𝑲𝟎) and 𝚽({𝟎𝒍(𝑲𝟎)−𝟑}𝑲𝟎) 

are both independent of the interpretation of the rest of the expression. 

Hence, replacing 𝚽({𝑴𝟎}𝑲𝟎) with 𝚽({𝟎𝒍(𝑲𝟎)−𝟑}𝑲𝟎) will not effect the 

distribution. 

Parsing Process 

Let us present the the chapter will be useful in the course of proving 

the completeness results. The idea can be summarised as follows: 

Given a sample element 𝒙 ← ⟦𝑴⟧𝚽, x is built from blocks and 

randomly generated keys which are paired and encrypted. Some of the 

keys that were used for encryption when x was built might be explicitly 

contained in x, and in this case, using these keys, we can decrypt those 

ciphers that were encrypted with these revealed keys. The problem is 

though, that looking at x, it might not be possible to tell where blocks, 

keys, ciphers and pairs are in the string of bits, since we did not assume 

in general that we tag strings as we did for OTP. However, and we will 

exploit this fact repeatedly in our proofs, if we know that x was 
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sampled from ⟦𝑴⟧𝚽 for a fixed, known expression M, then by looking 

at M, we can find in x the locations of blocks, keys, ciphers and pairs, 

and we can also tell from M, where the key decrypting a certain cipher 

is located. Later we will present a machinery that, using the form of an 

expression M, extracts from an 𝒙 ← ⟦𝑴⟧𝚽 everything that is possible 

via decryption and depairing, and distributes the extracted elements 

over a special Cartesian product of copies of 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 
Throughout this section, we assume that ∆= (𝑬𝒙𝒑𝒗, ≡𝑲, ≡𝑪) and 

an interpretation Φ in a general symmetric encryption scheme 𝚷 =
({𝑲𝒊}𝒊∈𝑰, 𝑬, 𝑫,≈) is given. 

In this chapter we will use the notion of subexpression occurrence 

of/in M. This means a subexpression together with its position in M. 

The reason for this distinction is that a subexpression can occur several 

times in M, and we want to distinguish these occurrences. But, to avoid 

cumbersome notation, we will denote the subexpression occurrence just 

as the subexpression itself. Let us start by defining the notion of 0-level 

subexpression occurrences of an expression M: 

Definition 9.39 (Level 0 Subexpression Occurrences). For an 

expression M, let us call level 0 subexpression occurrences all those 

subexpression occurrences in M that are not encrypted. Let sub0(M) 

denote the set of all level 0 subexpression occurrences in M. let us write  

N M if N is a level 0 subexpression occurrence of N in M. 

For an element 𝒙 ← ⟦𝑴⟧𝚽, the first thing to do is to extract 

everything that is not encrypted, which means that we have to break up 

all pairs in x, and replace them with mathematical pairs. This process 

reveals the unencrypted blocks, keys and ciphers in x (i.e., the 

computational or statistical realisations of the 0-level subexpression 

occurrences). 

Definition 9.40 (Blowup Function). For each valid expression M, 

we define the blowup funcion B(M), on 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ inductively as 

follows: 

B(K)x := x  for K key B(B)x := x  for B block 

B((M1; M2))x := (B(M1) ⊕ B(M2)) o [• , •]-1
(x) B({𝑵}𝑲)x := x: 
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Where B(M1) ⊕ B(M2) denotes the function (x; y) ↦ (B(M1)x, 

B(M2)y). 

The element B(M)x is an element of 𝝉0(M), which we define 

inductively the following way: 

Definition 9.41 (Associated 0-Tree). The 0-tree associated to a pair 

of expressions N and M whenever N v0 M, will be denoted by 𝝉0 (N; M), 

and we define it inductively as follows: 

𝝉0 (K; M) := 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝉0 (B; M) := 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
𝝉0 ((M1; M2); M) := 𝝉0 (M1; M) × 𝝉0 (M2; M) 

𝝉0 ( {𝑴′}𝑲, M) := 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Let 𝝉0 (M) := 𝝉0 (M; M). 

Remember, that we do not identify (𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ×
𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ with 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × (𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 

Note also that for expressions N v0 M' and N v0 M, we have that 𝝉0 

(N; M 
0
) = 𝝉0 (N; M). Nevertheless, we included M in the definition of 

𝝉0 since for higher order trees, which will be defined later, the M in the 

second argument will make a difference. 

Example 9.15. For the expression 

𝑴

= (({𝟎}𝑲𝟔 , {{𝑲𝟕}𝑲𝟏}𝑲𝟒
) , ((𝑲𝟐, {({𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓)}𝑲𝟓

) , {𝑲𝟓}𝑲𝟐)), 

𝒔𝒖𝒃𝟎(𝑴)

= {

({𝟎}𝑲𝟔 , {{𝑲𝟕}𝑲𝟏}𝑲𝟒
) , 𝑲𝟐, {{𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓}𝑲𝟓

, {𝑲𝟓}𝑲𝟐 , ({𝟎}𝑲𝟔 , {{𝑲𝟕}𝑲𝟏}𝑲𝟒
) ,

(𝑲𝟐, {({𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓)}𝑲𝟓
) , ((𝑲𝟐, {({𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓)}𝑲𝟓

) , {𝑲𝟓}𝑲𝟐) ,𝑴
} 

and 

𝝉0(𝑴) = (𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) × ((𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ×

𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 
Blocks, keys and ciphers are replaced by 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, pairs are 

replaced by ×. An element x sampled from ⟦𝑴⟧𝚽 looks like 

[ [𝒄𝟏, 𝒄𝟐], [ [𝒌, 𝒄𝟑], 𝒄𝟒] ] 
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where 𝒄𝟏 is a sample from ⟦{𝟎}𝑲𝟔⟧𝚽
, 𝒄𝟐 is a sample from 

⟦{{𝑲𝟕}𝑲𝟏}𝑲𝟒⟧𝚽
, k is a sample from ⟦𝑲𝟐⟧𝚽, c3 is a sample from 

⟦{({𝟎𝟎𝟏}𝑲𝟑,{𝑲𝟔}𝑲𝟓)}𝑲𝟓⟧𝚽
, and c4 is a sample from ⟦{𝑲𝟓}𝑲𝟐⟧𝚽

. When 

we apply the blow-up function to this element x, we obtain 

((𝒄𝟏, 𝒄𝟐), (k, 𝒄𝟑), 𝒄𝟒)) 

which is an element of 𝝉0(𝑴). 
Proposition 9.6. For an expression M, if 𝒙 ← ⟦𝑴⟧𝚽, then B(M)(x) 

∈ 𝝉0(M). 

Proof. Immediate from the definitions of B and 𝝉0. Perhaps it is 

even clearer if we label the copies of 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in T0(M) with the formal 

expres-sions that they belong to: 

𝝉𝟎
′ (𝑲,𝑴) ≔ 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑲 

𝝉𝟎
′ (𝑩,𝑴) ≔ 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑩 

𝝉𝟎
′ ((𝑴𝟏,𝑴𝟐)𝑴) ≔ 𝝉𝟎

′ (𝑴𝟏,𝑴) × 𝝉𝟎
′ (𝑴𝟐,𝑴) 

𝝉𝟎
′ ({𝑴′}𝑲,𝑴) ≔ 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅{𝑴′}𝑲 

In our example, 

𝝉𝟎
′ (𝑴,𝑴) =

(𝒔{𝟎}𝑲𝟔
× 𝒔{{𝑲𝟕}𝑲𝟏}𝑲𝟒

) × ((𝒔𝑲𝟐 × 𝒔{({𝟎𝟎𝟏}𝑲𝟑,{𝑲𝟔}𝑲𝟓)}𝑲𝟓
) × 𝒔{𝑲𝟓}𝑲𝟐

), 

where we used s as a shorthand for 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

In the previous example, c4 is a random sample from ⟦𝑴{𝑲𝟓}𝑲𝟐⟧𝚽
, 

and the function that projects onto the last copy of 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. in 𝝉0(𝑴), 
namely, onto 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅{𝑲𝟓}𝑲𝟐

 , extracts c4 from the blow-up. Similarly, 

projecting onto the other copies of 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, we extract samples form 

⟦{𝟎}𝑲𝟔⟧𝚽
, ⟦{{𝑲𝟕}𝑲𝟏}𝑲𝟒⟧𝚽

etc. To implement this idea in the general 

situation, we define what we can call the “0-Get Function” G0(N; M) 

for an expression M and a subexpression occurrence N, whenever N is 

not encrypted in M. For 𝒙 ← ⟦𝑴⟧𝚽, the purpose of G0(N; M) is to 

extract from B(M)x the sample of ⟦𝑵⟧𝚽 that was used for computing x. 

The precise definition is the following: 
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Example 9.16. In the example, 

𝑮𝟎({𝟎}𝑲𝟔 ,𝑴), 𝑮𝟎 ({{𝑲𝟕}𝑲𝟏}𝑲𝟒
,𝑴): 𝝉𝟎(𝑴) → 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝑮𝟎({𝟎}𝑲𝟔 ,𝑴)((𝒙𝟏, 𝒙𝟐), ((𝒙𝟑, 𝒙𝟒), 𝒙𝟓) = 𝒙𝟏, 

𝑮𝟎 ({{𝑲𝟕}𝑲𝟏}𝑲𝟒
,𝑴) ( (𝒙𝟏, 𝒙𝟐), ((𝒙𝟑, 𝒙𝟒), 𝒙𝟓) = 𝒙𝟐, 

etc; that is, 𝑮𝟎({𝟎}𝑲𝟔 ,𝑴) does the projection onto 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅{𝟎}𝑲𝟔
, 

𝑮𝟎 ({{𝑲𝟕}𝑲𝟏}𝑲𝟒
,𝑴) does the projection onto 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

{{𝑲𝟕}𝑲𝟏}𝑲𝟒

 , etc. 

Observe, that for two expressions M and N, if 𝝉𝟎(𝑴) = 𝝉𝟎(𝑵), 
then for any M' ∈  𝒔𝒖𝒃𝟎(𝑴), there is a ynique N' ∈  𝒔𝒖𝒃𝟎(𝑵), such 

that 𝑮𝟎(𝑴
′,𝑴) = 𝑮𝟎(𝑵

′, 𝑵). This motivates the following definition: 

Definition 9.43 (Same Position of Subexpression Occurrences). For 

two expressions M and N, if 𝝉0(𝑴) = 𝝉0(𝑵), we say that M' ∈ sub0(M) 

and N' ∈ sub0(M) are in the same position at level 0, if G0(M', M) = 

G0(N', N): 

Let Г0(N; M) : sub0(M) → sub0(N) denote the unique bijection such 

that G0(M', M) = G0(Г0 (N; M)M', N) for all M' ∈ sub0(M). 

Example 9.17. Let N = ((0, 0), ((0, 0), 0). Then, if M denotes the 

expression from the previous examples, 𝝉0(𝑵)= 𝝉0(𝑴). Enumerating 

the 0’s in N, we get the subexpression occurrences 01 = 0, 02 = 0, 03 = 0, 

04 = 0 and 05 = 0, with N = ((01 , 02), ((03, 04), 05). We have that: 

Г0(𝑵,𝑴){𝟎}𝑲𝟔 = 𝟎𝟏 

Г0(𝑵,𝑴){{𝑲𝟕}𝑲𝟏}𝑲𝟒
= 𝟎𝟐 

Г0(,𝑴)𝑲𝟐 = 𝟎𝟑 

Г0(𝑵,𝑴){({𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓)}𝑲𝟓
= 𝟎𝟒 



 

291 

 

 

 

 

Г0(𝑵,𝑴){𝑲𝟓}𝑲𝟐 = 𝟎𝟓 

Г0(𝑵,𝑴)({𝟎}𝑲𝟔 , ({{𝑲𝟕}𝑲𝟏}𝑲𝟒
) = (𝟎𝟏, 𝟎𝟐) 

etc. 

For an expression M, let CM denote the set of all those 

subexpression occurrences in M which are ciphers encrypted by 

recoverable keys, i.e., 

𝑪𝑴 = {{𝑴
′}𝑲 𝑴 | {𝑴′}𝑲  ∈ 𝒗𝒊𝒔(𝑴) ∈ 𝑹 − 𝑲𝒆𝒚𝒔(𝑴)}  

We emphasise that in the previous definition we are referring to 

subexpression occurrences, that is, if an encryption term is encrypted 

with a recoverable key occurs twice in M, then it will be listed twice in 

CM . Since we assume that the elements of this set are encrypted by 

recoverable keys, it is possible to decrypt these elements one after the 

other, using only information contain-ing M. Therefore, it is possible to 

enumerate the elements of this set in an order in which we can decrypt 

them by taking keys from M, decrypting what is possible with these 

keys and hence revealing more keys and then decrypting again with 

those keys etc. Let the total number of this set be denoted by c(M). 
Then 

𝑪𝑴 = {𝑪
𝟏, 𝑪𝟐, … , 𝑪𝒄(𝑴)}. 

Note that this enumeration is not unique. Also, note that the 

numbering does not mean that you can decrypt the ciphers only in this 

order. Let 𝑪𝒌𝒆𝒚
𝒊  denote the key that is used in the encryption 𝑪𝒊 and let 

𝑪𝒌𝒆𝒚
𝒊  denote the encrypted expression. 

Example 9.18. In our example, the only possible way to enumerate 

is 

𝑪𝟏 = {𝑲𝟓}𝑲𝟐 

𝑪𝟐 = {({𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓}𝑲𝟓 

𝑪𝟑 = {𝑲𝟔}𝑲𝟓 

𝑪𝟒 = {𝟎}𝑲𝟔. 

Now, to each expression M, we can associate the “1-Decrypting 

Function” D1(M). It acts on 𝝉𝟎(M) and works as follows: for any t ∈ 
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𝝉𝟎(M), the function D1(M) extracts G0(C
1
, M)t from 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑪𝟏, 

G0(𝑪𝒌𝒆𝒚
𝟏 , M)t from 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑪𝒌𝒆𝒚
𝟏 , and with the latter decrypts the 

former if that is possible (namely, if they are of the right form: the 

former a cipher and the latter a key). The result is then broken into 

mathematical pairs, and what we get this way is put in the last 

component of the set 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  × {𝟎} × 𝝉𝟎(𝑪𝒕𝒆𝒙𝒕
𝟏 ), while G0(𝑪𝒌𝒆𝒚

𝟏 , M)t 

goes into the first component. That is, the following element is created: 

( 𝑮𝟎 (𝑪𝒌𝒆𝒚
𝟏 ,𝑴)𝒕, 𝟎 , 𝑩(𝑪𝒕𝒆𝒙𝒕

𝒊 ) (𝑫(𝑮𝟎(𝑪𝒌𝒆𝒚
𝟏 )𝒕, 𝑮𝟎(𝑪

𝟏,𝑴)𝒕))). 

If ( 𝑮𝟎 (𝑪𝒌𝒆𝒚
𝟏 ,𝑴)𝒕, 𝑮𝟎(𝑪𝒌𝒆𝒚

𝟏 )𝒕)  ∉  𝑫𝒐𝒎𝑫, then 𝑫𝟏(𝑴) outputs (0, 

0, 0). The rest og 𝝉𝟎(𝑴) is left untouched. Let us warn that for the 

similiarity of notations between the algorithm of the encryption scheme 

D(• , •), and the 1-Decrypting function D1(•). This notation is 

convenient as Di(M) is the function that decrypts the ciphers encrypted 

with recoverable keys at level-i. We will always index this functions 

with the respective index i to avoid confusions. 

Let us introduce the notation 

𝝉𝟎
𝑪𝟏(𝑴) = {𝒕 ∈ 𝝉𝟎(𝑴) | (𝑮𝟎(𝑪𝒌𝒆𝒚

𝟏 ,𝑴)𝒕, 𝑮𝟎(𝑪
𝟏,𝑴)𝒕) ∈  𝑫𝒐𝒎𝑫}. 

Definition 9.44 (1-Decrypting Function). For expressions N 𝟎 M, 

let us define the function D1(N; M) on 𝝉𝟎(M) inductively as follows: 

Let t ∈  𝝉𝟎(M). Then 

𝑫𝟏(𝑲,𝑴)𝒕:=  𝑮𝟎(𝑲,𝑴)𝒕 
𝑫𝟏(𝑩,𝑴)𝒕:=  𝑮𝟎(𝑩,𝑴)𝒕 

𝑫𝟏({𝑴′}𝑲,𝑴)𝒕:=  𝑮𝟎({𝑴′}𝑲,𝑴)𝒕 𝒊𝒇 𝑲 ∉  𝑹 − 𝑲𝒆𝒚𝒔(𝑴) 
𝑫𝟏((𝑴𝟏,𝑴𝟐),𝑴)𝒕 ∶= (𝑫𝟏(𝑴𝟏,𝑴)𝒕,𝑫𝟏(𝑴𝟐,𝑴)𝒕) 

 
Let us introduce the notation D1(M) := D1(M, M). We remark, that it 

is not important how we define 𝑫𝟏(𝑪
𝟏,𝑴)𝒕 when t ∉ 

𝝉𝟎
𝑪𝟏(𝑴),we will not need that. We chose (0,0,0) just for convenience. 
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Example 9.19. In our running example we have 

𝑴 = (({0}𝐾6 , {{𝐾7}𝐾1}𝐾4
) , ((𝐾2, {({001}𝐾3 , {𝐾6}𝐾5)}𝐾5

) , {𝐾5}𝐾2)). 

With the choice 𝑪𝟏 = {𝑲𝟓}𝑲𝟐, we obtain 

 
The target set of 𝑫𝟎(𝑴) is naturally not 𝝉𝟎(𝑴), because instead of 

the copy of 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ corresponding to 𝑪𝟏 we now have a set of the 

form 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  × 𝟎 × 𝝉𝟎(𝑪𝒕𝒆𝒙𝒕
𝟏 ). We will call this new set 𝝉𝟏(𝑴), and 

so we extend the definition of 𝝉𝟎 to higher order, up to 𝝉𝒄(𝑴)(M).First 

we need the folowing: 

Definition 9.45 (Level i Subexpression Occurrences). We will say 

that a subexpression oc-currence N  M is level i with respect to CM , 

and denote this relation by N i M, if the occurrence N is not in the 

occurrence C 
j
 whenever i < j. Let subi(M) denote the set of level i 

subexpression occurrences. 

Notice, that the level i subexpression occurrences are all those 

which are revealed once C
1
, C

2
, ... ,C

i
 are decrypted. 

Definition 9.46 (Associated i-Tree). Let us inductively define the i-

tree associated to a pair of expressions N i M, and denote it by Ti (N; 

M): 

𝝉𝒊(𝑲,𝑴) ∷= 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
𝝉𝒊(𝑩,𝑴) ∷= 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝝉𝒊((𝑴𝟏,𝑴𝟐),𝑴) ∷= 𝝉𝒊(𝑴𝟏,𝑴) × 𝝉𝒊(𝑴𝟐,𝑴) 

 
𝝉𝒊−𝟏({𝑴′}𝑲,𝑴) ∷= 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for K ∉ R-Keys(M) 

Let 𝝉𝒊(𝑴) ≔ 𝝉𝒊(𝑴,𝑴). 
Note that we only “open” the encryptions performed with the keys 

in R-Keys(M) and at each step i we only open the C 
j
 such that j ≤ i. 
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Fact 9.1. For any expressions M and N, we have that 𝝉𝒊(M) ∩ 𝝉𝒊(N) 

= ∅ or 𝝉𝒊(M) = 𝝉𝒊(N). 

Similarly, we need to define Gi(N; M) and Di(M) for 0 < i ≤ c(M). 

The first one projects onto the copy of 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in Ti (M) that 

corresponds to N, and the second maps an element in 𝝉i-1(M) into 𝝉 i(M) 

decrypting the string corresponding to C
i
 with the appropriate key. 

Definition 9.48 ( i-Get Function). For subexpression occurrences N 

i M, N' i M (0 ≤ i ≤ c(M)) such that N occurs in N', let us define the 

map i-get-function associated to the triple (N, N', M), Gi(N, N', M) : 

Ti(N', M) → Ti(N, M) inductively as follows: 

𝑮𝒊(𝑵,𝑵,𝑴) ≔ 𝒊𝒅𝝉𝒊(𝑵,𝑴) 

 
define Gi(N, M) := Gi(N, M, M). 

Definition 9.49 (Same Position of Subexpression Occurrences). For 

two expressions M and N, if 𝝉𝒊(M) = 𝝉𝒊(N), we say that M' ∈ subi(M) 

and N' ∈ subi(M) are in the same position at level i, if Gi(M', M) = 

Gi(N',N): 

Let Гi (N, M) : subi(M) →subi(N) denote the unique bijection such 

that Gi (M', M) = Gi (Гi (N, M) M', N) for all M' ∈ subi(N). 

Let 

𝝉𝒊−𝟏
𝑪𝒊 (𝑴) = {𝒕 ∈ 𝝉𝒊−𝟏(𝑴) | (𝑮𝒊−𝟏(𝑪𝒌𝒆𝒚

𝒊 ,𝑴)𝒕, 𝑮𝒊−𝟏(𝑪
𝒊,𝑴)𝒕)

∈  𝑫𝒐𝒎𝑫} 
Definition 9.50 ( i-Decrypting Function). For expressions N i-1 M 

and 1 ≤ i ≤ c(M), let us define the map Di (N, M) : 𝝉i-1(M) →  𝝉i(N, M) 

inductively as follows: Let t ∈ 𝝉i-1(M) 

Di(K, M)t := Gi-1(K, M)t 

Di(B, M)t := Gi-1(B, M)t    if K ∉ R-Keys(M) 

Di({M'}K , M)t := Gi-1 ({M'}K, M)t 

Di((M1, M2), M)t := (Di(M1, M)t, Di(M2, M)t) 

Di(C 
j
, M)t := 
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Let 

 
The composition of functions Di(M) (in order) decrypt all the 

ciphers that are encrypted with recoverable keys. At the end, D(M) 

decrypts all ciphers encrypted with recoverable keys upon an input 

from sampling ⟦𝑴⟧𝚽. 

Example 9.20. In our on-going example, 

𝑴

= (({𝟎}𝑲𝟔 , {{𝑲𝟕}𝑲𝟏}𝑲𝟒
) , ((𝑲𝟐, {({𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓)}𝑲𝟓

) , {𝑲𝟓}𝑲𝟐)), 

If y is a sample from ⟦𝑴⟧𝚽, then D(M)y has the form 

(((𝒚𝟔, 𝟎, 𝟎), 𝒚𝟏), ((𝒚𝟐, (𝒚𝟓, 𝟎, ( 𝒚𝟑, (𝒚𝟓, 𝟎, 𝒚𝟔))) , (𝒚𝟐, 𝟎, 𝒚𝟓))), 

Where y2, y5, y6 are outcomes of the key-generation algorithms 

𝑲𝚽(𝐊𝟐), 𝑲𝚽(𝐊𝟓), 𝑲𝚽(𝐊𝟔), respec-tively, y1 is an undecryptable sample 

element from ⟦{{𝑲𝟕}𝑲𝟏}𝑲𝟒⟧𝚽
, and y3 is an undecryptable sample from 

⟦{𝟎𝟎𝟏}𝐊𝟑⟧𝚽
 . Moreover, (y6, 0, 0) indicates that the key y6 encrypts the 

plaintext 0, (y2, 0, y5) indicates that the key y2 encrypts the plaintext y5 

(which is also a key), and so on. 

The following lemma essentially claims that if the interpretation is 

such that conditions (i) and (ii) below hold, then for any two valid 

expressions M and N, the distribution of D(M)x, where x is sampled 

from ⟦𝑴⟧𝚽 (let D(M)( ⟦𝑴⟧𝚽) denote this distribution), is 

indistinguishable from the distribution of D(N)y, where y is sampled 

from ⟦𝑵⟧𝚽 whenever ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽. 
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For a function f on 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, let f(⟦𝑴⟧𝚽) denote the probability 

distribution of f(x) as x is sampled from ⟦𝑴⟧𝚽. 

Lemma 9.1. Let ∆ = (ExpV, ≡𝑲, ≡𝑪) be a formal logic for symmetric 

encryption, and let Φ be an interpretation of ExpV in 

П = ({𝑲𝒊}𝒊∈𝑰, 𝑬, 𝑫,≈). Suppose that this realisation satisfies the 

following properties for any K, K', K'' ∈ Keys, B ∈ Blocks, M, M', N ∈ 

ExpV: 

(i) no pair of  ⟦𝑲⟧𝚽, ⟦𝑩⟧𝚽, ⟦(𝑴,𝑵)⟧𝚽, ⟦{𝑴′}𝑲′⟧𝚽 are equivalent 

with respect to ≈; that is, keys, blocks, pairs, ciphers are 

distinguishable.  

(ii) If ⟦(𝑲, {𝑴}𝑲⟧𝚽 ≈  ⟦(𝑲
′′, {𝑴′}𝑲′⟧𝚽, then K' = K''. 

Let M and N be valid formal expressions. Let 𝑪𝑴 = {𝑪𝑴
𝟏 , … 𝑪𝑴

𝒄(𝑴)
} 

be an enumeration of all ciphers encrypted by recoverable keys in M 

such that they can be decrypted in this order. Then, ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽  

implies that c(M) = c(N), and 𝑪𝑵 = {𝑪𝑵
𝟏 , …𝑪𝑵

𝒄(𝑵)
}  can be enumerated 

in the order of decryption such that Г𝒄(𝑴)(𝑵,𝑴)𝑪𝑴
𝒊 = 𝑪𝑵

𝒊 . Moreover, 

with this enumeration of CN , Di(M) = Di(N), and 

𝑫(𝑴)(⟦𝑴⟧𝚽) ≈ 𝑫(𝑵)(⟦𝑵⟧𝚽) 
Proof. Let M and N be expressions such that ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽. Since 

we assumed condition (i) and since the equivalence ≈ is assumed to be 

invariant under depairing, the pairs that are not encrypted in M and in N 

must be in the same positions, and so B(M) = B(N) must hold. Since 

the blow-up function is obtained by repeated application of the inverse 

of the pairing function, projecting and coupling, 

𝑩(𝑴)(⟦𝑴⟧𝚽) ≈ 𝑩(𝑵)(⟦𝑵⟧𝚽)   (2.8) 

As mentioned in Proposition 9.6, if x is sampled from ⟦𝑴⟧𝚽, then 

B(M)x ∈ 𝝉𝟎(M). Therefore, 

𝝉𝟎(M) = 𝝉𝟎(N). 

Since 𝝉𝟎(M) = 𝝉𝟎(N), there is a unique bijection 

Г0(N, M) : sub0(M) → sub0(N) 

that satisfies 

G0(M', M) = G0(Г0(N, M)M', N): 
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Let 𝑪𝑴
𝟏 = {𝑪𝑴,𝒕𝒆𝒙𝒕

𝟏 }𝑪𝑴,𝒌𝒆𝒚
𝟏  and 𝑳𝟏 ≔ Г𝟎(𝑵,𝑴)𝑪𝑴,𝒌𝒆𝒚 

𝟏 . 𝑳𝟏 must be a 

key for the following reason: 

(𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴)𝐨 𝑩(𝑴)) (⟦𝑴⟧𝚽) ≈

(𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴)𝒐𝑩(𝑴)) (⟦𝑵⟧𝚽), 

since we again apply the same function, 𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴)𝐨 𝑩(𝑴) on 

⟦𝑴⟧𝚽 and ⟦𝑵⟧𝚽, and this function is made up of depairing, projecting 

and coupling. But, for the left hand side we clearly have 

(𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴)𝐨 𝑩(𝑴)) (⟦𝑴⟧𝚽) = ⟦𝑪𝑴,𝒌𝒆𝒚

𝟏 ⟧
𝚽

, 

and for the right hand side, 

(𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴) 𝒐 𝑩(𝑴)) (⟦𝑵⟧𝚽) =

(𝑮𝟎(𝑳𝟏, 𝑵) 𝒐 𝑩(𝑵))(⟦𝑵⟧𝚽) = ⟦𝑳𝟏⟧𝚽. 

Therefore, by assumption (i) L1 must be a key. Similarly, 

(𝑮𝟎(𝑪𝑴
𝟏 ,𝑴) 𝒐 𝑩(𝑴)) (⟦𝑴⟧𝚽) ≈ (𝑮𝟎(𝑪𝑴

𝟏 ,𝑴) 𝒐 𝑩(𝑴)) (⟦𝑵⟧𝚽) 

The left-hand side equals ⟦𝑪𝑴
𝟏 ⟧

𝚽
, hence we need to have an 

interpretation of a cipher on the right too, implying that for some N' 

expression and L key, 

Г𝟎(𝑵,𝑴)𝑪𝑴
𝟏 = {𝑵′}𝑳 

and hence  

𝑮𝟎(𝑪𝑴
𝟏 ,𝑴) = 𝑮𝟎({𝑵′}𝑳, 𝑵). (2.9) 

Then, according to the foregoing, 

((𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴), 𝑮𝟎(𝑪𝑴

𝟏 ,𝑴)) 𝒐 𝑩(𝑴)) (⟦𝑴⟧𝚽)

≈ (𝑮𝟎(𝑳𝟏, 𝑵), 𝑮𝟎({𝑵
′}𝑳, 𝑵)) 𝒐 𝑩(𝑵)) 

and therefore, 

((𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴), 𝑮𝟎(𝑪𝑴

𝟏 ,𝑴)) 𝒐 𝑩(𝑴)) (⟦𝑴⟧𝚽)

≈ ((𝑮𝟎(𝑳𝟏, 𝑵), 𝑮𝟎({𝑵
′}𝑳, 𝑵)) 𝒐 𝑩(𝑵))(⟦𝑵⟧𝚽). 

But, the left-hand side equals ⟦(𝑪𝑴,𝒌𝒆𝒚
𝟏 , 𝑪𝟏)⟧

𝚽
, whereas the right-

hand side is ⟦(𝑳𝟏, {𝑵′}𝑳)⟧𝚽, so we have  
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⟦(𝑪𝑴,𝒌𝒆𝒚
𝟏 , 𝑪𝑴

𝟏 )⟧
𝚽
≈ ⟦(𝑳𝟏, {𝑵′}𝑳)⟧𝚽. 

By assumption (ii) then, L = 𝑳𝟏 𝐟𝐨𝐥𝐥𝐨𝐰𝐬, 𝐛𝐞𝐜𝐚𝐮𝐬𝐞 𝑪𝑴
𝟏  = 

{𝑪𝑴,𝒕𝒆𝒙𝒕
𝟏 }𝑪𝑴,𝒌𝒆𝒚

𝟏 . But then we can choose the first element of 𝑪𝑵 to be 

the occurrence {𝑵′}𝑳, and with this choise,  

𝑫𝟏(𝑴) = 𝑫𝟏(𝑵) 
Therefore 

𝑫𝟏(𝑴)(𝑩(𝑴)(⟦𝑴⟧𝚽)) ≈ 𝑫𝟏(𝑵)(𝑩(𝑵)(⟦𝑵⟧𝚽)), 
and therefore, 

𝝉1(M) = 𝝉1(N); 

because 𝑫𝟏(𝑴)(𝑩(𝑴)(⟦𝑴⟧𝚽)) gives a distribution on 𝝉1(M), and 

𝑫𝟏(𝑵)(𝑩(𝑵)(⟦𝑵⟧𝚽)) gives a distribution on 𝝉1(N). 

An argument similar to the one above shows that 

D2(M) = D2(N): 

Namely, there is a unique bijection 

Г1(N, M) : sub1(M) → sub1(N) 

satisfying 

G1(M', M) = G1(Г1(N, M)M', N): 

Then, just as we proved for L1, L2 := Г1(N, M)𝑪𝒌𝒆𝒚
𝟐  must be a key, 

and 

Г1(N, M)C
2
 = {N''}L2 

for some N'' expression, implying that 

D2(M) = D2(N): 

And so on. So 

𝑫𝒄(𝑴)(𝑴) 𝒐…𝒐 𝑫𝟏(𝑴)(𝑩(𝑴)(⟦𝑴⟧𝚽))

≈ 𝑫𝒄(𝑴)(𝑵)𝒐…𝒐 𝑫𝟏(𝑵)(𝑩(𝑵)(⟦𝑵⟧𝚽)) 

since the functions applied on ⟦𝑴⟧𝚽 and ⟦𝑵⟧𝚽are the same, and 

they are made up only of depairing, projecting, coupling and 

decrypting. Then, c(M) ≤ c(N). Reversing the role of M and N in the 

argument, we get that c(N) ≤ c(M), and so c(M) = c(N). Hence, 

D(M) = D(N), 

and 

D(M)( ⟦𝑴⟧𝚽) = D(N)(⟦𝑵⟧𝚽). 
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Let us illustrate the proof with the following example: 

Example 9.21. Suppose again, that 

𝑴 = (({0}𝐾6 , {{𝐾7}𝐾1}𝐾4
) , ((𝐾2, {({001}𝐾3 , {𝐾6}𝐾5)}𝐾5

) , {𝐾5}𝐾2)), 

and assume that conditions (i) and (ii) of the lemma are satisfied. 

Suppose that N is also a valid expression such that ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽. Let 

𝑪𝑴
𝟏 = {𝑲𝟓}𝑲𝟐 

𝑪𝑴
𝟐 = {({𝟎𝟎𝟏}𝑲𝟑 , {𝑲𝟔}𝑲𝟓)}𝑲𝟓 

𝑪𝑴
𝟑 = {𝑲𝟔}𝑲𝟓 

𝑪𝑴
𝟒 = {𝟎}𝑲𝟔. 

M is a pair of two expressions: M = (M1, M2). Then, since 
⟦(𝑴𝟏,𝑴𝟐)⟧𝚽 = ⟦𝑵⟧𝚽, condition (i) of the lemma ensures that N must 

be a pairtoo: N = (N1; N2). Then, since 

⟦𝑴𝟏⟧𝚽 = 𝝅 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅×𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝟏  𝒐 [• ,•]−𝟏(⟦𝑴⟧𝚽), 

and 

⟦𝑵𝟏⟧𝚽 = 𝝅 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅×𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝟏  𝒐 [• ,•]−𝟏(⟦𝑵⟧𝚽), 

(where 𝝅 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅×𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝟏  denotes projection onto the first 

component of 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), and since ≈ is assumed to be 

preserved by depairing and projecting, it follows that 

⟦𝑴𝟏⟧𝚽 ≈ ⟦𝑵𝟏⟧𝚽 
Therefore, since M1 is a pair, N1 must be a pair too. Let us 

recursively apply this argument and this way let us conclude, that the 

non-encrypted pairs in M are in the same position as the non-encrypted 

pairs in N, hence 

B(M) = B(N). 

It also follows then, that 

𝝉𝟎(𝑴) = (𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ×  𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) × ((𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)×
𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) = 𝝉𝟎(𝑵) 

At this point, we know that N has the form 

𝑵 = ((𝑵𝟑, 𝑵𝟒), ((𝑵𝟓, 𝑵𝟔),𝑵𝟕)) 
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Now, we took 𝑪𝑴
𝟏  to be {𝑲𝟓}𝑲𝟐, the corresponding string, which is 

a cipher, is located in the last component of 𝝉0(M). The key string that 

decrypts this cipher is located in the third component of 𝝉0(M). Hence 

𝑮𝟎(𝑪𝑴
𝟏 ,𝑴) = 𝝅𝝉𝟎(𝑴)

𝟓  

and 

𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴) = 𝝅𝝉𝟎(𝑴)

𝟑  

But then, since 𝝅𝝉𝟎(𝑴)
𝒊  preserves ≈, it follows that 

𝝅𝝉𝟎(𝑴)
𝟑 (𝑩(𝑴)(⟦𝑴⟧𝚽)) ≈ 𝝅𝝉𝟎(𝑴)

𝟑 (𝑩(𝑵)(⟦𝑵⟧𝚽)) 

and 

𝝅𝝉𝟎(𝑴)
𝟓 (𝑩(𝑴)(⟦𝑴⟧𝚽)) ≈ 𝝅𝝉𝟎(𝑴)

𝟓 (𝑩(𝑵)(⟦𝑵⟧𝚽)) 

It is also true that 

𝝅𝝉𝟎(𝑵)
𝟑 = 𝑮𝟎(𝑵𝟓, 𝑵) 

But 

𝑮𝟎(𝑪𝑴,𝒌𝒆𝒚
𝟏 ,𝑴)(𝑩(𝑴)(⟦𝑴⟧𝚽)) = ⟦𝑲𝟐⟧𝚽, 

and 

𝑮𝟎(𝑵𝟓, 𝑵)(𝑩(𝑵)(⟦𝑵⟧𝚽)) = ⟦𝑲𝟓⟧𝚽, 

so 
⟦𝑵𝟓⟧𝚽 ≈ ⟦𝑲𝟐⟧𝚽, 

and hence, by the assumption (i) of the lemma, it follows that 𝑵𝟓 

must also be a key, let us denote it with 𝑳𝟏. Similary, 

𝝅𝝉𝟎(𝑵)
𝟓 = 𝑮𝟎(𝑵𝟕, 𝑵) 

But then 

⟦𝑵𝟕⟧𝚽 ≈ ⟦{𝑲𝟓}𝑲𝟐⟧𝚽
 

and therefore N7 must be a cipher: N7 = {𝑵′}𝑳 for some expression 

N' and key L. To get that L = L1, consider 

(𝝅𝝉𝟎(𝑴)
𝟑 , 𝝅𝝉𝟎(𝑴)

𝟓 ) 𝒐 𝑩(𝑴)(⟦𝑴⟧𝚽) = ⟦(𝑲𝟐, {𝑲𝟓}𝑲𝟐)⟧𝚽
 

and 

(𝝅𝝉𝟎(𝑴)
𝟑 , 𝝅𝝉𝟎(𝑴)

𝟓 ) 𝒐 𝑩(𝑵)(⟦𝑵⟧𝚽) = ⟦(𝑳𝟐, {𝑵′}𝑳)⟧𝚽. 
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From this, since the left-hand sides are equivalent, we conclude that 

⟦(𝑲𝟐, {𝑲𝟓}𝑲𝟐)⟧𝚽
≈ ⟦(𝑳𝟏, {𝑵′}𝑳)⟧𝚽, which means by condition (ii) of 

the lemma that L = L1: 

Therefore, if we define 𝑪𝑵
𝟏  as {𝑵′}𝑳, then these terms and the keys 

that decrypt them are also in same position, so 

𝑫𝟏(𝑴) = 𝑫𝟏(𝑵) 
Remember from example 9.19, that D1(M) = D1(N) does the 

following: 

 
so if x is sampled from ⟦𝑴⟧𝚽 or ⟦𝑵⟧𝚽, then D1(M)(B(M)x) = 

D1(N)(B(N)x) has the form 

((𝒙𝟏, 𝒙𝟐), ((𝒙𝟑, 𝒙𝟒), (𝒙𝟑, 𝟎, 𝒙𝟔))),  
and  

𝝉𝟏(𝑴) = 𝝉𝟏(𝑵)
= (𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) × ((𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
× (𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × {𝟎} × 𝒔𝒕𝒓𝒊𝒏𝒈𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)) 

Then, we continue this process until we show that D4(M) = D4(N). 

Completeness 

Let us present the completeness result. Condition (ii) is equivalent 

to what the authors in [6] call weak key-authenticity. Observe, that the 

issue of key-cycles never rise throughout the proof. 

The proof consists of two separate parts. In the first, it is shown that 

conditions (i) and (ii) imply that if M and N are valid expressions and 

⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽, then there is a key-renaming 𝝈, such that apart from the 

boxes, everything else in the patterns of M and N 𝝈 is the same, and the 

boxes in the two patterns must be in the same positions. Moreover, 

condition (iii) implies that picking any two boxes of the pattern of N 𝝈, 

there is a key-renaming 𝝈1 such that applying it to the indexes of these 

boxes, we obtain the corresponding boxes in the pattern of M. Then the 
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theorem follows, if we prove that using these pairwise equivalences of 

the boxes, we can construct a 𝝈′ that leaves the keys of N𝝈 outside the 

boxes untouched, and it maps the indexes of all the boxes of N𝝈 into 

the indexes of the boxes of M. 

Theorem 9.19. Let ∆ = (ExpV, ≡𝑲, ≡𝑪) be a formal logic for 

symmetric encryption, such that ≡𝑪 is proper and that ≡𝑲 and ≡𝑪 are 

independent. Let Φ be an interpretation in П = ( {𝑲𝒊}𝒊∈𝑰, 𝑬, 𝑫, ≈ ). 
Completeness for Φ holds, if and only if the following conditions 

are satis-fied: For any K, K', K'' ∈ Keys, B ∈ Blocks, M, M', N ∈ ExpV, 

(i) no pair of ⟦𝑲⟧𝚽, ⟦𝑩⟧𝚽, ⟦(𝑴,𝑵)⟧𝚽, ⟦{𝑴′}𝑲′⟧𝚽 is equivalent 

with respect to ≈; that is, keys, blocks, pairs, encryption terms are 

distinguishable,  

(ii) if ⟦(𝑲, {𝑴}𝑲)⟧𝚽 ≈ ⟦(𝑲
′′, {𝑴′}𝑲′⟧𝚽, then K' = K'',  

(iii) for any two pairs of valid encryption terms ({𝑴𝟏}𝑳𝟏 , {𝑴𝟐}𝑳𝟐) 

and ({𝑵𝟏}𝑳𝟏
′ , {𝑵𝟐}𝑳𝟐

′ ), we have that  

⟦({𝑴𝟏}𝑳𝟏 , {𝑴𝟐}𝑳𝟐)⟧𝚽
≈ ⟦({𝑵𝟏}𝑳𝟏

′ , {𝑵𝟐}𝑳𝟐
′ )⟧

𝚽
 

implies 

(({𝑴𝟏}𝑳𝟏 , {𝑴𝟐}𝑳𝟐) ≅ ({𝑵𝟏}𝑳𝟏
′ , {𝑵𝟐}𝑳𝟐

′ )). 

Proof. The only if part is trivial. In order to prove the if part, 

consider two expressions M and N such that ⟦𝑴⟧𝚽 ≈ ⟦𝑵⟧𝚽. By 

condition (i) and (ii), Lemma 2.18 is applicable, so, c(M) = c(N), 

𝑫(𝑴)(⟦𝑴⟧𝚽) ≈ 𝑫(𝑵)(⟦𝑵⟧𝚽), 
and 

𝝉𝒄(𝑴)(𝑴) = 𝝉𝒄(𝑵)(𝑵) 

In each entry of 𝝉𝒄(𝑴)(𝑴) and 𝝉𝒄(𝑵)(𝑵), the distribution 

corresponds either to the interpretation of a key, or of a block, or of an 

undecryptable cipher (i.e. one that corresponds to a box). Naturally, the 

same blocks must be in the same positions of 𝝉𝒄(𝑴)(𝑴) and 𝝉𝒄(𝑵)(𝑵), 

because the dis-tributions of D(M)(⟦𝑴⟧𝚽) and D(N)(⟦𝑵⟧𝚽) are 

indistinguishable, and because of condition (i). Hence, the patterns of M 

and N contain the same blocks in the same positions. Moreover, since 
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D(M)(⟦𝑴⟧𝚽) and D(N)(⟦𝑵⟧𝚽) are indistinguishable, the entries in 

𝝉𝒄(𝑴)(𝑴) and in 𝝉𝒄(𝑵)(𝑵) containing strings sampled from key 

generation must be in the same places because of (i) again. 

Furthermore, the indistinguishability of 𝝉𝒄(𝑴)(𝑴) and 𝝉𝒄(𝑵)(𝑵)also 

implies that repetitions of a key generation outcome must occur in the 

same positions of 𝝉𝒄(𝑴)(𝑴) and 𝝉𝒄(𝑵)(𝑵) as well. (This is a 

consequence of the properties of key-generation in definition 2.29.) 

Therefore the key symbols in the patterns of M and N change together, 

so it is possible to rename the recoverable keys of N (with a ≡𝑲 

preserving function 𝝈 so that the keys in the pattern of N𝝈 are the same 

as the keys in the pattern of M. 

Since the distributions of D(M)(⟦𝑴⟧𝚽) and D(N)(⟦𝑵⟧𝚽) are 

indistinguishable, condition (i) implies that the undecryptable ciphers 

occur in exactly the same entries in 𝝉𝒄(𝑴)(𝑴) and 𝝉𝒄(𝑵)(𝑵). This 

means, that in the pattern of M and N, the boxes appear in the same 

position. This together with the conclusions of the previous paragraph 

means, that apart from the boxes, everything else in the pattern of M 

and of N𝝈 must be the same. By replacing N with N𝝈, we can assume 

from now on that the recoverable keys of N and M are identical, and 

that the pattern of M and N are the same outside the boxes. Therefore, 

we only have to show that there is a key renaming 𝝈' that carries the 

boxes of N into the boxes of M without changing the recoverable keys. 

Suppose that there are l boxes altogether in the pattern of M (and 

hence in the pattern of N). Let {𝑴𝟏}𝑳𝟏 , {𝑴𝟐}𝑳𝟐 , … , {𝑴𝒍}𝑳𝒍 be the l 

undecryptable terms in M that turn into boxes (in M) and 

{𝑵𝟏}𝑳𝟏
′ , {𝑵𝟐}𝑳𝟐

′ , … , {𝑵𝒍}𝑳𝒍
′ the corresponding undecryptable terms in N. 

We denote by 𝝁𝒊 and 𝒗𝒊 the equivalence classes of {𝑴𝒊}𝑳𝒊 and {𝑵𝒊}𝑳𝒊
′ , 

respectively, with respect to ≡𝑪. Then, as we showed above, we have 

that for 𝒊, 𝒋 ≤ 𝒍, 𝒊 ≠ 𝒋, 

⟦({𝑴𝒊}𝑳𝒊 , {𝑴𝒋}𝑳𝒋
)⟧
𝚽

≈ ⟦({𝑵𝒊}𝑳𝒊
′ , {𝑵𝒋}𝑳𝒋

′  )⟧
𝚽
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holds since D(M)( ⟦𝑴⟧𝚽) and D(N)( ⟦𝑵⟧𝚽)) are indistinguishable, 

and thus, by condition (iii), 

({𝑴𝒊}𝑳𝒊 , {𝑴𝒋}𝑳𝒋
) ≅ ({𝑵𝒊}𝑳𝒊

′ , {𝑵𝒋}𝑳𝒋
′). 

So, by definition of ≅ , there exists a key-renaming 𝝈𝒊,𝒋 such that 

( 𝝁𝒊 , 𝝁𝒋) = ( 𝝈𝒊,𝒋(𝒗𝒊)
, 𝝈𝒊,𝒋(𝒗𝒋)

), 

that is, there exists a key-renaming 𝝈𝒊,𝒋 such that 

𝝁𝒊 = 𝝈𝒊,𝒋(𝒗𝒊) and 𝝁𝒊 = 𝝈𝒊,𝒋(𝒗𝒋) (9.10) 

Consider now the class 𝑪 = {{𝑵𝒊}𝑳𝒊
′ }𝒊=𝟏
𝒍 . Since we assumed by 

hypothesis that ≡𝑪 is proper, by Proposition 2.13 (using S = R-Keys(N) 

and noticing that 𝑳𝒌
′ ∉ R-Keys(N)) we have that for each 𝒗𝒌, 

equivalence class of {𝑵𝒌}𝑳𝒌
′ , there is a representative C𝒗𝒌 such that: 

(i) Keys(C𝒗𝒌) ⋂ R-Keys(N) = ∅,  

(ii) 𝑳𝒎
′  𝑪𝒗𝒌  for all m ∈ {𝟏, 𝟐,… , 𝒍}. 

(iii) if 𝒗𝒌𝟏 ≠ 𝒗𝒌𝟐 , |(𝒗𝒌𝟏)𝒌𝒆𝒚| ≠ ∞  and |(𝒗𝒌𝟐)𝒌𝒆𝒚| ≠

∞, 𝒕𝒉𝒆𝒏 𝑲𝒆𝒚𝒔(𝑪𝒗𝒌𝟏
) ⋂𝑲𝒆𝒚𝒔(𝑪𝒗𝒌𝟐

) ≠ ∅ if and only if (𝒗𝒌𝟏)𝒌𝒆𝒚 =

(𝒗𝒌𝟐)𝒌𝒆𝒚 = {𝑲} for some key K, and in that case 

4. Keys(𝑪𝒗𝒌𝟏
) ⋂ Keys(𝑪𝒗𝒌𝟐

) = {𝑲}, 

5. 𝑪𝒗𝒌𝟏
 and  𝑪𝒗𝒌𝟐

 are both of the form {•}𝑲, and 

6. K  𝑪𝒗𝒌𝟏
, K  𝑪𝒗𝒌𝟐

. 

(iv) if 𝒗𝒌𝟏 ≠ 𝒗𝒌𝟐 and either |(𝒗𝒌𝟏)𝒌𝒆𝒚|
= ∞,  or |(𝒗𝒌𝟐)𝒌𝒆𝒚|

=

 ∞then 𝑲𝒆𝒚𝒔 (𝑪𝒗𝒌𝟏
) ⋂𝑲𝒆𝒚𝒔 (𝑪𝒗𝒌𝟐

) ≠ ∅  

Let us define the key-renaming function 𝝉 that leaves the 

recoverable keys of M (and N) untouched but that maps the boxes in the 

pattern of N to the corresponding boxes in the pattern of M. This 

definition is done by induction. 
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Induction Basis: Let us start by defining 𝝉𝟐
𝟑. Since we assumed that 

≡𝑪 and ≡𝑲 are inde-pendent, it is possible to modify 𝝈𝟏,𝟐 such that the 

resulting renaming function 𝝉𝟐 that we get leaves 

𝑺𝟐 = ( ⋃𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) ∪  𝑹 − 𝑲𝒆𝒚𝒔(𝑵)(𝑲𝒆𝒚𝒔(𝑪𝒗𝟏) ∪ 𝑲𝒆𝒚𝒔(𝑪𝒗𝟐))

𝒍

𝒊=𝟑

 

untouched and is such that 

𝝉𝟐(𝒗𝟏) =  𝝈𝟏,𝟐(𝒗𝟏) and 𝝉𝟐(𝒗𝟐) =  𝝈𝟏,𝟐(𝒗𝟐) 
If we combine the previous equations with (2.10) we have that 

𝝉𝟐(𝒗𝟏) =  𝝈𝟏,𝟐(𝒗𝟏) = 𝝁𝟏 

and 

𝝉𝟐(𝒗𝟐) =  𝝈𝟏,𝟐(𝒗𝟐) = 𝝁𝟐. 

Induction Hypothesis: Suppose now that we have defined the keys 

in ¿k in a such a way that ¿k leaves 

𝑺𝒌 = ( ⋃ 𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) ∪

𝒍

𝒊=𝒌+𝟏

𝑹−𝑲𝒆𝒚𝒔(𝑵) ) \ ( ⋃𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) 

𝒌

𝒊=𝟏

), 

untouched and is such that 

𝝉𝒌(𝒗𝒊) = 𝝁𝒊 for all 𝒊 ≤ 𝒌 

Inductive Step: There are two cases. First suppose that 𝒗𝒌+𝟏 = 𝒗𝒊 
for some 𝒊 ≤ 𝒌. In this case, we define 𝝉𝒌+𝟏 = 𝝉𝒌. It is obvious that 

𝝉𝒌+𝟏 leaves the keys of 

𝑺𝒌+𝟏 = ( ⋃ 𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) ∪

𝒍

𝒊=𝒌+𝟐

𝑹−𝑲𝒆𝒚𝒔(𝑵) ) \ ( ⋃𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) 

𝒌+𝟏

𝒊=𝟏

), 

untouched and is such that 

𝝉𝒌+𝟏(𝒗𝒊) = 𝝁𝒊 for all 𝒊 ≤ 𝒌 + 𝟏 

since 𝑪𝒗𝒌+𝟏 = 𝑪𝒗𝒊  and 𝒗𝒌+𝟏 = 𝒗𝒊. 

In the other case, suppose that 𝒗𝒌+𝟏 ≠ 𝒗𝒊 for all 𝒊 ≤ 𝒌. Consider 

now the substitution 𝝈𝒋,(𝒌+𝟏) with 𝒋 ≤ 𝒌. By (9.10) we have that 

𝝁𝒋 = 𝝈𝒋,(𝒌+𝟏)(𝒗𝒋) 

and 
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𝝁𝒌+𝟏 = 𝝈𝒋,(𝒌+𝟏)(𝒗𝒌+𝟏). 

Since ≡𝑪 and ≡𝑲 are independent, considering 

𝑺 = (⋃𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) ∪ 𝝉𝒌

𝒍

𝒊=𝟏

(⋃𝑲𝒆𝒚𝒔(𝑪𝒗𝒊)

𝒍

𝒊=𝟏

) ∪ 𝐑 − 𝐊𝐞𝐲𝐬(𝐍))

\𝑲𝒆𝒚𝒔(𝑪𝒗𝒌+𝟏) 

And 𝑪 = {𝑪𝒗𝒌+𝟏}, we have that it is possible to modify 𝝈𝒋,(𝒌+𝟏) to 

𝝈∗ such that 

𝝈∗(K) = K for all K ∈ S 

and 

𝝈∗(𝒗𝒌+𝟏) = 𝝈𝒋,(𝒌+𝟏)(𝒗𝒌+𝟏) 

Using (9.12), we can rewrite the previous equation as 

𝝈∗(𝒗𝒌+𝟏) = 𝝈𝒋,(𝒌+𝟏)(𝒗𝒌+𝟏) = 𝝁𝒌+𝟏 

Thus, we have two substitutions, 𝝉𝒌 and 𝝈∗ such that 

𝝉𝒌(𝒗𝒊) = 𝝁𝒊 for all 𝒊 ≤ 𝒌  (9.13) 

and 

𝝈∗(𝒗𝒌+𝟏) = 𝝁𝒌+𝟏    (9.14) 

Our goal now is to combine these two substitutions into one 

substitution 𝝉𝒌+𝟏 such that 

𝝉𝒌+𝟏(𝒗𝒊) = 𝝁𝒊 for all 𝒊 ≤ 𝒌 + 𝟏 (9.15) 

and that leaves untouched the keys in 

𝑺𝒌+𝟏 = ( ⋃ 𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) ∪

𝒍

𝒊=𝒌+𝟐

𝑹−𝑲𝒆𝒚𝒔(𝑵) ) \ ( ⋃𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) 

𝒌+𝟏

𝒊=𝟏

), 

We can immediately notice that by definition, 𝝉𝒌 only changes the 

keys in (⋃ 𝑲𝒆𝒚𝒔(𝑪𝒗𝒊)
𝒌
𝒊=𝟏 ) (recall (9.11)) and that 𝝈∗ only alters the 

keys in Keys(𝑪𝒗𝒌+𝟏), thus ensuring (9.16). We also notice that from 

(9.13) and (9.14), (9.15) follows. So, if it is possible to “merge” the two 

substi-tutions, the result follows. We do this by showing that the two 

substitutions are compatible. We show that if both substitutions change 

the value of one key K, then they change it to the same value, that is, 
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we show that if for a key K, 𝝉𝒌(𝑲) ≠ 𝑲 and 𝝈∗(𝑲) ≠ 𝑲 then 𝝉𝒌(𝑲) =
𝝈∗(𝑲). 

Suppose that both 𝝉𝒌 and 𝝈∗ change the value of a key K'. Then, by 

the definition of the two substitutions, 

𝑲′(⋃𝑲𝒆𝒚𝒔(𝑪𝒗𝒊)

𝒌

𝒊=𝟏

)⋂ 𝑲𝒆𝒚𝒔(𝑪𝒗𝒌+𝟏). 

that is 

𝑲′ ∈ 𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) ⋂  𝐊𝐞𝐲𝐬(𝑪𝒗𝒊) 

for some i ∈ {𝟏,… , 𝒌}. By the way we constructed the 

representatives 𝑪𝒗𝒌 we have that foe any two different equivalence 

classes 𝒗𝒌𝟏 and 𝒗𝒌𝟐, 𝑲𝒆𝒚𝒔(𝑪𝒗𝒊)⋂𝑲𝒆𝒚𝒔(𝑪𝒗𝒊) = ∅ (whenever 

|(𝒗𝒊)𝒌𝒆𝒚| = ∞ or |(𝒗𝒌+𝟏)𝒌𝒆𝒚| = ∞) or 

𝑲𝒆𝒚𝒔 (𝑪𝒗𝒌𝟏
)⋂𝑲𝒆𝒚𝒔(𝑪𝒗𝒌𝟐

) ≠ ∅ if and only if (𝒗𝒌𝟏)𝒌𝒆𝒚 =

(𝒗𝒌𝟐)𝒌𝒆𝒚 = {𝑲}, and in that case 

𝑲𝒆𝒚𝒔(𝑪𝒗𝒌𝟏
)⋂𝑲𝒆𝒚𝒔(𝑪𝒗𝒌𝟐

) = {𝑲}. 

Since {𝑵𝒊}𝑳𝒊
′  ∈  𝒗𝒊 and {𝑵𝒌+𝟏}𝑳𝒌+𝟏

′ ∈  𝒗𝒌+𝟏, we have that 𝑳𝒊
′  ∈

 (𝒗𝒊)𝒌𝒆𝒚 and 𝑳𝒌+𝟏
′  ∈  (𝒗𝒌+𝟏)𝒌𝒆𝒚, and using (2.18) it follows that 

𝑲′ = 𝑳𝒊
′ = 𝑳𝒌+𝟏

′ . 

We just proved that the only key that both 𝝉𝒌 and 𝝈∗ change at the 

same time is K' so we just need to prove that they change it to the same 

value (in order to be compatible), that is, 

𝝉𝒌(𝑲′) =  𝝈
∗(𝑲′). 

By (9.18) we have that |(𝒗𝒌+𝟏)𝒌𝒆𝒚| = 𝟏 and so, using Proposition 

9.12 and (9.14) it follows that 

|(𝝁𝒌+𝟏)𝒌𝒆𝒚| =  |𝝈
∗((𝒗𝒌+𝟏)𝒌𝒆𝒚)| = 𝟏 . 

Since {𝑴𝒌+𝟏}𝑳𝒌+𝟏 ∈  𝝁𝒌+𝟏 , we have that 𝑳𝒌+𝟏 ∈ (𝝁𝒌+𝟏)𝒌𝒆𝒚. So, 

from the previous equation and (9.18) it follows that 

𝝈∗(𝑲′) =  𝝈∗(𝑳𝒌+𝟏
′ ) = 𝑳𝒌+𝟏   (9.20) 
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If we apply the same reasoning to 𝒗𝒊 and 𝝉𝒌, again by (9.18) we 

have that |(𝒗𝒊)𝒌𝒆𝒚| = 𝟏 and so, using Proposition 9.12 and (9.13) it 

follows that 

|(𝝁𝒊)𝒌𝒆𝒚| = |𝝉𝒌((𝒗𝒊)𝒌𝒆𝒚)| = 𝟏. 

Since {𝑴𝒊}𝑳𝒊 , ∈  𝝁𝒊, we have that 𝑳𝒊  ∈ (𝝁𝒊)𝒌𝒆𝒚. So, from the 

previous equation and (2.18) it follows that 

𝝉𝒌(𝑲
′) =  𝝉𝒌(𝑳𝒊

′) = 𝑳𝒊   (9.21) 

Now consider the substitution 𝝈𝒊,(𝒌+𝟏). By (9.10) we have that 

𝝁𝒊 = 𝝈𝒊,(𝒌+𝟏)(𝒗𝒊) and 𝝁𝒌+𝟏 = 𝝈𝒊,(𝒌+𝟏)(𝒗𝒌+𝟏). 
Using (9.18) and Proposition 9.2 it follows that 

|(𝝁𝒊)𝒌𝒆𝒚| = |𝝈𝒊,(𝒌+𝟏)((𝒗𝒊)𝒌𝒆𝒚)| = 1 and |(𝝁𝒊)𝒌𝒆𝑦| = 

|𝝈𝒊,(𝒌+𝟏)((𝒗𝒌+𝟏)𝒌𝒆𝒚)| = 1 

As said before, 𝑳𝒊  ∈  (𝝁𝒊)𝒌𝒆𝒚, 𝑳𝒊
′ ∈  (𝒗𝒊)𝒌𝒆𝒚, 𝑳𝒌+𝟏 ∈

 (𝝁𝒌+𝟏)𝒌𝒆𝒚, and 𝑳𝒌+𝟏
′ ∈  (𝒗𝒌+𝟏)𝒌𝒆𝒚 and so 

𝝈𝒊,(𝒌+𝟏)(𝑳𝒊
′) = 𝑳𝒊 𝒂𝒏𝒅 𝝈𝒊,(𝒌+𝟏)(𝑳𝒌+𝟏

′ ) =  𝑳𝒌+𝟏 

Combining this with (9.19), since 𝑳𝒊
′ = 𝑳𝒌+𝟏

′ , we have that 

𝑳𝒊 = 𝑳𝒌+𝟏 
and so by (9.21), (9.22), and (9.20) 

𝝉𝒌(𝑲
′) = 𝑳𝒊 = 𝑳𝒌+𝟏 = 𝝈

∗(𝑲′). 
Thus for any key K' such that both 𝝉𝒌 and 𝝈∗ change the value, they 

are compatible. We then define 𝝉𝒌+𝟏 as i\; S 

𝝉𝒌+𝟏(𝑲) = {
𝝈∗(𝑲) 𝒊𝒇 𝑲 ∈ 𝑲𝒆𝒚𝒔(𝑪𝒗𝒌+𝟏)

𝝉𝒌(𝑲) 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
, 

Note that by definition og 𝝉𝒍, it does not change the keys in 

𝑺𝒍 = 𝑹−𝑲𝒆𝒚𝒔(𝑵)\(⋃ 𝑲𝒆𝒚𝒔𝒍
𝒊=𝟏 (𝑪𝒗𝒊)) but, by properness, we 

have that 𝑲𝒆𝒚𝒔(𝑪𝒗𝒊)𝑹 −𝑲𝒆𝒚𝒔(𝑵) = ∅ for all 𝟏 ≤ 𝒊 ≤ 𝒍 which 

implies that 𝝉𝒍 does not the keys in R-Keys(N). 

The substitution 𝝉 that satisfies the required properties, i.e., that 

leaves the recoverable keys of M and N untouched, but maps the boxes 

of the pattern of N into the corresponding boxes in the pattern of M, is 
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defined as 𝝉𝒍 (l is the number of boxes in the pattern of M) and that is 

what we needed to complete the proof. 

Remark 9.4. Observe, that condition (iii) of the theorem is trivially 

satisfied when there is only one box, that is, when all encryption terms 

are equivalent under ≡𝐶. Also, if completeness holds for a certain 

choice of ≡𝐶, then, if ≡𝐶
′  is such that M ≡𝐶 N implies M ≡𝐶

′  N—i.e. 

when ≡𝐶
′  results fewer boxes—then completeness holds for ≡𝐶

′  as well. 

Therefore, we can say, that the key to completeness is not to have too 

many boxes. 

Example 9.22 (Completeness for Type-1 and Type-2 Encryption 

Schemes). The complete-ness part of our earlier theorems for type-1 

and type-2 encryption schemes are clearly special cases of this theorem, 

because the formal language we introduced for these schemes were 

such that ≡𝐶 is proper and ≡𝐾 and ≡𝐶 are independent, and the 

conditions of the theorems are anal-ogous. 

Example 9.23 (Completeness for One-Time Pad). The formal logic 

for OTP is such that ≡𝐶 is proper and ≡𝐾 and ≡𝐶 are independent. 

Furthermore, con-dition (i) of. Condition (ii) is also satisfied because of 

the tagging: the reason ultimately is that decrypting with the wrong key 

will sometimes result invalid endings. Condition (iii) is also satisfied, 

since the pairs of encryption terms must be encrypted with different 

keys (in OTP, we cannot use the keys twice), and the equivalence 

⟦({𝑀1}𝐿1 , {𝑀2}𝐿2)⟧Φ
≈ ⟦({𝑁1}𝐿1′ , {𝑁2}𝐿2′ )⟧Φ

 implies that the 

corresponding lengths in the two encryption terms wust be the same: 

𝑙({𝑀1}𝐿1) = 𝑙({𝑁1}𝐿1′ ) and 𝑙({𝑀2}𝐿2) = 𝑙({𝑁2}𝐿2′ ) which implies 

( 𝑙({𝑀1}𝐿1)
, ({𝑀2}𝐿2)

) = (
𝑙({𝑁1}𝐿1

′ )
,

𝑙({𝑁2}𝐿2
′ )

). Therefore, 

({𝑀1}𝐿1 , {𝑀2}𝐿2) ≅ ({𝑁1}𝐿1′ , {𝑁2}𝐿2′ ). In conclusion, the formal logic is 

complete. 
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Advancement questions 

1. What are the main conditions of the Abadi-Rogaway 

Soundness Theorem? 

2. What are the main features of the AR Equivalence of Formal 

Expressions? 

3. Through what the equivalence of expressions is able to be 

obtained? 

4. What does KDM security mean? 

5. Why does the soundness in the presence of key-cycles is not 

possible to prove with the security notion adopted by Abadi 

and Rogaway? 

6. Why does type-0 security is not strong enough to ensure 

soundness in the case of key-cycles? 

7. What are the features of the ‘type-1’ encryption schemes? 

8. What does type-1 encryption in the terminology of Abadi and 

Rogaway mean? 

9. What is the difference between the type-1 and type-2 

encryptions? 

10. Why does it possible to construct encryption schemes that are 

type-0, but fail to provide soundness in the presence of key-

cycles? 
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GLOSSARY 

PPT - probabilistic polynomial-time 

QRAM - a quantum random access machine 

QPM - a quanlum polynomil machine 

RAM - random access machine 

RSA algorithm – Rivest’s, Shamir’s and  Adleman’s algorithm 

IDS - Intrusion Detection System 

AI - Artificial Intelligence 

ANN - Artificial Neural Networks 

SVM - Support Vector Machines 

GA - Genetic Algorithms 

FNN - Fuzzy Neural Networks 

CI - Computational Intelligence 

DM - Data Mining 

FS - Fuzzy System 

MF - Membership Function 

DOS - Denial of Service 

R2L - Remote to User 

U2R - User to Root 

SVMs - Support Vector Machines 

SVR - Support Vector Regression 

SVs - Support Vectors 

GA - Genetic Algorithm  

FN - Functional Networks 

FNN - a Fuzzy Neural Network 

SVM - Support Vector Machines 

T2FL -  Type-2 Fuzzy Logic 

FFS - FN-Fuzzy Logic-SVM 

FSF - FN-SVM-Fuzzy Logic 

LP - Linear Programming 

CS - computer system 
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CFG - control flow graph 

CS - computer system 

AMAS - antiviral multi-agent system 

DTMC - discrete time Markov chains 

CTMC - continuous-time Markov chains 

MDP - Markov decision processes 

PCTL - Probabilistic Computation Tree Logic 

CSL - Continuous Stochastic Logic 

WAL - Write-ahead logging 
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Introduction  

Process Algebras have been widely used in the study of security of 

concurrent systems [1-9]. In spite of their success in proving security of 

cryptographic protocols, mainly secrecy and authenticity properties, all 

these are stated in the so called Dolev-Yao Model, hence no real 

cryptographic guarantees are achieved. 

Another approach is to supplement process calculi with concrete 

probabilistic or polynomi-al-time semantics [18]. Unavoidably, 

reasoning on processes becomes more difficult. 

In this Chapter, we present a process calculus that enjoys both the 

simplicity of an abstract symbolic model and a concrete (sound and 

complete) implementation that achieves strong cryp-tographic 

guarantees. Our calculus is a variant of the pi calculus with high level 

security prim-itives; it provides name mobility, reliable messaging and 

authentication primitives, but neither explicit cryptography nor 

probabilistic behaviours. 

Taking advantage of concurrency theory, it supports simple 

reasoning, based on labelled transitions and observational equivalence. 

This chapter presents its concrete implementation in a computational 

setting. The implementation relies on standard cryptographic 

primitives, compu-tational security definitions (CCA2 for encryption 

[10], CMA for signing [11], recalled in Appendix A), and networking 

assumptions. It also combines typical distributed implemen-tation 

mechanisms such as abstract machines, marshaling and unmarshaling, 

multiplexing, and basic communications protocols. 

We establish general completeness results in the presence of active 

probabilistic polynomial-time adversaries, for both trace properties and 

observational equivalences, essentially showing that high level 

reasoning accounts for all low-level adversaries. 

This chapter illustrates the approach by coding security protocols 

and establishing their computational correctness by simple formal 

reasoning. 

This Chapter is organised as follows: it starts by describing the low-

level target model as the constraints imposed by this will drive the 

design of the high-level language, then high-level language and 

semantics is presented, and notion of high-level equivalence are defined 
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and illustrated. Chapter is also devoted to applications. Anonymous 

forwarders in the language and exhibit an example of an electronic 

payment protocol are encoded. As an example the encoding of an 

initialisation protocol is given, that is, given any system S that possibly 

shares names and certificates among principals, we can always find an 

initial system 𝑆о where principals share no information, such that there 

is a transition from 𝑆о to S. Chapter describes concrete implementation, 

and results. 

10.1 Low-Level Target Model 

Before presenting the language design and implementation, let us 

specify the target systems. Let us do this, as the design of our language 

is, in part, driven by the target model. We have to be as abstract as 

possible, but at the same time we need to faithfully abstract the 

properties of the computational implementation. 

As an example, we want our high-level environments to have the 

same capabilities as the low-level adversaries, that are probabilistic 

polynomial-time (PPT) cryptographic algorithms. We follow the 

conservative assumption that an adversary controls all network traffic: 

it can intercept, delay, or even block permanently any communication 

between principals. For that, we cannot guarantee message delivery, 

nor implement private channels that prevent traffic analysis. Reflect-ing 

this in the high-level semantics implies that the simple pi-calculus rule 

𝑐̅〈𝑀〉. 𝑃 | 𝑐(𝑥). 𝑄 → 𝑃 | 𝑄{𝑀/𝑥}, which models silent communication 

is too abstract for our purposes. (Consider P and Q two processes that 

are implemented in two separate machines connected by a public net-

work, and even if c is a restricted channel, the adversary can simply 

block all communications.) 

We consider systems that consist of a finite number of principals 

𝑎, 𝑏, 𝑐, 𝑒, 𝑢, 𝑣, …  ∈ Prin. Each principal a runs its own program, written 

in our high-level language and executed by the PPT machine Ma 

defined in Section 3.5. Each machine Ma has two wires, ina and outa, 

rep-resenting a basic network interface. When activated, the machine 

reads a bitstring from ina, performs some local computation, then writes 

a bitstring on outa and yields. The machine em-beds probabilistic 

algorithms for encryption, signing, and random-number generation—

thus the machine outputs are random variables. The machine is also 
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parameterised by a security parameter η ∈  ℕ —intuitively, the length 

for all keys—thus these outputs are ensembles of probabilities. 

Some of these machines may be corrupted, under the control of the 

attacker; their implemen-tation is then unspecified and treated as part of 

the attacker. We let 𝑎, 𝑏, 𝑐 ∈ 𝐻 with H ⊂ Prin range over principals 

that comply with our implementation, and let 𝑀 = (𝑀𝑎)𝑎∈𝐻 describe 

the whole system. We denote by e a principal controlled by the 

adversary ( 𝑒 ∈ 𝑃𝑟𝑖𝑛\𝐻) and by u, v an arbitrary principal in Prin. Of 

course, when a interacts with 𝑢 ∈ 𝑃𝑟𝑖𝑛, its implementation Ma does not 

know whether 𝑢 ∈ 𝐻 or not. 

The adversary, A, is a PPT algorithm that controls the network, the 

global scheduler, and some compromised principals. At each moment, 

only one machine is active: whenever an ad-versary delivers a message 

to a principal, the machine for this principal is activated, runs until 

completion, and yields an output to the adversary. We have then the 

following definition: 

Definition 10.1 (Run). We define a run of A and M with security 

parameter η ∈  ℕ as follows: 

- key materials, with security parameter η , are generated for every 

principal 𝑎 ∈ 𝑃𝑟𝑖𝑛; 

- every Ma is activated with 1η, the keys for a, and the public keys 

for all 𝑢 ∈ 𝑃𝑟𝑖𝑛;  

- A is activated with 1η, the keys for 𝑒 ∈ 𝑃𝑟𝑖𝑛\𝐻, and the public 

keys for 𝑎 ∈ 𝐻;  

- A performs a series of low-level exchanges of the form: f writes 

a bitstring on wire ina and activates Ma for some 𝑎 ∈ 𝐻; upon 

completion of Ma, A reads a bitstring on outa;  

- A returns a bitstring  s, written 𝑠 ← 𝐴[𝑀].  
We keep η implicit whenever possible. 

At each Step 4, the adversary A can choose a and compute the 

bitstring written on ina from any previously-received materials, 

including principal keys and bitstrings collected from previ-ous 

exchanges. 

By design, our low-level runs do not render attacks based on timed 

properties, such as for instance any observation of the time it takes for 

each machine to reply. Although the risk of quantitative traffic analysis 

may be significant, it can be mitigated independently, for instance by 
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sending messages according to a fixed schedule. We leave this 

discussion outside the scope of this dissertation. 

To study the security properties of these runs, we compare 

systems that consist of machines running on behalf of the same 

principals H ⊆ Prin, but with different internal programs and states. 

Intuitively, two systems are equivalent when no PPT adversary, 

starting with the informa-tion normally given to the principals 

𝑒 ∈ 𝑃𝑟𝑖𝑛\𝐻, can distinguish between their two behaviours, except 

with negligible probability, Definition A.1. This notion is called 

computational indis-tinguishability and was introduced by 

Goldwasser and Micali [12]. We state it here in a different but 

equivalent way. 

Definition 10.2 (Low-Level Equivalence). Two systems M
0
 and 

M
1
 are indistinguishable, written M

0 
 ≈ M

1
, if for all PPT adversaries 

A: 

| Pr[1 ← 𝐴[𝑀0]] − Pr[1 ← 𝐴[𝑀1]] | ≤ 𝑛𝑒𝑔(η). 
Our goal is to develop a simpler, higher-level semantics that entails 

indistinguishability. 

10.2 A Distributed Calculus with Principals and Authentica-tion  

We now present our high-level language. We successively define 

terms, patterns, processes, configurations, and systems. We then give 

their operational semantics. Although some aspects of the design are 

unusual, the resulting calculus is still reasonably abstract and 

convenient for distributed programming. 

Syntax and Informal Semantics 

Definition 10.3 (Names, Terms, Patterns).  Let Prin be a finite set 

of  principal identities.  Let Name be a countable set of names disjoint 

from Prin. Let f range over a finite number of function symbols, each 

with a fixed arity 𝑘 ≥ 0. We define terms and patterns by the following 

grammar: 

V, W ::= Terms 

x, y variable 

m, n ∈ Name name 

a, b, e, u, v ∈ Prin principal identity 
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f(V1, ... , Vk) constructed term (when f has arity k) 

T, U ::= Patterns 

?x variable (binds x) 

T as ?x alias (binds x to the term that matches T ) 

V constant pattern 

f(T1, ... ,  Tk) constructed pattern (when f has arity k) 

As usual in process calculi, names and principal identities are 

atoms, which may be compared with one another but otherwise do not 

have any structure. Constructed terms represent structured data, much 

like algebraic data types in ML or discriminated unions in C. They can 

represent constants and tags (when k = 0), tuples, and formatted 

messages. As usual, we write tag and (V1, V2) instead of tag() and 

pair(V1, V2). 

Patterns are used for analysing terms and binding selected subterms 

to variables. For instance, the pattern (tag, ?x) matches any pair whose 

first component is tag and binds x to its second component. We write 

for a variable pattern that binds a fresh variable. 

Definition 10.4 (Local Processes). Local processes represent the 

active state of principals, and are defined by the following grammar: 

 P, Q, R ::= Local processes 

 V   asynchronous output 

 (T ).Q input (binds bv(T ) in Q) 

 *(T ).Q replicated input (binds bv(T ) in Q) 

match V with T in Q else Q' matching (binds bv(T ) in Q) 

 vn.P name restriction (“new”, binds  n in P ) 

 P | P' parallel composition 

  0   inert process 

The asynchronous output V is just a pending message; its data 

structure is explained below. The input (T ).Q waits for an output that 

matches the pattern T then runs process Q with the bound variables of T 

substituted by the matching subterms of the output message. The repli-

cated input *(T ).Q behaves similarly but it can consume any number of 

outputs that match T and fork a copy of Q for each of them. The match 

process runs Q if V matches T , and runs Q' otherwise. The name 

restriction creates a fresh name n then runs P . Parallel composition 

represents processes that run in parallel, with the inert process 0 as unit. 
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Free and bound names and variables for terms, patterns, and 

processes are defined as usual: x is bound in T if ?x occurs in T; n is 

bound in vn.P; x is free in T if it occurs in T and is not bound in T . An 

expression is closed when it has no free variables; it may have free 

names. 

Definition 10.5 (Local Contexts). A local context is a process with 

a hole instead of a subprocess. We say that a context is an evaluation 

context when the hole replaces a subprocess P or P' in the grammar of 

Definition 3.4. If it replaces a subprocess Q or Q' we call it a guarded 

context. 

Our language features two forms of authentication, represented as 

two constructors auth and cert of arity 3 plus well-formed conditions on 

their usage in processes. 

Definition 10.6 (Authenticated Messages, Certificates). 

Authenticated messages between principals are represented as terms of 

the form auth(V1,V2,V3), written V1:V2〈𝑉3〉 where V1 is the sender, V2 the 

receiver, and V3 the content. We let M and N range over messages. The 

message M is from a (respectively to a) if a is the sender (respectively 

the receiver) of M. 

Certificates issued by principals are represented as terms of the 

form cert(V1,V2,V3), written 𝑉1{𝑉2}𝑉3, where V1 is the issuer, V2 the 

content, and V3 the label. 

Labels in certificates reflect cryptographic signature values in their 

implementation. They are often unimportant (and omitted), since our 

processes use a constant label 0 in their certificates and ignore labels 

(using ) in their certificate patterns. Nonetheless, they are necessary 

because the standard definition of security for signatures (CMA-

security, Definition A.6) does not exclude the possibility that the 

attacker produce different signature values for certificates with identical 

issuer and content. If we do not include labels in our definition of high-

level certificates, we could be excluding attacks. 

Example 10.1. Consider a protocol where adversarial principal e 

receives a certificate cert1 from a, forges a second certificate cert2 using 

some malleability property of the signing scheme, and then forwards 

cert1 to b and cert2 to c. 

If later e receives certi from d, he may discover part of the topology 

of the network, as i = 1 if d is connected to b and i = 2 if d is connected 
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to c. If the attack to the protocol depends upon the knowledge of the 

network, we have an attack. 

If we do not account for this possibility in our high-level semantics, 

that is, use different labels for different certificates, we could never 

capture this attack as the received certificate by e would be equivalent 

regardless of i = 0 or i = 1. 

Although both authenticated messages and certificates provide 

some form of authentication, authenticated messages are delivered at 

most once, to their designated receiver, whereas cer-tificates can be 

freely copied and forwarded within messages. Hence, certificates 

conveniently represent transferable credentials and capabilities. They 

may be used, for instance, to code decentralised access-control 

mechanisms. 

Example 10.2. As an example, a:b〈Hello〉 is an authentic message 

from a to b with content Hello, a constructor with arity 0, for which b 

(and only b) can verify that it is coming from aa{b, Hello} is a 

certificate signed by a with the same subterms that can be sent, 

received, and verified by any principal. 

We let ∅(V ) be the set of certificates included in V and let ∅(V )X  

⊆ ∅(V ) be those certifi-cates issued by u ∈ X. For instance, we have 

∅(𝑎{0, 𝑏{1}, 𝑐{2}}){𝑎,𝑏} = {𝑏{1}, 𝑎{0, 𝑏{1}, 𝑐{2}}}  
Definition 10.7 (Well Formed Process). Let P be a local process. 

We say that P is well-formed for a 2 Prin when:  
- any certificate in  P that includes a variable or a bound name is of 

the form 𝑎{𝑉2}0;  
- no pattern in P binds any certificate label; and  

- no pattern used for input in P matches any authenticated message 

from a.  

Condition 1 states that the process may produce new certificates 

only with issuer a; in addi-tion, the process may contain previously-

received certificates issued by other principals. (We do not restrict 

certificate patterns—a pattern that tests a certificate not available to a 

will never be matched.) Condition 2 restricts access to labels, so that 

labels only affect comparisons between certificates. Condition 3 

prevents that authenticated messages sent by P be read back by some 

local input. 
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Finally, we are now able to define configurations and systems. A 

configuration is an assembly of running principals, each with its own 

local state, plus an abstract record of the messages intercepted by the 

environment and not forwarded yet to their intended recipients. A 

system is a top-level configuration plus an abstract record of the 

environment’s knowledge, as a set of certificates previously issued and 

sent to the environment by the principals in C. 

Definition 10.8 (Configurations, Systems). Configurations and 

systems are defined by the fol-lowing grammar: 

C ::= configurations 

a[Pa] principal a with local state Pa 

M / i intercepted message M with index i 

C \ C' distributed parallel composition 

vn.C name restriction (“new”, binds  n in C) 

S ::= systems 

Φ  C configuration  C exporting certificates  Φ 

and satisfy the following well-formed conditions: 

- In configurations, intercepted messages have distinct indices i 

and closed content M; principals have distinct identities a and 

well-formed local processes Pa.  

- In systems, let H be the set of identities for all defined principals, 

called compliant prin-cipals; intercepted messages are from a to 

b for some a, b ∈ H with a ≠ b; Φ is a set of closed certificates 

with label 0 such that ∅(Φ)𝐻 = Φ. 

Operational Semantics 

We define our high-level semantics in two stages: local reductions 

between processes, then global labelled transitions between systems 

and their (adverse) environment. Processes, configurations, and systems 

are considered up to renaming of bound names and variables. 

Local Reductions 

We start by defining structural equivalence. It represents structural 

rearrangements for local processes. Intuitively, these rearrangements 

are not observable (although this is quite hard to implement). 
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Definition 10.9 (Structural Equivalence for Processes). 

Structural equivalence, written P ≡  P', is defined as the smallest 

congruence such that: 

𝑃 ≡ 𝑃|0 

𝑃|𝑄 ≡ 𝑄|𝑃 

𝑃|(𝑄|𝑃) ≡ (𝑃|𝑄) | 𝑅 
(𝑣𝑛. 𝑃)|𝑄 ≡ 𝑣𝑛. (𝑃|𝑄) 𝑤ℎ𝑒𝑛 𝑛 ∉ 𝑓𝑛(𝑄)  

𝑣𝑚. 𝑣𝑛. 𝑃 ≡ 𝑣𝑛. 𝑣𝑚. 𝑃 

𝑣𝑛. 0 ≡ 0 
Definition 10.10 (Local Reductions, Stable Processes). Local 

reduction step, written 𝑃 → 𝑃′, represents internal computation 

between local processes, and is defined as the smallest relation such 

that 

 (LComm)   (𝑇). 𝑄|𝑇𝜎 → 𝑄𝜎 

 (LRepl)                         ∗ (𝑇). 𝑄|𝑇𝜎 → 𝑄𝜎| ∗ (𝑇). 𝑄 

 (LMatch)      match 𝑇𝜎 with T in P else 𝑄 → 𝑃𝜎 

  (LNoMatch)  matgh V with T in P else 𝑄 → 𝑄 when 𝑉 ≠ 𝑇𝜎 

for any 𝜎 

 (LParCtx) (LNewCtx) (LStruct) 

 
𝑃→𝑄

𝑃|𝑅→𝑄|𝑅
  

𝑃→𝑄

𝑣𝑛.𝑃→𝑣𝑛.𝑄
  

𝑃≡𝑃′  𝑃′→𝑄′     𝑄′≡𝑄

𝑃→𝑄
 

 
where 𝜎 ranges over substitutions of closed terms for the variables 

bound in T. 

The local process P is stable when it has no local reduction step, 

written P .We write P Q when P →∗≡ 𝑄and Q .  

System Transitions 

We define a labelled transition semantics for configurations, then 

for systems. Each labelled transition, written 𝑆
𝑦
→𝑆′, represents a single 

interaction with the adversary. We let 𝛼 and 𝛽 range over input and 

output labels (respectively from and to the adversary), let 𝛾 range over 

labels, and let 𝜑 range over series of labels. We write 𝑆
𝜑
→ 𝑆′ for a series 

of transitions with labels 𝜑. We also rely on structural equivalence for 

configurations. 
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Definition 10.11 (Structural Equivalence for Configurations). 

Structural equivalence for con-figurations , written 𝐶 ≡ 𝐶′, is defined 

as the smallest congruence such that: 

𝐶 ≡ 𝐶′|0 𝐶|𝐶′ ≡ 𝐶′|𝐶   𝐶|(𝐶′|𝐶′′) ≡ (𝐶|𝐶′)|𝐶′′ 

𝑣𝑚. 𝑣𝑛. 𝐶 ≡ 𝑣𝑛. 𝑣𝑚. 𝐶 (𝑣𝑛. 𝐶)|𝐶′ ≡ 𝑣𝑛. (𝐶|𝐶′)  𝑤ℎ𝑒𝑛 𝑛 ∉

𝑓𝑛(𝐶′); 

Definition 10.12 (Labels).  Labels are defined by the following 

grammar: 

𝛼::=  input labels 

(M)  input of message M 

(i)  forwarding of intercepted message i 

𝛽::=  output labels 

vn1 ... nk.M output of message M (n1, ... , nk ∈ fn(M)) 

vi.a:b  nterception of message i from a to b (a, b ∈ H)  

𝛾::=  single label 

𝛼 + 𝛽  input or output label 

𝜑::=  series of transition labels 

𝛾  

We let input(𝜑) be the series of input labels in 𝜑. 

Definition 10.13 (Labelled Transitions for Configurations). 

Labelled transitions for configura-tions are defined by the following 

rules: 

(𝐶𝐹𝐺𝑂𝑈𝑇)
𝑢≠𝑎

𝑎[𝑎:𝑢〈𝑉〉|𝑄]
𝑎:𝑢〈𝑉〉
→     𝑎[𝑄]

                  

(𝐶𝐹𝐺𝐼𝑁)
𝑢:𝑎〈𝑉〉|𝑃→𝑄   𝑢≠𝑎

𝑎[𝑃]
(𝑢:𝑎〈𝑉〉)
→      𝑎[𝑄]

 

(𝐶𝐹𝐺𝐵𝐿𝑂𝐶𝐾)
𝐶
𝑏:𝑎〈𝑉〉
→    𝐶′    𝑖 𝑛𝑜𝑡 𝑖𝑛 𝐶

𝐶| 𝑎[𝑃]
𝑣𝑖.𝑏:𝑎
→    𝐶′|𝑎[𝑃] | 𝑏:𝑎〈𝑉〉/𝑖

        

(𝐶𝐹𝐺𝐹𝑊𝐷)
𝐶
(𝑀)
→  𝐶′

𝐶| 𝑀/𝑖
(𝑖)
→ 𝐶′

 

(𝐶𝐹𝐺𝑃𝑅𝐼𝑁𝐶𝑇𝑋)
𝐶
𝛾
→𝐶′    𝛾 𝑛𝑜𝑡  𝑓𝑟𝑜𝑚/𝑡𝑜  𝑎

𝐶|𝑎[𝑃]
𝛾
→𝐶′|𝑎[𝑃]

            

(𝐶𝐹𝐺𝑂𝑃𝐸𝑁)
𝐶
𝛽
→𝐶′  𝑛 𝑓𝑟𝑒𝑒 𝑖𝑛 𝛽

𝑣𝑛.𝐶
𝑣𝑛.𝛽
→   𝐶′
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(𝐶𝐹𝐺𝑁𝐸𝑊𝐶𝑇𝑋)
𝐶
𝛾
→𝐶′    𝑛 𝑛𝑜𝑡 𝑖𝑛 𝛾

𝑣𝑛.𝐶
𝛾
→𝑣𝑛.𝐶′

(𝐶𝐹𝐺𝑆𝑇𝑅)
𝐶≡𝐷   𝐷

𝛾
→𝐷′    𝐷′≡𝐶′

𝐶
𝛾
→𝐶′

 

Rules (CFGOUT) and (CFGIN) represent “intended” interactions 

with the environment, as usual in an asynchronous pi calculus. They 

enable local processes for any a ∈ H to send mes-sages to other 

principals u, and to receive their messages. The transition label conveys 

the com-plete message content. 

Rules (CFGBLOCK) and (CFGFWD) reflect the actions of an 

active attacker that intercepts messages exchanged between compliant 

principals, and selectively forwards those messages. In contrast with the 

(COMM) rule of the pi calculus, they ensure that the environment 

mediates all communications between principals. The label produced 

by (CFGBLOCK) signals the message interception; the label conveys 

partial information on the message content that can intuitively be 

observed from its wire format: the environment learns that an opaque 

message is sent by b with intended recipient a. In addition, the whole 

intercepted message is recorded within the configuration, using a fresh 

index i. Later on, when the environment performs an input with label 

(i), Rule (CFGFWD) restores the original message and consumes M=i; 

this ensures that any intercepted message is delivered at most once. 

The local-reduction hypothesis in Rule (CFGIN) demands that all 

local reductions triggered by the received message be immediately 

performed, leading to some updated stable process Q. Intuitively, this 

enforces a transactional semantics for local steps, and prevents any 

observation of their transient internal state. (Otherwise, the 

environment may for instance observe the order of appearance of 

outgoing messages.) On the other hand, any outgoing messages are kept 

within Q; the environment can obtain all of them via rules (CFGOUT) 

and (CFGBLOCK) at any time, since those outputs commute with any 

subsequent transitions. 

The rest of the rules for configurations are standard closure rules 

with regards to evaluation contexts and structural rearrangements: Rule 

(CFGOPEN) is the scope extrusion rule of the pi calculus that opens the 

scope of a restricted name included in a message sent to the 

environment; this rule does not apply to intercepted messages. Rule 

(CFGPRINCTX) deals with principal a defined in the configuration; 

condition 𝛾 not from a excludes inputs from the environment that 
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would forge a message from a, whereas condition 𝛾 not to a excludes 

outputs that may be transformed by Rule (CFGBLOCK). 

Finally, we have a pair of top level rules that deal with the attacker 

knowledge: 

Definition 10.14 (Labelled Transitions for Systems). Labelled 

transitions for systems are de-fined by the following rules: 

(𝑆𝑌𝑆𝑂𝑈𝑇)
𝐶
𝛽
→𝐶′

Φ  𝐶
𝛽
→ Φ∪ ∅(β)HC′

         (𝑆𝑌𝑆𝐼𝑁)
𝐶
𝑎
→𝐶′    ∅(𝑎)𝐻⊆𝑀(Φ)

Φ C
a
→Φ C′

 

where H is the set of principals defined in C and 𝑀(Φ) =
{𝑎{𝑉}𝑙: 𝑎{𝑉}0 ∈  Φ} is the set of certificates the attacker might produce 

from Φ (see Appendix A for the motivation for this rule). 

Rule (SYSOUT) filters every output 𝛽 and adds to Φ the 

certificates included in 𝛽. Rule (SYSIN) filters every input a, and 

checks that the certificates included in a can be produce from the 

certificates in Φ. 

Our main results are expressed using normal transitions between 

systems. 

Definition 10.15 (Stable Systems, Normal Transitions). We say 

that the system S is stable when all local processes of S are stable and S 

has no output transition. (Informally, S is waiting for any input from the 

environment.) 

We say that a series of transitions 𝑆
𝜑
→𝑆′  

is normal when every 

input transition is followed by a maximal series of output transitions 

leading to a stable system, that is, 𝜑 = 𝜑1𝜑2…𝜑𝑛 where 𝜑𝑖 = 𝑎𝑖𝛽�̃� for 

𝑖 = 1. . 𝑛, and 𝑆 = 𝑆0
𝜑1
→ 𝑆1

𝜑2
→ 𝑆2…

𝜑𝑛
→ 𝑆𝑛 = 𝑆

′ for some stable systems 

𝑆0, … , 𝑆𝑛. 

Intuitively normality states that each principals outputs all his 

messages and stays idle until he receives a new input. 

Compositionality 

By design, our semantics is compositional, as its rules are 

inductively defined on the structure of configurations. For instance, we 

obtain that interactions with a principal that is implicitly controlled by 

the environment are at least as expressive as those with any principal 

explicited within the system. 
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If we have 𝐶 |𝑎[𝑃]
𝑎
→ 𝐶′| [𝑃], then we also have 𝐶𝑜

𝛽
→ 𝐶′0 , where 

𝐶𝑜  and 𝐶′0  are obtained from C and C', respectively, by erasing the 

state associated with a: any intercepted messages M / i from a or to a; 

and any certificate in Φ issued by a. This compositional property yields 

useful congruence properties for observational equivalence on 

configurations. 

An Abstract Machine for Local Reductions 

In preparation to the description of a concrete machine Ma that 

executes a’s local process Pa, we derive a simple algorithm for local 

reductions. In contrast with our non-deterministic reduction semantics, 

the algorithm relies on partial normal forms instead of structural 

equivalence, and it carefully controls the creation of fresh names (to be 

implemented as random-number generation); it also relies on an explicit 

scheduler and is otherwise deterministic. 

A process P is in normal form for a when it is a closed well-formed 

process such that every subprocess of the form match V with T in Q 

else Q' or vn.Q appears only under an input or a replicated input—

intuitively, all name creations and matchings are guarded. Let P be in 

normal form for a. Up to the structural laws for parallel composition, 

𝑃 ≡ 𝑀| 𝐿 |𝐺 where M is a parallel composition of messages sent to 

other principals, L is a parallel composition of other (local) messages, 

and G is a parallel composition of inputs and replicated inputs. 

Concretely, we may represent P as a triple of multisets for M, L, and G. 

A scheduler is a deterministic algorithm on (L,G) that selects an 

instance of Rule (LCOMM) or (LREPL) for an output of L and an input 

(or replicated input) of G, if any, and otherwise reports completion. The 

reduction algorithm repeatedly calls the scheduler, performs the 

selected reduction step, then normalises the resulting process by 

applying Rules (LMATCH) and (LNOMATCH) and lifting name 

restrictions to the top level (possibly after a renaming). This yields a 

local pro-cess of the form v�̃�:(M' | L' | G') where �̃� collect all new 

name restrictions in evaluation context. By induction on the length of 

the derivation, one easily check that P → Q if and only if, for local 

process is in normal form.  
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A configuration is in normal form when all restrictions are grouped 

at top-level and every local process is in normal form. Our local 

reduction strategy can be extended to configurations  in normal forms 

as follows: we perform local reductions as detailed above, then lift any 

resulting restrictions to the top level of the configuration up to 

structural equivalence (using  a[v�̃�:P'   ]≡ 𝑣�̃� .a[P']) 

10.3 High-Level Equivalences and Safety 

Now that we have defined labelled transitions that capture our 

attacker model and implementation constraints, we can apply standard 

definitions and proof techniques from concurrency theory to reason 

about systems. Our computational soundness results are useful (and 

non-trivial) inasmuch as transitions are simpler and more abstract than 

low-level adversaries. In addition to trace properties (used, for instance, 

to express authentication properties as correspondences between 

transitions), we consider equivalences between systems. 

Intuitively, two systems are equivalent when their environment 

observes the same transitions. Looking at immediate observations, we 

say that two systems 𝑆1 and 𝑆2 have the same labels when, if 𝑆1
𝛾
→𝑆2 

for some 𝑆1
′  (and the name exported by   are not free in 𝑆2), then 

𝑆2
𝛾
→𝑆2

′   
for some 𝑆2

′ , and vice versa. More generally, bisimilarity 

demands that this remains the case after matching transitions: 

Definition 10.16 (Bisimilarity).  The relation R on systems is a 

labelled simulation when, for all 𝑆1 𝑅 𝑆2,  if  𝑆1
𝛾
→𝑆1

′  (and the names 

exported by 𝛾 are not free in 𝑆2) then 𝑆2
𝛾
→𝑆2

′  and 𝑆1
′  R 𝑆2

′ . Labelled 

bisimilarity, written ≅, is the largest symmetric labelled simulation. 

In particular, if  Φ  C ≅  Φ′  C′ then C and C' define the same 

principals, intercepted-message indices, and exported certificates ( 

M(Φ) = M(Φ′)). 
We also easily verify some congruence properties: our equivalence 

is preserved by addition of principals, deletion of intercepted messages, 

and deletion of certificates. 
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Lemma 10.1. 1. If Φ  C1 ≅  Φ C2, then Φ ∪  Φ𝑎  𝐶1| 𝑎[𝑃] ≅

 Φ ∪ Φa  C2| a[P]  for any certificates Φ𝑎 issued by a such that the 

systems are well-formed and ∅𝐻(𝑃) ⊆ Φ. 

If Φ  vn1̃. (C1 | M1/i) ≅  Φ  vn2̃. (C2 | M2/i), then 

Φ  vn1̃. C1 ≅ Φ  vn2̃. C2.  

If Φ ∪ {V}  C1 ≅ Φ∪ {V}  C2  and 𝑉 ∉  ∅(Φ) , then 

Φ  C1 ≅ Φ C2.  

Proof. The proof is by bisimulation. We detail the proof of Property 

1 of the lemma—the proofs for the other two properties are similar but 

simpler. For fixed H ⊂ Prin and a ∈ Prin \ H, we let R be the relation 

defined by: if Φ  𝐶1 ≅  Φ  𝐶2, then 

Φ∗  𝑣�̃�. (𝐶1 |𝑎[𝑃] | 𝐶𝑎)𝑅 Φ∗  𝑣�̃�. (𝐶2 |𝑎[𝑃] | 𝐶𝑎) 
for any names �̃�, configurations  C1, C2 that define the principals  b 

∈ H, local process P , parallel composition 𝐶𝑎 of intrcepted messages 

from a or to a? and sets of certificates Φ and Φ∗ 
such that the systems are well-formed and 

∅𝐻(Φ∗) ∪ ∅𝐻(𝑃) ∪ ∅𝐻(𝐶𝑎) ⊆  Φ 
We show that R is a labelled simulation by case analysis on the 

transitions of any systems related by R, of the form 

𝑆1 = Φ∗𝑣�̃�. (𝐶1| 𝑎[𝑃] |𝐶𝑎)
𝛾
→𝑆1

′= Φ∗
′𝑣�̃�′. (𝐶1

′|𝑎[𝑃′]|𝐶𝑎
′ ) 

Assuming that S1 R S2, we establish the existence of a matching 

transition 

𝑆2 = Φ∗  𝑣�̃�. (𝐶2|𝑎[𝑃]|𝐶𝑎)
𝛾
→ 𝑆2

′ = Φ∗
′   𝑣�̃�′. (𝐶2

′ |𝑎[𝑃′]|𝐶𝑎
′ ) 

such that 𝑆1
′  R 𝑆2

′ . We deal with outputs (Rule (SYSOUT)), then 

inputs (Rule (SYSIN)). 

- 𝛾 = 𝑣𝑖. 𝑎: 𝑏. The transition uses Rule (CFGBLOCK) with index i 

fresh in 𝑆1and 𝑏 ∈ 𝐻 to incept an output produced by Rule 

(CFGIN):𝑎[𝑃]
𝑣�̃�.𝑎:𝑏〈𝑉〉
→      𝑎[𝑃′]. Up to renaming, we assume that 

the names �̃� are fresh. The index i is also fresh in 𝑆2. 

- To obtain a matching transition with 𝑆1
′  𝑅 𝑆2

′ , we use this P', we 

let 𝐶𝑎
′ = 𝐶𝑎 | 𝑎: 𝑏〈𝑉〉/𝑖, �̃�

′ = �̃�, �̃�, and we leave the other 

paremeters unchanged: 𝐶1
′ = 𝐶1, 𝐶2

′ = 𝐶2, Φ
′ = Φ, and Φ∗

′ = Φ∗. 
Property(3.1) is preserved because ∅(𝑃′) ⊆ ∅(𝑃). 
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- 𝛾 = 𝑣�̃�. 𝑎: 𝑒〈𝑉〉 for some e ∉ 𝐻 ∪ {𝑎} . The transition also uses 

Rule (CFGIN): we have 𝑎[𝑃]
𝑣�̃�′.𝑎:𝑏〈𝑉〉
→       𝑎[𝑃′] for some fresh 

names �̃�′. Let �̃�′′ = 𝑓𝑛(𝑉) ∩ �̃�. We have �̃� = �̃�′ �̃�′′. 
- To obtain a matching transition with  𝑆1

′  R 𝑆2
′  , we use 𝑃′ and �̃�′, 

we let Φ∗
′ =  Φ∗ ∪ ∅𝐻∪{𝑎}(𝑉) and we leave Φ', 𝐶1 , and 𝐶2 

unchanged. Property (3.1) is preserved, as ∅𝐻∪{𝑎}(𝑉) = ∅𝐻(𝑉) ∪

∅{𝑎}(𝑉) and ∅𝐻(𝑉) ⊆ ∅𝐻(𝑃) ⊆ Φ. 

- 𝛾 = 𝑣𝑖. 𝑏 ∶ 𝑎 for some 𝑏 ∈ 𝐻. The transition uses Rule 

(CFGBLOCK) with index i fresh in 𝑆1 and 𝑏 ∈ 𝐻 to intercept an 

output produced by Rule (CFGOUT): 𝐶1
𝑣�̃�𝑏:𝑎〈𝑉〉
→      𝐶1

′ for some 

fresh names �̃�. 

- By Rule (SYSOUT), we have Φ  𝐶1
𝑣�̃�𝑏:𝑎〈𝑉〉
→      Φ′  𝐶1

′ where 

Φ′ =  Φ ∪ ∅H(V). 

- By bisimilarity hypothesis Φ  C1  ≅ Φ  C2, we obtain 𝐶1
′ 

such that Φ  C2
𝑣�̃�𝑏:𝑎〈𝑉〉
→       Φ′  C2

′  and Φ′  C1
′ ≅ Φ′  C2

′ . 

- To obtain a matching transition with 𝑆1
′  𝑅 𝑆2

′ , we use 𝐶1
′ , 𝐶2

′ , Φ′, 
we let 𝐶𝑎

′ = 𝐶𝑎|𝑏: 𝑎〈𝑉〉 and �̃�′ = �̃�, �̃�, and we leave Φ∗ and P 

unchanged. 

- 𝛾 = �̃�. 𝑏: 𝑒〈𝑉〉. 
- Similary, the transition uses (CFGOUT): 

Φ  𝐶1
𝑣�̃�′𝑏:𝑎〈𝑉〉
→       Φ′   𝐶1

′ where Φ′ =  Φ ∪ ∅H(V) and, by 

bisimulation hypothesis, we obtain 𝐶2
′  such that 

Φ  𝐶2
𝑣�̃�𝑏:𝑎〈𝑀〉
→       Φ′  𝐶2

′  with Φ′  𝐶1
′  ≅ Φ ′  𝐶2

′ . 

- To obtain a matching transition and 𝑆1
′  R 𝑆2

′ , we use 

𝐶1
′ , 𝐶2

′ , Φ′, �̃�′ = �̃�, �̃� and we leave 𝐶𝑎, Φ∗, and P unchanged. 

Property (3.1) is preserved, since ∅𝐻(∅{𝑎}(𝑀)) ⊆ Φ by 

hypothesis. 

- 𝛾 = (𝑒: 𝑢〈𝑉〉). We have ∅𝐻∪{𝑎}(𝑉)) ⊆ Φ∗ by Rule (SYSIN) and 

∅𝐻(Φ∗) ⊆ Φ by Property (3.1), so ∅𝐻(𝑉) ⊆ Φ. Up to a 

renaming of �̃�, we assume that the names of V do not clash with 

�̃�. We distinguish two subcases: 

- if u = a, then a[P ]
𝛾
→ a[P'] by Rule (CFGIN).  
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We use P' and leave the other parameters unchanged. Property (3.1) 

is preserved: ∅𝐻(𝑃) ⊆ Φ also by Property (3.1), so ∅𝐻(𝑃′) ⊆ Φ by 

definition of local reductions and P well-formed for a.  

- otherwise, u = b for some b ∈ H, and Φ  𝐶1
𝛾
→Φ   𝐶1

′  by 

Rule (CFGIN).  

By bisimulation hypothesis, we obtain 𝐶2
′   such that  

Φ  𝐶2
𝛾
→Φ   𝐶2

′  and Φ 𝐶1
′  ≅ Φ  𝐶2

′  

We use 𝐶1
′ and 𝐶2

′  , and leave the other parameters unchanged. 

𝛾 = (i). We similarly conclude in each of the following subcases: M 

/ i to a; Ca defines M / i from a; or C1 defines M / i.  

Finally, R is symmetric by construction, hence R ⊆ ≅, and R 

contains the systems related by the lemma for �̃� = ∅, Φ = Φ∗, and Ca = 

0.  

Bounding processes 

As we quantify over all local processes, we must at least bound 

their computational power. In-deed, our language is expressive enough 

to code Turing machines and, for instance, one can easily write a local 

process that receives a high-level encoding of the security parameter ´ 

(e.g. as a series of η messages) then delays a message output by 2η 

reduction steps, or even imple-ments an ‘oracle’ that performs some 

brute-force attacks using high level implementations of cryptographic 

algorithms. 

Similarly, we must restrict non-deterministic behaviours. Process 

calculi often feature non-determinism as a convenience when writing 

specifications, to express uncertainty as regards the environment. 

Sources of non determinism include local scheduling, hidden in the 

associative-commutative laws for parallel composition, and internal 

choices. Accordingly, abstract properties and equivalences typically 

only consider the existence of transitions—not their probability.  
Observable non-determinism is problematic in a computational 

cryptographic setting, as for in-stance a non-deterministic process may 

be used as an oracle to guess every bit of a key in linear time. 

In order to bound the complexity of processes (mainly the 

complexity of reductions) we de-fine a function ⌈•⌉ that computes the 

high-level structural size of systems, labels and transitions. 
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This is done by structural induction, with for instance ⌈𝑆
𝛽
→ 𝑆′⌉ =

 ⌈𝑆⌉ + ⌈𝛽⌉ + ⌈𝑆′⌉ + 1. As for input lables we have that the complexity 

of 𝑆
(𝑎)
→ 𝑆′ accounts also for the internal reductions performed during 

the transition, that is,  ⌈𝑆
(𝑎)
→ 𝑆′⌉ =  ⌈𝑆⌉ + ⌈𝑎⌉ + ⌈𝑆′⌉ + ⌈𝑢: 𝑎〈𝑉〉 | 𝑃 →

𝑄⌉ + 1, 

where a[P ] is defined in  S and a[Q] is defined in S'. We omit the 

rest of the details as they are straightforward. 

Definition 10.17 (Safe Systems).  A system S is polynomial when 

there exists a polynomial pS  

And a constant C such that, for any 𝜑, if 𝑆
𝜑
→𝑆′ then ⌈𝑆

𝜑
→𝑆′ ⌉ ≤

𝑝𝑠(⌈𝑖𝑛𝑝𝑢𝑡(𝜑)⌉), and ⌈𝛽⌉ ≤ 𝑐 for all output  labels 𝛽and 𝜑.'' 

A system S is safe when it is polynimial and 𝜑, if 𝑆
𝜑
→𝑆′ and 𝑆

𝜑
→𝑆2 

then 𝑆1 and 𝑆2 have the same lables. 
Hence, starting from a safe process, a series of labels fully 

determines any further observa-tion. Safety is preserved by all 

transitions, and also uniformly bounds (for example) the number of 

local reductions, new names, and certificates. 

These restrictions are serious, but they are also easily established 

when writing simple pro-grams and protocols. (Still, it would be 

interesting to relax them, maybe using a probabilistic process calculus.) 

Accordingly, our language design prevents trivial sources of non-

determinism and divergence (e.g. with pattern matching on values, and 

replicated inputs instead of full-fledged replication); further, most 

internal choices can be coded as external choices driven by the inputs 

of our abstract environment. 

We can adapt usual bisimulation proof techniques to establish both 

equivalences and safety: instead of examining all series of labels 𝜑, it 

suffices to examine single transitions for the systems in the candidate 

relation. 

Lemma 10.2 (Bisimulation Proof). Let R be a reflexive labelled 

bisimulation such that, for all related systems 𝑆1 𝑅 𝑆2, if 𝑆1
𝛾
→𝑆1

′  and 

𝑆2
𝛾
→ 𝑆2

′ , then  𝑆1
′  𝑅  𝑆2

′ . 

Polynomial systems related by R are safe and bisimilar. 
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Proof. By induction of 𝜑, we show that  𝑆1 𝑅  𝑆2 and 𝑆𝑖
𝜑
→𝑆𝑖

′ for 

𝑖 = 1,2 implies 𝑆1
′  𝑅 𝑆2

′ . 

Equivalences with Message Authentication; Strong Secrecy and 

Authentication 

We illustrate our definitions using basic examples of secrecy and 

authentication stated as equiv-alences between a protocol and its 

specification (adapted from [ 19]). Consider a principal a that sends a 

single message. In isolation, we have the equivalence 𝑎[𝑎: 𝑏〈𝑉′〉] if and 

only if 𝑉 = 𝑉′, since the environment observes V on the label of the 

transition 𝑎[𝑎: 𝑏〈𝑉〉]
𝑎:𝑏〈𝑉〉
→    𝑎[0]. Consider now the system 

𝑆(𝑉,𝑊) = 𝑎[𝑎: 𝑏〈𝑉,𝑊〉]| 𝑏[(𝑎: 〈? 𝑥, _〉). 𝑃], 
with an explicit process for principal b that receives a’s message 

and, assuming the message is a pair, runs P with the first element of the 

pair substituted for x. For any terms W1 and W2, we have S(V; W1) ≅
 S(V; W2). This equivalence states the strong secrecy of W , since its 

value cannot affect the environment. The system has two transitions 

𝑆(𝑉,𝑊)
𝑣𝑖.𝑎:𝑏
→   

(𝑖)
→ 𝑎[𝑜]| 𝑏[𝑃{𝑉/𝑥}] 

interleaved with inputs from any e ∈ Prin \ {a,b}. Further, the 

equivalence 

𝑆(𝑉,𝑊) ≅ 𝑎[𝑎: 𝑏〈 〉]| 𝑏[(𝑎: 〈_〉). 𝑃 {
𝑉

𝑥
}] 

captures both the authentication of V and the absence of observable 

information on V and W in the communicated message, since the 

protocol S(V, W ) behaves just like another protocol that sends a 

dummy message instead of V, W . 

Equivalences with Certificates 

Let Φ ={a{m}} —that is, assume  a has issued a single certificate. 

We have 

Φ  𝑎[(𝑒: 〈𝑎{𝑛}〉). 𝑃] ≅  Φ   𝑎[] 

Φ  𝑎[𝑎: 𝑏〈𝑎{𝑛}〉|(𝑒: 〈𝑎{𝑛}〉). 𝑃]| 𝑏[] ≅ Φ  𝑎[𝑎: 𝑏〈0〉]|𝑏[] 

Φ  𝑎[(𝑒: 〈𝑎{𝑥}〉). 𝑃] ≅ Φ  𝑎{(𝑒: 〈𝑎{_}〉). 𝑃 {
𝑚

𝑥
}] 
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These three equations rely on the impossibility for the adversary to 

forge any certificate from a with another content. Similar equations also 

hold if the input is performed by another principal (as long as a does 

not issue any other certificate), and even if the attacker can choose 

arbitrary values V and W instead of the names m and n, as long as V ≠ 

W . Conversely, consider the system 

𝑆[_]

= Φ 𝑎[(𝑒: 〈𝑎{𝑚}𝑎𝑠 𝑠𝑖𝑔, 𝑎{𝑚} 𝑎𝑠 𝑠𝑖𝑔′〉).𝑚𝑎𝑡𝑐ℎ 𝑠𝑖𝑔 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔′𝑖𝑛 0 𝑒𝑙𝑠𝑒 [_]] 
Since signatures are malleable, the else branch is reachable. Take as 

an example, an input labelled 9𝑒: 𝑎〈𝑎{𝑚}0, 𝑎 {𝑚}1〉, hence in general 

𝑆[𝑃] ≅ 𝑆[𝑄]. 

10.4 Applications 

We present three coding examples within our language, dealing 

with anonymous forwarders, electronic contracts, and system 

initialisation. In addition, we coded a translation from asyn-chronous pi 

calculus processes into local processes, using terms chan(n) to represent 

channels. (The scope of name n represents the scope of the channel, and 

channel-based communications is implemented by pattern matching on 

channel terms.) We also coded distributed communica-tions for the 

authenticated join-calculus channels of [13], using certificates 

a{chan(n)} to represent output capabilities of channels. 

Anonymous Forwarders 

We consider a (simplified, synchronous) anonymising mix hosted 

by principal c. This principal receives a single message V from every 

participant a ∈ A, then forwards all those messages to some sender-

designated address b. The forwarded message does not echo the sender 

identity— however this identity may be included as a certificate in the 

message V . We study a single round, and assume that, for this round, 

the participants trust c but do not trust one another. We use the 

following local processes (indexed by principal) and systems: 

𝑃𝑐 = П𝑎∈𝐴(𝑎: 𝑐〈? 𝑏, ? 𝑉〉). (𝑡𝑖𝑐𝑘|(𝑔𝑜). 𝑐: 𝑏〈𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉)〉) 
𝑄𝑐 = (𝑡𝑖𝑐𝑘).

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎∈𝐴  П𝑎∈𝐴  𝑔𝑜  
𝑃𝑎
𝜎 = 𝑎: 𝑐〈𝑏𝑎𝜎 , 𝑉𝑎𝜎〉 | 𝑃𝑎

′ 

𝑆𝜎 = 𝑐[𝑃𝑐  | 𝑄𝑐]  | П𝑎∈𝐴′ 𝑎[𝑃𝑎
𝜎] 
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The process Pc receives a single message from every a ∈ A, then it 

emits a local tick message and wait for a local go message. The process 

Qc runs in parallel with Pc and provides synchro-nisation; it waits for a 

tick message for every participant, then sends go messages to trigger 

the forwarding of all messages. 

Let A
'
 ⊆ A be a subset of participants that comply with the protocol. 

We set H = A
' 

 {c}. Anonymity for this round may be stated as 

follows: no coalition of principals in A \ A'  should be able to 

distinguish between two systems that differ only by a permutation of 

the messages sent by the participants in A'. Formally, for any such 

permutations 𝜎 and 𝜎′, we verify the equivalence 𝑆𝜎 ≅ 𝐴𝜎
′
. Hence, 

even if the environment knows all the V messages, the attacker gains no 

information on 𝜎. (Conversely, the equivalence fails, due to traffic 

analysis, if we use instead a naive mix that does not wait for all 

messages before forwarding, or that accepts messages from any 

sender.) 

Electronic Payment Protocol 

As a benchmark for our framework, we consider the electronic 

payment protocol presented by Backes and Durmuth¨ [14] that is a 

simplified version of the 3KP payment system [ 15, 16]. We refer to 

their work for a detailed presentation of the protocol and its proper-ties. 

The authors provide a computationally sound implementation of the 

protocol on top of an idealised cryptographic library [17]. We obtain 

essentially the same security properties, but our coding of the protocol 

is more abstract and shorter than theirs (by a factor of 10) and yields 

simpler proofs, essentially because it does not have to deal with the 

details of signatures, marshalling, and local state—coded once and for 

all as part of our language implementation. 

We adapt their notations, e.g. d, p ↦ t. Our calculus is more abstract 

and formally conve-nient, but less expressive than machines running on 

top of their library. Arguably, our low-level machine description factors 

out (and clarifies) most of their coding on top of the library. 

The protocol has four roles, a client c, a vendor v, an acquirer ac, 

and a trusted third party ttp. For simplicity, we assume that ac and ttp 

are unique and well-known. In addition, we use a distinct, abstract 

principal U that sends or receives all events considered in trace 
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properties. Initially, the client, vendor, and acquirer tentatively agree on 

their respective identities and a (unique) transaction descriptor t that 

describes the goods and their price. The protocol essentially relies on 

the forwarding of certificates. We let 𝑥: {𝑦, 𝑉} abbreviates a message 

with a certified content 𝑥: 𝑦〈𝑥{𝑦, 𝑉}〉, and use as sig to bind the 

corresponding certificate 𝑥{𝑦, 𝑉}.  
A system S consists of any number of principals (potentially) 

running the three roles, plus a unique principal ttp running Pttp. The 

system should not define U, which represents an arbitrary, abstract 

environment that controls the actions of the other principals. For a 

given normal trace 𝜑, we say that the payment t, c, v, ac is complete 

when 𝜑 includes the following input labels: 

- if c ∈ H, then 𝑈: 𝑐〈𝑝𝑎𝑦(𝑡, 𝑣)〉; 
- if v ∈ H, then 𝑈: 𝑣〈𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑡, 𝑐)〉; and  

- if ac ∈ H, then 𝑈: 𝑎𝑐〈𝑎𝑙𝑙𝑜𝑤(𝑡, 𝑐, 𝑣)〉.  

 
Figure 10.1: Diagram of the Electronic Payment Protocol [14] 

We can now state the following properties: 

- Weak atomicity is a trace property expressed as follows: if 𝜑 

includes any output of the form 

𝑐: 𝑈〈𝑝𝑎𝑖𝑑(𝑡, 𝑣)〉, 𝑣: 𝑈〈𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑡, 𝑐)〉, or 
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𝑎𝑐:𝑈〈𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡, 𝑐, 𝑣)〉, then the payment t, c, v, ac is 

complete.  

- Correct client dispute states that an honest client—who starts a 

dispute for transaction t only after completing the protocol for t, 

as coded in the last line of Clientc—always  

- wins his dispute: that is, for any trace 𝜑, if c ∈ H and 

𝑐: 𝑈〈𝑝𝑎𝑖𝑑(𝑡, 𝑣)〉 is in 𝜑, then 𝑡𝑡𝑝: 𝑈〈𝑟𝑒𝑗𝑒𝑐𝑡(𝑡, 𝑐, 𝑣)〉 is not in 𝜑. 

(This property is rather weak, as the vendor and acquirer 

complete the protocol before the client.) 

- Correct vendor dispute and Correct acquirer dispute are similar 

to the previous property and we omit it here.  

- No framing states that the ttp does not wrongly involve parties 

that have not initiated the protocol with matching parameters. It 

is a variant of weak atomicity: outputs of the form 

𝑡𝑡𝑝: 𝑈 〈𝑎𝑐𝑐𝑒𝑝𝑡(𝑡, 𝑐, 𝑣)〉 only occur for complete payments.  

These properties are directly established by induction on the high-

level transitions of S. 

Sketch of the Proof. By induction on the trace 𝜑. We show that the 

state of the system is de-termined by 𝜑, and that every enabled input in 

this state yields outputs that meet the claimed properties. (In contrast 

with [14], we don’t have to define complex, auxiliary invariants; the 

invariant directly follows from our definition of labelled transitions.)  

Clientc = *(U:𝑐〈pay(? 𝑡, ? 𝑣)〉). 
  (v :{c,invoice(t)} as sigv). 

  (c :{v, payment(t)} | 

 (v:c〈confirm(ac{𝑣, response(𝑡, 𝑐)} 𝑎𝑠 𝑠𝑖𝑔ac)〉). ):  

  (c:U〈paid(𝑡, 𝑣)〉 | 
(𝑈: 𝑐〈𝑑𝑖𝑠𝑝𝑢𝑡𝑒(𝑡)〉).c:ttp〈𝑐𝑙𝑖𝑒𝑛𝑡_𝑑𝑖𝑠𝑝𝑢𝑡𝑒(𝑠𝑖𝑔𝑣 , 𝑠𝑖𝑔𝑎𝑐)〉)) 
𝑉𝑒𝑛𝑑𝑜𝑟𝑣 = *(U:v〈receive(? 𝑡, ? 𝑐)〉). 
  (v :{c, invoice(t)} as sigv | 

  (c :{v; payment(t)} as sigc). 

  (v:ac〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝑠𝑖𝑔𝑣 , 𝑠𝑖𝑔𝑐)〉 |  
  (ac :{v, response(t, c)} as sigac). 

  (v:c〈𝑐𝑜𝑛𝑓𝑖𝑟𝑚(𝑠𝑖𝑔𝑎𝑐)〉 | v:U〈received(𝑡, 𝑐)〉 | 
(𝑈: 𝑣〈𝑑𝑖𝑠𝑝𝑢𝑡𝑒(𝑡)〉). 𝑣: 𝑡𝑝𝑝〈𝑣𝑒𝑛𝑑𝑜𝑟_𝑑𝑖𝑠𝑝𝑢𝑡𝑒(𝑠𝑖𝑔𝑐 , 𝑠𝑖𝑔𝑎𝑐)〉))) 

𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑟𝑎𝑐             =∗ (𝑈: 𝑎𝑐〈𝑎𝑙𝑙𝑜𝑤(? 𝑡, ? 𝑐, ? 𝑣)〉). 
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(𝑣: 𝑎𝑐〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝑣{𝑐, 𝑖𝑛𝑣𝑜𝑖𝑐𝑒(𝑡)}  𝑎𝑠  𝑠𝑖𝑔𝑣,
𝑐{𝑣, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡(𝑡)} 𝑎𝑠 𝑠𝑖𝑔𝑐)〉). 

(𝑎𝑐: {𝑣, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑡, 𝑐)} | 𝑎𝑐: 𝑈〈𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡, 𝑐, 𝑣)〉 |  
(𝑈: 𝑎𝑐〈𝑑𝑖𝑠𝑝𝑢𝑡𝑒(𝑡)〉). 𝑎𝑐: 𝑡𝑡𝑝〈𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑟_𝑑𝑖𝑠𝑝𝑢𝑡𝑒(𝑠𝑖𝑔𝑐 , 𝑠𝑖𝑔𝑣)〉) 

𝑃𝑡𝑡𝑝 =∗ (? 𝑐: 𝑡𝑡𝑝〈𝑐𝑙𝑖𝑒𝑛𝑡_𝑑𝑖𝑠𝑝𝑢𝑡𝑒(? 𝑑)〉). 

𝑚𝑎𝑡𝑐ℎ 𝑑 𝑤𝑖𝑡ℎ ? 𝑣{𝑐, 𝑖𝑛𝑣𝑜𝑖𝑐𝑒(? 𝑡)}, 𝑎𝑐{𝑣, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑡, 𝑐)} 𝑖𝑛 

𝑡𝑡𝑝: 𝑈〈𝑎𝑐𝑐𝑒𝑝𝑡_𝑐𝑙𝑖𝑒𝑛𝑡(𝑡, 𝑐, 𝑣)〉  𝑒𝑙𝑠𝑒 
𝑡𝑡𝑝: 𝑈〈𝑟𝑒𝑗𝑒𝑐𝑡_𝑐𝑙𝑖𝑒𝑛𝑡(𝑡, 𝑐, 𝑣)〉 |  
∗ (? 𝑣: 𝑡𝑡𝑝〈𝑣𝑒𝑛𝑑𝑜𝑟_𝑑𝑖𝑠𝑝𝑢𝑡𝑒(? 𝑑)〉). 

𝑚𝑎𝑡𝑐ℎ 𝑑 𝑤𝑖𝑡ℎ ? 𝑐{𝑣, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 (? 𝑡)}, 𝑎𝑐{𝑣, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑡, 𝑐)} 𝑖𝑛 

𝑡𝑡𝑝: 𝑈〈𝑎𝑐𝑐𝑒𝑝𝑡_𝑣𝑒𝑛𝑑𝑜𝑟(𝑡, 𝑐, 𝑣)〉  𝑒𝑙𝑠𝑒 

𝑡𝑝𝑝:𝑈〈𝑟𝑒𝑗𝑒𝑐𝑡_𝑣𝑒𝑛𝑑𝑜𝑟(𝑡, 𝑐, 𝑣)〉  | 
∗ (𝑎𝑐: 𝑡𝑝𝑝〈𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑟_𝑑𝑖𝑠𝑝𝑢𝑡𝑒(? 𝑑)〉). 

𝑚𝑎𝑡𝑐ℎ 𝑑 𝑤𝑖𝑡ℎ ? 𝑐{? 𝑣, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡(? 𝑡)}, 𝑣{𝑐, 𝑖𝑛𝑣𝑜𝑖𝑐𝑒(𝑡)} 𝑖𝑛 

𝑡𝑡𝑝: 𝑈〈𝑎𝑐𝑐𝑒𝑝𝑡_𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑟(𝑡, 𝑐, 𝑣)〉  𝑒𝑙𝑠𝑒 
𝑡𝑡𝑝: 𝑈〈𝑟𝑒𝑗𝑒𝑐𝑡_𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑟(𝑡, 𝑐, 𝑣)〉 

Figure 10.2: Encoding of the Electronic Payment Protocol [14] 

Initialisation 

This technical example shows that, without loss of generality, it 

suffices to develop concrete implementations for initial systems that do 

not share any names, certificates, or intercepted mes-sages between 

principals and the environment. Up to structural equivalence, every 

system is of the form 𝑆 = Φ  𝑣�̃�. (П𝑎∈𝐻𝑎[𝑃𝑎]| П𝑖∈𝐼 𝑀/𝑖. The sharing 

of names and certificates between principals and the environment can 

be quite complex, and is best handled using an ad hoc (but high-level) 

“bootstrapping” protocol, outlined below: 

- Free names of S and restricted non-local names ne are partitioned 

between honest princi-pals; let (𝑛𝑎,1, … , 𝑛𝑎,𝑘𝑎)𝑎∈𝐻 be those 

names.  

- Free names and non-self-issued certificates that occur in the local 

processes Pa are ex-changed using a series of initialisation 

messages Mab,r of the form  

𝑀𝑎𝑏,𝑟 = 𝑎: 𝑏 〈𝑖𝑛𝑖𝑡𝑎𝑏,𝑟(𝑛𝑎,1, … , 𝑛𝑎,𝑘𝑎𝑟 , 𝑎{𝑉𝑎𝑏,1},… , 𝑎{𝑉𝑎𝑏,𝑚𝑟})
〉, 

carrying names and certificates issued by a that occur in Pb. 

Similarly, initialization mes-sages sent to a fixed principal e ∉ H export 
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the free names of S and the certificates of Φ, whereas initialization 

messages from e import certificates issued by principals not in H. 

Each principal a ∈ H thus sends a series of initialisation messages, 

and sequentially re-ceives and checks all initialisation messages 

addressed to him, using input patterns of the form (Tba,r) where Tba,r is 

Mba,r with binding variables ?n1, ... ,?nk instead of the names and aliases 

b{Vba,r} as ?x for checking and binding certificates. The whole local 

initiali-sation process is guarded by a dummy input with pattern Tea,0 = 

𝑒: 𝑎〈_〉, so that the initial system be stable. 

- Finally, each principal a sends a message M for every intercepted 

message M/i from a defined in S, then starts Pa.  

For instance, in case H = {a, b} with neither nested certificates nor 

intercepted messages, the local initialisation process for a is 

𝑃𝑎
𝑜 = (𝑇𝑒𝑎,0). 𝑣𝑛1, … , 𝑛𝑘𝑎 . (𝑀𝑎𝑏,1| 𝑀𝑎𝑒,1 | (𝑇𝑏𝑎,1). (𝑇𝑒𝑎,1). 𝑃𝑎) 

In the general case, several rounds of initialisation messages may be 

needed to exchange certifi-cates whose contents include names and 

certificates, and to emit messages with the same shape one at a time. 

Intuitively, the attacker may prevent Pa from running at all by not 

forwarding messages, or provide a message whose certificates do not 

match the certificates expected by Pa, but it could block all of a’s 

communications anyway. If Pa does start, it does so with the right 

names and certificates. 

The next lemma states the correctness of the initialisation protocol. 

The second property of the lemma states that an environment that 

follows the protocol always reaches Si. 

Lemma 10.3 (Initialisation). Let Si for i = 0, 1 be safe stable 

systems with the same principals, exported certificates, and 

intercepted-message labels. 

There exist initial safe stable systems 𝑆𝑖
𝑜and labels 𝜑𝑜 such that 

- we have normal transitions 𝑆𝑖
𝑜
𝜑𝑜

→ 𝑆𝑖; 

- any normal transitions 𝑆𝑖
𝑜
𝜑𝑜

→ 𝑆′ imply that 𝑆′ ≡ 𝑆𝑖; and 

- 𝑆0 ≅ 𝑆1 if and only if 𝑆0
𝑜 ≅ 𝑆1

𝑜. 

Proof. (Sketch.) We have 𝑆𝑖
𝑜
𝜑𝑜

→ 𝑆𝑖 deterministically, so 𝑆0
𝑜 ≅ 𝑆1

𝑜 

implies 𝑆0 ≅ 𝑆1. Conversely, we show that the relation 

𝑅 = {𝑆0
′ , 𝑆1

′} such that 𝑆0 ≅ 𝑆1, 𝑆𝑖
𝑜
𝜑𝑜

→ 𝑆𝑖 , 
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and 𝜑 is a prwfix of a permutation of the lables of 𝜑𝑜} ∪≅ 

is a labelled bisimulation. (Intuitively, 𝜑 is the part of 𝜑𝑜 that has 

already been enabled by the attacker.) 

10.5 A Concrete Implementation 

We are now ready to define the machines, relying on translations 

from high-level terms and processes to keep track of their runtime state. 

We systematically map high-level systems S to the machines, mapping 

each principal a[Pa] of S to a PPT machine Ma that executes Pa. We 

start by giving an outline of our implementation. 

The implementation mechanisms are simple, but they need to be 

carefully specified and com-posed. (As a non-trivial example, when a 

machine outputs several messages, possibly to the same principals, we 

must sort the messages after encryption so that their ordering on the 

wire leaks no information on the computation that produced them.) 

We use two concrete representations for terms: a wire format for 

(signed, encrypted) mes-sages between principals, and an internal 

representation for local terms. Various bitstrings rep-resent 

constructors, principal identities, identifiers for names, and certificates. 

Marshaling and unmarshaling functions convert between internal and 

wire representations. When marshaling a locally restricted name 

identifier ind for the first time, we draw a bitstring s of length ´ 

uniformly at random, associate it with ind, and use it to represent ind on 

the wire. When unmarshaling a bitstring s into an identifier for a name, 

if s is not associated with any local identifier, we create a new internal 

identifier ind for the name, and also associate s with ind.  
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Figure 10.3: Local machine for principal a connected to the adversary 

machine 

Signatures are verified as part of unmarshaling. Signatures for self-

issued certificates are generated on-demand, as part of marshaling, and 

cached, so that the same signature value is used for any certificate with 

identical content. 

Local processes are represented in normal form for structural 

equivalence, using internal terms and multisets of local inputs, local 

outputs, and outgoing messages. We implement reduc-tions using an 

abstract machine that matches inputs and outputs using an arbitrary 

deterministic, polynomial-time scheduler. 

Implementation of Machines 

The transition rules declare that all communications be authentic 

and confiden-tial. In order to meet these requirements, our 

implementation relies on concrete bitstrings and cryptographic 

protocols. 

Definition 3.18 (Low-Level State). The runtime state of machine 

Ma consists of the following data: 

- ida, da, and sa are bitstrings that represent the low-level identifier 

for principal a and its private keys for decryption and signing.  
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- peers = {(idu, eu, vu) | u ∈ Prin} binds, for every principal, a low-level 

identifier to public keys for encryption and signature verification. 

- pa is a low-level representation of a local process running at a 

(defined below).  

- keycachea is a set of authentication keys for all received 

messages.  
- signeda is a partial function from certificates issued by  a to signature 

values. 

- namesa is a partial function from name identifiers to bitstrings. 

The main machine components are depicted in Figure 10.3. 

Before detailing the definitions of all the protocols presented if 

Figure  10.3, we describe a complete run of the machine. Recall that Ma 

is connected to the environment by two wires, ina and outa. The wire 

format for messages is the concatenated bitstring idu_idv_msg where u 

and v are the (apparent) sender and receivers and msg is some 

encrypted, authenticated, marshaled message. When it receives such a 

message (with idv = ida), Ma uses idu to dispatch msg to the receive 

protocol (Definition 3.23) for remote principal u— there is an instance 

of the receive protocol for each peer principal u. The protocol verifies 

the freshness, integrity, and authenticity of the message, updates 

keycachea, then returns a decrypted bitstring s. If a verification step 

fails, the message is discarded. 

At this stage, msg is a genuine message from u to a, but its content 

is not necessarily well-formed. For instance u may have included a 

certificate apparently issued by b but with an invalid signature. Content 

validation occurs as s is unmarshaled (Definition 10.21) from its wire 

format into some internal (trusted) representation parsea(s) of a high-

level term V. In particular, this trusted representation embeds a valid 

signature for every certificate of V. After successful recep-tion and 

unmarshaling, a representation m of the incoming message u:a〈𝑉〉 imay 

react with an input within pa and trigger local computations. To this 

end, a local interpreter (Definition 10.19) derived from the abstract 

machine runs on pa | m. If the interpreter terminates, it yields a new 

stable internal process p
'
a plus a set of outgoing messages X to be sent 

to the network. 

Each message a:ui〈𝑉𝑖〉 represented in X is then marshaled 

(Definition 10.20) and passed to the instance of the send protocol 
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(Definition 10.22) associated with the intended recipient ui. The 

resulting bitstrings, all in wire format, of the form ida_idui_msgi, are 

eventually sorted (by receiving principal, then encrypted value msgi)—

to ensure that their ordering leaks no informa-tion on their payload or 

their internal production process—and written on outa. A final done 

bitstring is issued and the machine terminates. (Hence, for instance, if p 

does not react with m, the machine simply writes done on outa and 

terminates.) 

Next, we describe in turn each of the components of the local 

machine. 

Low-level Processes Reductions 

The internal representation of terms uses the same grammar as in 

the high-level language except for atomic subterms: principals u are 

boxed, fixed-sized bitstrings prin(idu) (lprin); free names are boxed, 

bitstrings name(ind) where ind is an internal identifier for names; and 

certificate labels are linear-sized bitstrings s such that either s is a valid 

signature for the certificate or s = 0 and the certificate is self-issued. 

Bound variables and names may still occur in terms under input guards. 

Definition 10.19 (Internal Reductions). The local reduction 

algorithm refines the abstract machine as follows: 

- it represents the multisets X, M, and G using internal terms;  

- it uses a deterministic, polynomial-time, complete scheduler;  

- instead of lifting new name restriction vn.Q, it generates a new 

identifier ind (possibly incrementing an internal counter) and 

substitutes name(ind) for all bound instances of the n in Q.  

Marshaling and Unmarshaling Protocols 

These algorithms are responsible for processing messages that are 

about to be sent to (that were received from) the network. The 

marshaling process transforms each internal term into a bit-string to be 

sent over the network, and the unmarshal algorithm attempts to 

transform a bitstring received from the network to a (trusted) internal 

term; it may instead return an error if the mes-sage is not well-formed, 

or if the signature of an included certificate cannot be verified. In any 

of these cases the entire message is discarded. 
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We use a fixed, injective function from all constructors plus name 

and prin to bitstrings of a given fixed size; we still write f, name, prin 

for the corresponding bitstrings. We write s_s
' 
for the bitstring obtained 

by concatenating s and s'. 

Definition 10.20 (Marshaling). Let Σ = (G, S, V) be a signature 

scheme. The function ⟦•⟧ maps principal’s internal representations of 

closed terms to bitstrings, as follows: 

⟦𝑛𝑎𝑚𝑒 (𝑖𝑛𝑑)⟧ = 𝑛𝑎𝑚𝑒_𝑛𝑎𝑚𝑒𝑠(𝑖𝑛𝑑) 
𝑎𝑑𝑑𝑖𝑛𝑔 𝑛𝑎𝑚𝑒𝑠(𝑖𝑛𝑑) = 𝑠 ← {0,1}η when undefined 

⟦𝑝𝑟𝑖𝑛(𝑠)⟧ = 𝑝𝑟𝑖𝑛_𝑠 
⟦𝑓(𝑣1, … , 𝑣𝑛)⟧ = 𝑓_⟦𝑣1⟧_ ..._ ⟦𝑣𝑛⟧    when f ∉ {name, prin, cert} 

⟦𝑣1{𝑣2}𝑠⟧ = 𝑐𝑒𝑟𝑡_⟦𝑣1⟧_⟦𝑣2⟧_ s      when 𝑠 ≠ 0 

⟦𝑣1{𝑣2}0⟧ = 𝑐𝑒𝑟𝑡_⟦𝑣1⟧_⟦𝑣2⟧_ signed (𝑣1{𝑣2}0)  when 

𝑣1 = 𝑝𝑟𝑖𝑛(𝑖𝑑𝑏), 𝑏 ∈ 𝐻 

adding signed  (𝑣1{𝑣2}0)   = 𝑆(𝑠𝑏 , ⟦𝑣2⟧𝑏) when undefined. 

We denote by ⟦•⟧𝑎 the marshaling procedure for machine Ma that 

uses only uses tables namesa and signeda, that is, names = namesa and 

signed = signeda. 

We prove as an invariant that for all certificates of the form v1{v2}0 

in pa, v1 = prin(ida), hence ⟦•⟧𝑎  is defined for all internal 

representations of terms of Ma. 

We assume that after marshalling, and before sending, all our 

messages are padded to a fixed length that is given by the polynomial 

ms(η), a parameter of the implementation. We could have assumed that 

this was not the case and if so, we needed to consider this difference of 

length in our high-level semantics. We could have done it using sorts 

and sizes for input and output messages. 

Definition 10.21 (Unmarshaling). Let Σ = (G, S, V) be a signature 

scheme. The partial function parse(•) maps bitstrings to internal 

representations of closed terms, as follows, and fails in all other cases. 

parse(name_s) = name(ind)  when, there is ind:names(ind) = s 

otherwise if |s| = η then 

 ind = |dom(names)| + 1 and 

 add names(ind) = s  

 parse(prin_s) = prin(s)  when |s| = 𝑙𝑝𝑟𝑖𝑛 and (s, 𝑒𝑠, 𝑣𝑠) ∈ peers 

  parse(F_𝑠1_... 𝑠𝑛) = 𝑓(𝑣1, … , 𝑣𝑛) when f ∉ {name, prin, cert} 



10 PROCESS ALGEBRAS FOR STUDYING SECURITY 

 

40 

 

has arity n 
 parse(𝑠𝑖) = 𝑣𝑖 for 𝑖 = 1. . 𝑛 
 parse(cert_𝑠1_𝑠2_𝑠3) = 𝑣1{𝑣2}𝑠 when, for some (𝑖𝑑𝑢, 𝑒𝑢, 𝑢𝑢) ∈ 

peers, 
 parse(𝑠1) = prin(𝑖𝑑𝑢)= 𝑣1, 
 parse(𝑠2)= 𝑣2 
 V(𝑢𝑢, 𝑠2,  𝑠3) = 1 
 s = if signed(𝑣1{𝑣2}0) = 𝑠3 then  else 𝑠3 
We denote by parsea(•) the unmarshaling procedure for machine Ma 

that uses only uses tables namesa and signeda, that is, names = namesa 

and signed = signeda. 

Unmarshaling includes signature verification for any received 

certificate, and is otherwise standard; it is specified here as a partial 

function from strings to internal representations, and can easily be 

implemented as a parser. Our treatment of self-issued certificates with 

label 0 reflects our choice of internal representations: 0 stands for the 

(unique) signature generated by the local machine for this certificate 

content, the first time this certificate is marshaled. (In addition, the 

adversary may be able to derive a variant of this certificate with a 

different signature, unmarshaled with a non-zero label; such certificates 

are then treated using the default case for marshaling.) 

Although we give a concrete definition of ⟦•⟧, parse(•), and 

message formats, our results only depend on their generic properties. 

We only require that, for a given local machine, every string be 

unmarshaled to at most one internal term, whose marshaling yields 

back the original string, that is, parsea  

denotes the internal representation of a for V . We define  

formally in Definition 10.25.) For simplicity, we have that the length of 

the string be a function of the structure of the internal term and of the 

security parameter. 

Sending and Receiving Protocols 

Two important pieces of our systems are the sendb and receiveb 

protocols. There are one pair of these for each other principal. The send 

protocol defined below, ensures that, as abstracted in the high-level 

semantics, all communications are opaque for the adversary using 
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public-key encryption, and that the communication is authentic, using 

authentication and signature schemes. This protocol takes a bitstring s 

(containing a marshaled message from a to u), protects it, and returns it 

in wire format. Conversely, the receiving protocol takes a message in 

wire format presumably from u, verifies it, and returns its payload. We 

also request robustness against replay attacks; after decryption, we 

reject any message whose authentication key is already recorded. 

These protocols are intended as a simple example; other choices are 

possible. We may for instance consider long term shared keys between 

principals, in order to reduce the overhead of public-key cryptography. 

If we decide to do so, we should introduce a nonce in the message that 

is encrypted in Step 3. 

Definition 10.22 (Sending to u). Let П = (K, E, D), ∑ = (G, S, V), 

and ∆ = (𝐺∆, A, C) be respectively an encryption, signature, and 

authentication schemes. Given a bitstring s, the sendu protocol 

- generates a fresh authentication key k ← 𝐺∆(1
η);  

- computes 𝑚 = 𝑠_𝑖𝑑𝑎_𝑘_𝑆(𝑠𝑎, 𝑘𝑖𝑑𝑢)_𝐴(𝑘, 𝑠);  

- computes msg = E(eu, m); and  

- retur  ida _idu _msg.  

Definition 10.23 (Receiving from u). Let П = (K, E, D), ∑ = (G,  

S, V), and ∆ = (𝐺∆,  A, C) be respectively an encryption, signature, and 

authentication schemes. Given a bitstring idu ida msg, the receiveu 

protocol 

- computes s_ idu _k _ssig _sauth = D(da, msg); 

-  checks that there is an entry (idu,  eu,  vu) ∈ peers with V(vu, 

k_ida, ssig) = 1; 

- checks that C(k, s, sauth ) = 1;  

- checks that k is not in keycache, and adds it to keycache;  

- returns s.  

The entire message is discarded if any step of the protocol fails. 

Mapping High-Level Systems to Low-Level Machines 

In order to systematically relate the runtime state of low-level 

machines to the abstract state of high-level systems, we define an 

associated shadow state. This structure provides a consistent 

interpretation of terms across machines. In combination, a system and 

its shadow state deter-mine their implementation, obtained as a 
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compositional translation of terms, local processes, and configurations. 

(This state is shadow as it need not be maintained at runtime in the low-

level implementation; it is used solely as an abstraction to reason about 

the correctness of our imple-mentations.) We further partition this state 

into public parts, intended to be part of the attacker’s knowledge, and 

private parts. 

Definition 10.24 (Shadow State). Let S = Φ   𝑣�̃�. 𝐶 be a system 

such that the configuration 𝐶 = П𝑎∈𝐻𝑎[𝑃𝑎]| П𝑖∈𝐼 𝑀/𝑖 is in normal 

form. A shadow state for S, written D, consists of the following data 

structure: 

- prin ∈  Prin → ({0,1}η)5 is a function from u ∈ Prin to bitstrings 

idu, eu, vu, du, su such that u → idu is injective, and for every u 

∈ H, we have (eu, du) ←K(1η), and (vu, su) ← G(1η).  

- The bitstrings idu , eu , vu are public for all u ∈ Prin; du and su 

are public if u ∈ Prinn\H.  

- name ∈ Name → {0,1}η is a partial injective function defined at 

least on every name that occurs free in S, and names that occur in 

Φ, D.certval or D.wire.  

- The bitstring name(m) is public for every name m ∉  �̃�.  

- ni is a family of partial injective functions ni a : Name → {0,1}η 

for each a ∈ H, defined at least for all names of Pa that are not 

locally-restricted.  

- certval is a partial function from certificates 𝑢{𝑉}𝑙  to s ∈  {0,1}η 

defined at least on the certificates of Φ, D.wire, and all 

certificates of 𝑃𝑎 of the form 𝑎{𝑉}𝑙 with 𝑙 ≠ 0 or 𝑢{𝑉}𝑙 with 

𝑢 ≠ 𝑎. It is also defined for all the certificates in V such that 

𝑢{𝑉}𝑙 is defined in certval, certval satisfies the following 

property: if certval (𝑢{𝑉}𝑙) = s, then  

- The bitstrings s and del are public. 

-  
- wire is a partial function from indices i to (M, k, s, del) defined at 

least on I, where 𝑀 =  𝑎: 𝑏〈𝑉〉 with  a, b ∈ H, and del = 0 if i ∈ I 

and del = 1 otherwise. The bitstrings s and k are the output and 

the authentication key produced by 𝑠𝑒𝑛𝑑𝑏 on input . 
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- keycache is a function from 𝑎 ∈ 𝐻 to sets of bitstrings such that, 

if exists an i with wire(i) = (M, k, _, 1) with M to a, then k ∈ 

keycache(a). 

- 𝑚𝑠𝐷(η) is a polynomial that sets the padding-size of the 

implementations of S. 

Intuitively, wire records all messages sent between honest 

principals; keycache(a) records the authentication keys of all messages 

received by a so far; it contains at least the keys of mes-sages in wire 

that were already received by a. When D is clear from the context, we 

write prin(a) instead of D.prin(a), and similarly for the other 

components of D. We denote by public(D) the binary representation of 

the public parts of D. When we are not interested in the specific bit-

strings, we call it shape of D. 

Definition 10.25 (Concrete Terms and Processes).  A shadow 

state D and a set of principals 

X ⊆ Prin, define a partial map from high-level terms  V to internal 

terms as follows: 

 

𝑛𝐷,𝑋 = {𝑓𝑔𝑏  

 
We extend this map to translate local processes to low-level 

processes, as follows: high-level terms within local processes are 

translated as above, except for variables and locally-restricted names 

(left unchanged); high-level patterns are translated by applying the 

translation to all high-level terms in the pattern and leaving the rest 

unchanged; local processes P are translated to internal processes P
D,X

 

by translating their high-level terms to internal terms. 

As a corollary, we have that if D is a shadow state for S, and a ∈ 

Prin then • D,a
 is defined for every subterm and subprocess of S and D (• 
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D,a
 denotes • D, fag

). We often write V  instead of V 
D,a

 when D and a are 

clear from the context. Our intent is that, with overwhelming 

probability, we have V = V' 
 
iff  V 

D,a
 =  V 

' D,a
 whenever D defines these 

representations. 

We would like to point out that the previous definition is well-

formed. One should first notice that we do not translate high-level 

terms (hence, high-level certificates) with variables and locally-

restricted names. Hence, when applying 𝑢{𝑉}𝑙
𝐷,𝑎

, we can be sure that 

the certificate was previously generated and hence defined in D:certval. 

Definition 10.26(System Implentations). Let S be a system with 

shadow state D. The implementation of  S and D is the collection of 

machines M(S,D) = (𝑀𝑎(𝑆, 𝐷))𝑎∈𝐻 where each machine 𝑀𝑎(𝑆, 𝐷) has 

the following state: 

- ida , da , sa , peersa are read from D:prin;  

- pa = Pa 
D,a

;  

- keycachea = keycache(a);  

- signeda( a{V }0
D,a

) = certval(a{V}0) when defined;  

- namesa(ni
a
(n)) = name(n) when defined,  

and uses ⟦•⟧𝑎 and parsea(•) as the marshaling and unmarshaling 

algorithms, and ms
D
(•) as the padding size. 

10.11 Main Results 

In this section we present the main results of this Chapter. 

Throughout this section we assume that the encryption scheme П = (K, 

E, D) is CCA-2 secure, and the signature scheme Σ = (G, S, V) and 

authentication scheme ∆ = (𝐺∆, A, C) are CMA-secure. 

Our main theorems are stated in terms of arbitrary systems S. As it 

is convenient to have a for-mulation of these theorems in terms of 

arbitrary systems, one should not forget that an arbitrary system S is 

obtained starting from an initial system S
o
 that has no shared names or 

certificates and no intercepted messages so, whenever we refer to a 

system S, we are in fact referring to its initial state S
o
 plus its 

initialisation procedure. The same happens with the implementations 

and for that we introduce the notion of valid shadow. Intuitively, a 

shadow D is a valid shadow for S, if there is an interactive run 

(Definition 3.1) that starts with M(S
o
, D

o
) and leads the machine to state 

M(S; D), where D
±
 is the shadow obtained from D by erasing 



10 PROCESS ALGEBRAS FOR STUDYING SECURITY 

 

45 

 

everything except D:prin. D
o
 is called an initial shadow for S. We 

denote by Ao[M(S
o
,  D

o
)] → sr(M(S, D)) such run, where sr is the 

bitstring returned by Ao at the end of the run. 

Accordingly, we define a low level run starting from S with (valid) 

shadow D against A, written A[M(S, D)] → sr(M), as (Ao ; A)[M(S
o
, 

D
o
)] → sr(M) where (Ao; A) represents an adversary that first runs Ao 

and then runs A.  
Definition 10.27 (Valid Shadow). Let S be a safe system with 

shadow D. We say that D is a valid shadow for S if there exist an initial 

safe system S
o
 with initial shadow D

±
, normal transitions S

o 
 
𝜑𝑜

→ S, and a 

PPT algorithm A± such that Ao[M(S
o
, D

o
)] →public(D)(M(S, D)), and 

ms
D
(η) ≥ 𝑚𝑎𝑥⌈𝑀⌉≤𝑐⌈⟦𝑀

𝐷⟧⌉ where c is the constant given by the safety 

condition and ⟦𝑀𝐷⟧ is the result of marshaling the low-level 

representations of M. 

We say that D is a valid shadow for two safe systems S1 ≅ S2, if 

the same Ao initialises both M(S1, D) and M(S2, D), and ms
D
(η) ≥

𝑚𝑎𝑥⌈𝑀⌉{𝑐1,𝑐2}⌈⟦𝑀
𝐷⟧⌉, where c1 and c2 are the constants given by the 

safety condition of S1 and S2 respectively. 

Our first theorem expresses the completeness of our high-level 

transitions: every low-level attack can be described in terms of high-

level transitions. More precisely, the probability that an interaction with 

a PPT adversary yields a machine state unexplained by any high-level 

transitions is negligible. 

Theorem 10.4 (Completeness for Reachable States). Let S be a 

safe stable system, D a valid 

shadow for S, and A a PPT algorithm. 

The probability that A[M(S, D)] completes and leaves the 

system in state M
'
 with M

'
 ≠ 

M(S', D' ) for any normal transitions S 
𝜑
→ S' with valid shadow D 

is negligible. 

Proof Sketch. We just sketch the proof and refer the reader to 

Appendix C for the full construc-tions and proofs of the associated 

lemmas. The proof is done by tracing the cases when the behaviour of 

machine M(S, D) is not in accordance with the high-level semantics and 

check-ing that the probability of occurrence of such cases is negligible. 

A more detailed sketch is the following: 
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- We start by defining variants of M(S, D) called the defensive 

variants M̅ (S, D) (Defini-tion C.1). These machines behave like 

M(S, D) but include an extra wire where a failure signal is sent 

whenever the low-level interaction is not in accordance with the 

high-level se-mantics. The reader should be aware that these 

machines are just used as a proof technique, hence there is no 

need to implement it. All our results are stated in terms of M(S, 

D).  

- The second step is to create a machine �̅�0̃(S, D) that behaves like 

M(S, D) but has a com-mon state for all machines Ma(S, D) 

(Definition C.5). This is the same as having one single machine 

that includes all the Ma(S, D) machines, for all a ∈ H. We show 

that M(S, D) is equivalent to �̅�0̃ (S; D). 

- The third step is to define �̅� (S, D). This is the extreme version 

of �̅��̃� (S, D) where all the encrypted messages are 0’s and no 

signing is ever performed.  

Then we have two different arguments. The first is the partial 

completeness of �̅� (S, D), �̅� (S, D), and the failure of �̅�(S, D). 

- We show that all runs of �̅�(S, D) and �̅�(S, D), where the failure 

signal is not sent are in confor mance with the high-level 

semantics (Lemma C.6 and Lemma C.7).  

- We show that the probability that the failure signal is issued by 

N(S; D) machine is negligible by reducing it to the security of the 

encryption, authentication and signing schemes (Lemma C.8).  

The second argument is that �̅�(S, D) is indistinguishable from �̅�(S, 

D), hence the failure of the former implies the failure of the latter, 

which only happens with negligible probability. This is done as 

follows: 

- �̅��̃�(𝑆, 𝐷) machines are parameterised by �̃� = (𝑛𝑎)𝑎∈𝐻. This 

parameter defines how many messages to each honest principal 

will be “fake” (a fake message is one where we encrypt 0’s 

instead of the real bitstring). Whenever na is reached, it starts 

behaving like �̅�a(S, D). For the fake messages we keep an 

internal table that associates the fake bitstring to the real message 

so that we can proceed with the correct value when the fake 

message is provided back to the machine. With a standard 
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cryptographic argument we show that distinguishing �̅��̃�(S, D) 

from �̅��̃�+1 (S, D), where �̃� + 1 has all the components equal to �̃� 

except for na that we replace by na + 1 for some principal a 

(Lemma C.12).  

- We show via a cryptographic argument that for all PPT 

adversaries, �̅�(S, D) is indistin-guishable from �̅�(S, D) (Lemma 

C.13, C.14, and C.15).  

This concludes our proof. 

Finally, main result states the soundness of equivalence: to show that 

the machines that implement two stable systems are indistinguishable, 

it suffices to show that they are safe and bisimilar. We just need an 

extra condition that the padding size is the same in both cases. 

Theorem 10.5 (Soundness for Equivalences). Let S1 and S2 be 

safe stable systems, D a valid shadow for both S1 and S2. 

If S1 ≅ S2, then M(S1, D) ≈ M(S2, D). 

Proof Sketch. For this theorem we also refer the reader to Appendix 

C for the full proofs of the associated lemmas. The proof is done 

reusing some of the previous lemmas, in particular Lemma C.15 and 

with the special Lemmas C.16 and C.17. This lemmas state that for 

equivalent systems S1 and S2 the probabilities of failure of �̅�(S1, D) and 

�̅�(S2, D) are the same up to negligible probability.  

 

Advancement questions 

1. Why does the algebras are widely used in the study of security 

of concurrent systems? 

2. On what stages we are able to define the high-level semantics? 

3. What the CFGBLOCK and CFGFWD rules do? 

4. What is the scheduler algorithm? 

5. What have we do  if we quantify over all local processes? 

6. What protocol was used as benchmark to verivy the presented 

framework? 

7. Name the roles of the electronic protocol. 

8. What the representations for terms do we use? 
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9. Does the internal representation of terms uses the same 

grammar as in the high-level language except for atomic 

subterms? 

10. What pieces of the system sendb and receiveb protocols are 

used? 
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Introduction  

Security protocols are, in general, composed by several agents 

running in parallel, where each agent computes information (bounded 

by polynomial-time on the security parameter) and exchange it with 

other agents. In the context of quantum processes, the computation is 

bounded by quantum polynomial-time and the information exchanged 

is supported by qubits. In this Chapter, the problem of defining 

quantum security properties is addressed using a quantum polynomial-

time process algebra. This approach is highly inspired in [1, 2, 3 ]. 

The process algebra is introduced together with the logarithmic cost 

random access machine. Both the syntax and the semantics of the 

process algebra are clearly established, and the section is concluded by 

presenting the notion of observational equivalence. Sections are 

devoted to emulation and its composition theorem, and quantum zero- 

knowledge is defined using process emulation. 

11.1 Process Algebra 

In the context of security protocols it is common to consider a 

security parameter  . In the case of quantum protocols we will 

also consider such parameter in order to bound the quantum complexity 

of the principals and adversaries. From now on, the symbol   is 

reserved to designate such security parameter. The role of this 

parameter is twofold: it bounds to a polynomial on   the number of 

qubits that can be sent through channels, and it bounds all the 

computation to quantum polynomial time (on  ). We now detail these 

aspects culminating with the presentation of the process algebra 

language. 

11.2  Quantum polynomial machines 

The computational model we adopted to define quantum 

polynomial machine is based on the logarithmic cost random access 

machine [4] and it is quite similar to the quantum random access 

machine in [5]. We consider a hybrid model using both classic and 

quantum memory. 
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In order to cope with a countable set of qubits qB we adopt the 

following Hilbert space H (isomorphic to  qB22  and L
2
(2

qB
, #)) to 

model the quantum state (see [6, 7] for a discussion on why H is the 

correct Hilbert space for modelling a countable set of qubits): 

- each element is a map   : 2qB
 → C such that: 

- supp 
    0:2   qB

 is countable; 

- 

   
 

 
 


qB p2 sup

22||
 



; 

- 
    2121 . 

; 

- z
. 
z

 
; 

- 

   





 2121 |

. 

The inner product induces the norm 
 |

 and so, the 

distance 
  2121 ,  d

. Clearly, 
 qB2: 

 is an 

orthonormal basis of H  where 
  1

 and 
  0

 for every

  . This basis is called the computational or logic basis of H . 
A configuration of a quantum random access machine (QRAM) is 

triple ξ  = (m,


, s ) where m
  .

 H  and s  . The first 

component of the triple represents the classical memory of the 

machinean infinite sequence of natural numbers, the second component 

represents the quantum state of the machine, and finally the third 

component is a counter that indicates how many (qu)bit operations are 

allowed. 

We associate to each QRAM a positive polynomial q  for bounding 

the number of allowed (qu)bit operations to q(η). In this way, we force 

each QRAM to terminate in polynomial-time. Given a finite set of 

qubits at state 


, the intiial configuration of the QRAM is the triple 
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ξ0(


) = (m0 , 
0

, q(η)), where the sequence m0  is such that 

m0(k) = 0 for all k    and 
0

 is the unit vector in H  such that 

  100 
 (note that if Ϙ  is a 2

n
 dimension Hilbert space, then there is a 

canonical isomorphism between H  and Ϙ    H , and therefore 

 0
 Ϙ  H  can be seen as a unit vector in H ). A QRAM 

receives as input a finite sequence of qubits, but since it is always 

possible to encode classical bits in qubits this is not a limitation. 

The set of atomic commands CA
~~

, and their associated cost is 

presented in the table below. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

Number Instruction Computational cost 

1 Ri=n n| 

2 Ri= Rj |Rj| 

3 Ri= Rj+ Rk |Rj|+|Rk| 

4 Ri= Rj ˗ Rk |Rj|+|Rk| 

5 Ri= Rj  Rk |Rj| |Rk| 

6 Ri= Rj / Rk |Rj| |Rk| 

7 Ri= RRj |Rj|+|RRj| 

8 RRj = Rj |Rj|+|Rj| 

9 Paulix[b] 1 

10 Pauliy[b] 1 

11 Pauliz[b] 1 

12 Hadamard[b] 1 

13 phase[b] 1 

14 

8


[b] 

1 

15 c˗not[b1, b2] 1 

16 measure[b]→Ri 1 

 

Most of the commands above are self-explanatory, but it is 

worthwhile to notice that all commands are deterministic with 

exception of measure. Indeed, according to the measurement postulates 

of quantum mechanics (see for instance [8]), when a quantum system is 
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measured the outcome is stochastic, and moreover the state evolves 

accordingly to this outcome. Note that we only consider measurements 

over the computational basis, nevertheless this is not a limitation since 

any other qubit measurement can be performed by applying a unitary 

transformation before measuring the qubit over the computational basis. 

The set of QRAM commands C
~

 is obtained inductively as follows: 

-  C
~

 if   CA
~~

; 

- c1; c2 C
~

 if c1, c2 C
~

; 

- (if (Rn > 0) then c) C
~

 if c C
~

; 

- (while (Rn > 0) c ) C
~

 if c C
~

. 

The execut i on of a QRAM command c  is a stochastic function 

between configurations. Let Ξ = N
N
   H   N be the set of all 

configurations, and Probfin (Ξ) be the set of all probability measures 

over (Ξ, 2
Ξ
) such that only a finite set of configurations have 

probability different from 0. The execution of a QRAM command c  is 

a map runc : Ξ → Probfin(Ξ), and we write [c] ξ→ p ξ' to denote that 

Prrun(ξ )(ξ ') = p .  The execution of QRAM commands can be defined 

using the following rules, which are quite intuitive: 

    
)(

,,,, 1

nR
nsmsmnR

ns
i

i







, 

where m'(k) = m(k) for all k ≠ i and m'(i) = n; 

    
)(

,,,, 1

ji

jji

j
RR

RsmsmRR

Rs







, 

where m'(k) = m(k) for all k ≠ i and m'(i) = m(j); 

    
)(

)(,,,, 1

kji

kjkji

kj
RRR

RRsmsmRRR

RRs








where m'(k) = m(k) for all k ≠ i and m'(i) = m(j)+ m(k); 

    
)(

)(,,,, 1

kji

kjkji

kj
RRR

RRsmsmRRR

RRs








where m'(k) = m(k) for all k ≠ i and m'(i) = max(m(j)- m(k), 0); 
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)(

)(,,,, 1

kji

kjkji

kj
RRR

RRsmsmRRR

RRs







, 

where m'(k) = m(k) for all k ≠ i and m'(i) = m(j)m(k); 

    
)(

)(,,,, 1

kji

kjkji

kj
RRR

RRsmsmRRR

RRs







, 

where m'(k) = m(k) for all k ≠ i and m'(i) = [m(j)/m(k)]; 

    
)(

)(,,,, 1

j

jj

j

Ri

RjRi

Rj

RR
RRsmsmRR

RRs







, 

where m'(k) = m(k) for all k ≠ i and m'(i) = m(m(j)); 

    
)(

)(,,,, 1

jR

jijR

ji
RR

RRsmsmRR

RRs

j

j







, 

where m'(k) = m(k) for all k ≠ m(i) and m'(m(i)) = m(j); 

    
 )(

1,,,,

1

1

bPauli
smsmbPauli

s
X

X 




, 

where 
 

 is obtained from 


by appluing the PauliX operator 










01

10

 on qubit b. Similar rules apply to the following one-qubit 

operators: 








 

0

0

i

i
PauliY ; 









10

01
ZPauli ; 










11

11

2

1
Hadamard ; 









i
Phase

0

01
; 








40

01

8 


ie

; 

     
 ),(

1,,,,,

1
21

121

bbnotc
smsmbbnotc

s







, 
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where 
 

 is obtained from 


 by applying the control-not 

operator 



















0100

1000

0010

0001

 
on qubits b1 and b2; 

     
  )0(

1,,,,

1





i

pi

Rbmeasure
smsmRbmeasure

s



where 
 

 is equal to 




0

0

P

P

, 
0Pp 

 is (P0 the projector onto 

the subspace of H where qubit b takes value 
0

), m'(i) = 0 and m'(j) = 

m(j) for all j ≠ i; 

     
  )1(

1,,,,

1





i

pi

Rbmeasure
smsmRbmeasure

s



where 
 

 is equal to 




1

1

P

P

, 
1Pp 

 is (P1 the projector onto the 

subspace of H where qubit b takes value 
1

), m'(i) = 1 and m'(j) = m(j) 

for all j ≠ i; 

      
    

  21

2121

211
;

,,,,;

,,,,,,
cc

smsmcc

smsmsmc

pp

pp





 


; 

       
      

 ifT
smcsmcthenRif

smRsmcRsnm

pn

pnn





,,,,0

,,,,0




; 

     
)(

,,,,0

0)(

1





if

smsmcthenRif

nm

n 
; 
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)(
,,,,0

,,,,0;
whileT

smsmcRhilew

smRsmcRhilewc

pn

pnn








; 

       
)(

,,,,0

0)(





while

RsmsmcRhilew

nm

npn 
. 

Observe, that the reduction of QRAM commands always terminate, 

since every computation is bounded by q (η ) (qu)bit steps. The 

execution of a QRAM command can be seen as a word run of a 

quantum automata [9], however a detailed discussion about this subject 

is out of the scope of this abstract. 

The output of a QRAM is the quantum state of a set of qubits. This 

output set is determined by another positive polynomial o  associated to 

the machine. Given a security parameter n, the set of output qubits is 

constituted by the first o (η ) qubits. 

Definition 11.1. A quanlum polynomil machine is a triple M  = (c ,  

q ,  o ) where c  is a QRAM command, q  is a positive step bounding 

polynomial and o  is a positive output polynomial. We denote the set of 

all these triples by QPM. 

Given a quantum polynomial machine M  and a security parameter 

η , the computation of M  over state 


 is the probability distribution 

over the state of the first o (η ) qubits of 
 

 ,  where this distribution is 

defined by the execution rules 
),,())(,,]([ 0 smqmc p
 

. 

Hence, the computation of a QRAM is a probability distribution over 

the state space of the first o (η ) qubits. It is traditional in quantum 

algorithms to measure all relevant qubits at the end of the computation 

in order to obtain a classical result (see Shor's and Grover's algorithms). 

However, since we use QRAM to compute quantum information that 

can be sent through quantum channels, we do not impose this final 

measurement since it may be desirable to send a superposition through 

a quantum channel. 

The following result asserts that the QRAM model is equivalent to 

the usual quantum circuit computational model (a careful presentation 

of this result is out of the scope of this abstract). 
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Proposition 11.1. For any uniform family of polynomial quanlum 

circuils Q  = {Q η}
 , there exists a quanlum polynomial machine M Q  

such that lhe M Q  compules the same slochastic function as Q . 

Moreover, for any quanlum polynomial machine M  t here exists an 

equivalenl uniform family of polynomial quanlum circuils Q M = {Q n}

 . 

Proof. Proof (Sketch): Note that a uniform circuit uses precisely the 

gates defined as quantum atomic commands of the QRAM. The 

construction of the circuit can be mimicked by a RAM command c . 

Since this construction must be polynomial in η, the program must 

terminate in polynomial time and therefore, there is a polynomial q  to 

bound the number of steps, finally the output must always be a 

polynomial set of qubits, and therefore we are able to construct an 

equivalent QRAM machine. 

On the other hand a QRAM program is the realisation of the 

uniform family construction, since, for each η, a circuit can be retrieved 

by looking at the finite (do not forget that QRAM programs always 

terminate) sequence of quantum atomic gates generated by the 

execution of the command. The stochastic nature of the execution does 

not bring a problem, since gates placed after a measurement can be 

controlled by the outcome of that measurement. If a measurement gives 

the value 1 to a qubit and in that case a gate U  is placed at some qubit 

b, then the circuit should be constructed by placing a control-U gate 

controlled by the measured qubit and targeted at b. 

11.3 Process algebra 

As stated before, we require to know who possesses a qubit in order 

to know who can retrieve some piece of information. In order to deal 

with this fact, a qubit is considered to belong to some agent, and 

therefore, the set of qubits qB is partitioned among all agents. To make 

this more precise, a countable set A = { a 1 , . . .  , a k , . . .  }  of agents is 

fixed once and for all, and moreover the partition Bq
~

 = {  qBai } Aai  of 

qB is such that each set qBai is countable and recursively enumerable. 

Note that each qBai has a total order (with a bottom element) 

induced by its recursive enumeration. The purpose of this total ordering 
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is to reindex the qubits accessed by a QPM M when an agent a executes 

M. An obvious desideratum of the system is that an agent a is restricted 

to compute over its own qubits qBa,  and therefore, when agent a 

executes a quantum polynomial machine M, this machine must have 

access only to the qubits in qBa (note that if the qubits of a are 

entangled with other qubits, then when the former are modified so can 

be the latter). Therefore, if, for instance, an agent a executes a machine 

that consists of the command PauliX[b], and if qBa is recursively 

enumerated by γ , then the command effectively executed is 

PauliX[γ(b)]. The same procedure applies to the input and output qubits, 

so when a machine executed by a outputs the first o (η) qubits, the 

machine is in fact outputting the qubits 

       .,...,1 qBqBa 
 

Communication between agents is achieved via public channels, 

allowing qubits to be exchanged. Clearly, this process is modelled by 

modifying the partition of qB. It is also convenient to allow parallelism 

inside an agent (that is, an agent may be constituted by several 

processes in parallel), for this purpose, private channels (that cannot be 

intercepted) allowing communication between the agent local processes 

are introduced. To make this assumptions clear, two countable disjoint 

sets of quantum channels are considered, the set of global or public 

channels G={g1, g 2 , . . . , g k , . . . }, and the set of local or priate channels 

L={ l 1 , l 2 , . . .  , l k , . . . }. We denote by C the set G U L. All global 

channels can be read and written by an adversary while local channels 

correspond to private communication from one agent to itself. One role 

of the security parameter is to bound the bandwidth of the channels. 

Hence, we introduce a bandwidth map bw : C →q, where q is the set of 

all polynomials taking positive values. Given a value η for the security 

parameter, a channel c can send at most bw(c)(η) qubits. 
We also consider a countable set of variables 

Var={ x L , x 2 , . . . , x k , . . . }, which are required to define qubit terms. A 

qubit term t is either a finite subset of qB or a variable xVar.  
Finally, we present the language of processes, which is a fragment 

of π-calculus. Mind that the overall computation must be quantum 

polynomial on η and therefore we do not cope with recursion nor 
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mobility. First, we establish the language of an agent, that we call local 

process language. 

Definition 11.2. The language of local processes L  is obtained 

inductively as follows: 

- 0 L (termination); 

- 
  LtMс 

where M QPM, t is a qubit term, and Cc

(output); 

-   LQxc   where Varxc  ,С and LQ (input); 

-  QtM .0)(   where QPMM  , t is a qubit term, and LQ

(match); 

-  21,QQ  where LQQ 21, (parallel composition); 

- !qQ where LQ  and q q (bounded replication). 

Most of the (local) process terms are intuitive. The output term 

 BqMc 
means that the output of machine M, which received the 

finite set of qubits qB' as input, is sent through channel c. The input 

term c( x) .Q means that a set of qubits is going to be received on c, and 

upon reception, x takes the value of the received qubits. 
After fixing the security parameter η, we can get rid of replication 

by evaluating each process !qR as q( η)  copies of R in parallel. 

Therefore, we always assume that a process term has no replication. 

Now, as state before, a protocol is constituted by a set o agents running 

in parallel, therefore the global language (or protocol language) is quite 

simple: 
Definition 11.3. The language of global processes Ǵ over a set of 

agents A is defined inductively as follows: 
-  0  Ǵ (global termination) ; 

-  P|| (a : Q)    Ǵ where P Ǵ, aA does not occur in P, and Q

L (global parallel composition). 

The following example uses the process language to describe the 

RSA cryptanalysis using Shor’s algorithm. 
Example 11.1 (Shor’s based RSA cryptanalysis). Let p, q be primes 

(with η length binary expansion), and e, d integers such that ed = 1  

mod  ( pq) .  Alice is a simple process A that knows some message w 
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and outputs w
e
 mod pq,  where e is the public key of Bob. This dummy 

process can be presented as 

    pqgaAa e mod:::   . 

Bob receives x and computes x
d
 mod pq.  This procedure can be 

modelled by the following process: 

    .0).(|mod).(::: ylpqxlxgbBb d  

Therefore the RSA protocol is given by the process 

   BbAa :||)(:  .  Finally, we can write the “attacking” process, Eve. 

She factorises p q ,  inverts e mod  ( pq)  (thus, allowing her to find d), 

and intercepts the message sent by Alice (on channel g ) .  We write this 

process as follows: 

             0.|mod..|,.|: 332211 lpqxlzlxgeyInvlylpqShorlc z

 

11.4 Semantics 

In order to define the semantics of a local process we need to 

introduce the notion of local configuration. A local configuration or 

agent configuration is a triple (


, qBa , Q)  where 


H, qBa    qB 

is a countable, recursive enumerable set and Q   L. The first element 

of the local configuration is the global state of the protocol, the second 

element is the set of qubits the agent possesses and the last element is 

the local process term. 
The semantics of a local process is a probabilistic transition system 

where the transitions are defined by rules. We use 

)Q,qB, (Q),qB, ( apa
 

 to state that, at global state 


) ,  

when agent a  possesses qubits q B a ,  the local process Q  is reduced to 

Q '  and global state is modified to    with probability p. It is also 

worthwhile to observe that we use the notation 

   21 ,,, qBqBqBM pa  
 to denote that the execution of the 

QRM M , operating on q B a  (that is, using the recursive enumeration of 

q B a  to reindex the position of the qubits), and receiving as input q B 1 , 
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outputs q B 2  and modifies the global state 


 to    with probability 

p. For the case of local processes, the sets q B 1  and q B 2  are irrelevant, 

because the qubits owned by the agent remain the same when a local 

communication (LCom rule) is applied. Their functionality will be clear 

when we present the global rules. 

      

   
)(

,,)(|).(,,

,,,,

1

2121
LCom

QqBqBMlQxlqB

lbwqBqBqBqBqBqBqBM

x

qBapa

aapa

a








We also introduce the term M ; Meas to denote the machine that, after 

executing M  performs a measurement on the computational basis of the 

output qubits of M . So a match corresponds to performing a 

measurement on the output qubits of M  and checking whether the result 

is the 0 word. 

    

     
)(

,,.0,,

0,,,;

1

21
2 MatchT

QqBQqBMqB

qBqBqBMeasM

apa

qBpa









    

     
)(

0,,.0,,

0,,,;

1

21
2 




Match

qBQqBMqB

qBqBqBMeasM

apa

qBpa





 
The remaining rules are self-explanatory. 

   
   

)(
|,,|,,

,,,,
LLPar

QPqBQPqB

PqBPqB

apa

apa









 

   
   

)(
|,,|,,

,,,,
LRPar

QPqBQPqB

QqBQqB

apa

apa









 
We proceed by presenting the global rules. A global configuration 

is a triple 
 PBq ,

~
,

 where 
H

, 
 

AaaqBBq



~

 is a partition 

of q B  indexed by the set of agents A  (where each q B a  is countable and 

r.e.) and P Ǵ. The semantics of a global process is defined by the 

following rules: 

   
     

)(
:,

~
,:,

~
,

,,,,
LtoG

QaBqQaBq

QqBQqB

p

apa
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)(

:,
~

,:||.:,
~

,

,,,,

21

22121
GCom

QaBqqBMgbQxgaBq

gbwqBqBqBqBqBqBqBM

x

qBp

bpa









where 
 

AaaBqBq



~

, 2qBqBBq aa 
, 2\ qBqBBq bb  , and 

cc qBBq 
 for all bac , . 

   
   

)(
||,

~
,||,

~
,

,
~

,,
~

,

2121

11
GLPar

PPBqPPBq

PBqPBq

p

p









 

   
   

)(
||,

~
,||,

~
,

,
~

,2,
~

,

2121

2
GRPar

PPBqPPBq

PBqPBq

p

p









 
All the rules are very simple to grasp. The only non trivial rule is 

global communication (GCom), that makes qubits to be exchanged 

from one agent to another, and therefore an adjustment is required in 

the qubit partition. 

Process term reductions are non-deterministic, in the sense that several 

different reductions could be chosen at some step. In order to be 

possible to make a quantitative analysis, this reduction should be 

probabilistic. For the sake of simplicity, we assume a uniform 

scheduler, that is, the choice on any possible reduction is done with 

uniform probability over all possible non- deterministic reductions. We 

do not present in detail the scheduler model but, in principle, any 

probability distribution modelled by a QPM can be used to model the 

scheduler policy. Finally, note that by applying local and global rules, 

and assuming a uniform scheduler, one can define the many step 

reduction 

*

p
 such that 

   nnnp PBqPBq ,
~

,,
~

, *

111  
, whenever: 

     ;,
~

,,
~

,,
~

,
122221111 nnnppp PBqPBqPBq

n



 

 

1

1

2

2

1

1




n

n

R

p

R

p

R

p
p   where Ri is the number of possible non-

deterministic choices for 
 iii PBq ,

~
,

 for all  1,,1  ni  ; 

 nnn PBq ,
~

,
 cannot be reducted any more. 
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The many step reduction takes into account the scheduler choice, by 

weighting each stochastic reduction p i  with yet another probability iR

1

, 

where R i  is the number of possible non-deterministic choices at step i .  

11.4 Observations and observational equivalence 

At the end of a protocol, each agent Aa  is allowed to measure a 

polynomial (in η) number of qubits in q B a  to extract information. We 

can always assume that these qubits are the first, say, r ( η )  qubits of 

qBa where r is a positive polynomial. Therefore, the many step 

reduction of a process term P induces a probability distribution on 2
r(η)

, 

where 2
r(η)

 is the set of all possible outcomes of r ( η )  qubits when 

measured over the computational basis (that is, 2
r(η) 

i is the set of all 

r(η)-long binary words). 

Definition 11.4. Given a positive polynomial r and a global 

configuration 
 PBq ,

~
,

, let 

        0,
~

,,
~

,:,
~

, *

,,
 pandPBqPBqPBq pPqB




We define the observation of an agent a to be the family of probability 

measures 
       
  a

r

rq

r

r

O )(

2 Pr,2,2  

where: 

  
     


|Pr
,,)( p
PqB

a

r
; 

p
 is such that 

  


*,
~

, pPBq 
; 


 is the first component of  ; 

 |
 is the probability of observing the r(η)-long binary word 

ω by measuring the r(η) first qubits of qBa (qubits in possession of 

agent a) of 
)  in the computational basis. 
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Note that the summation used to compute 
  

a

r )(Pr
 is well 

defined, since  PqB,,
  is finite. It is clear at this point,that an 

observation of an agent is a random r(η)-long binary word, with 

distribution given by 

a

r )(Pr  . 

The notion of observational equivalence we adopt is based on 

computational indistinguishability as usual in the security community 

[2]. First, we introduce the concept of context. The set of global 

contexts C
~

 is defined inductively as follows:   C
~

 ;   PC || and 

  CCP
~

||    provided that   CC
~

  and P Ǵ. Given a context 

 C  and a global process P, the notation  PC  means that we 

substitute the process P for the    in  C  . 

Definition 11.5. Let P and P' be process terms. We say that P is 

computationally indistinguishable by agenl a from P' if and only if for 

every context  C , polynomials q and 
Hr ,

, partition Bq
~

 of 

qB, η sufficiently large and binary word 
  r2 ,  

)(

1
)(rP)(Pr )()(


 

q

a

r

a

r   

where 
a

r )(Pr   is given by the observation of a for configuration 

  PCBq ,
~

,
 and 

a

r )(rP 
  is given by the observation of a  for 

configuration 
  PCBq ,

~
,

. In such case we write PP  . 

Two processes are computationally indistinguishable if they are 

indistinguishable by contexts, that is, for any input (here modelled by 


 and Bq

~
), there is no context which can distinguish, up to a 

negligible function, the outputs produced. The definition above extends 

the classical definition of computational indistinguishability to the 

quantum case, since processes can be modelled by quantum polynomial 

machines and therefore  C  induces the required distinguishing 
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machine. A detailed proof of this result is out of the scope of this 

extended abstract. In order to set up compositionality, the following 

result is of the utmost importance: 

Proposition 11.2. Computational indistinguishabilily is a 

congruence relation with respecl to the parallel primitive of Ǵ. 

Proof. Both symmetry and reflexivity are trivial to check. 

Transitivity follows by triangular inequality, and taking into account 

that 
)(

2

1
nq

is a polynomial. Congruence on the global parallel operator 

follows by noticing that for any contexts  C  and  C ,   CC  is 

also a context. □ 

11.6 Emulation and Composition Theorem 

One of the most successful ways for defining secure concurrent 

cryptographic tasks is via process emulation [10, 11]. This definitional 

job boils down to the following: a process realises a cryptographic task 

if and only if it emulates an ideal process that is known to realise such 

task. In this section, guided by the goal of defining secure 

functionalities, we detail the notion of emulation for the quantum 

process calculus defined in the previous section. 

Let I be an ideal protocol that realises (the honest part of) some 

secure protocol and P a process that implements the functionality 

specified by I. The overall goal is to show that P realises, without 

flaws, (part of) the secure functionality specified by I. The goal is 

achieved if for any real adversary, say (a : A), the process P||(a : A) is 

computationally indistinguishable by the adversary a from the process 

I||(a : B) for some ideal adversary (a : B), where an ideal adversary is an 

adversary which cannot corrupt I and a real adversary is any local 

process for agent a. This property asserts that given a real adversary (a : 

A), agent a cannot distinguish the information leaked by P||(a : A) from 

the information leaked by the well behaved process I||(a : B) for some 

ideal adversary (a : B), and therefore, we infer that P||(a : A) is also 

well behaved. This discussion leads to the concept of emulation with 

respect to a set of real adversaries A
~

 and ideal adversaries B
~

. 
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Definition 11.6. Let P and I be process terms and A
~

 and B
~

 sets of 

global processes where the only agent is the adversary a, then P 

emulates I with respect to A
~

 and B
~

 if and only if for all processes (a : 

A) A
~

  there exists a process (a : B) B
~

  such that P||(a : A) ≈ I||(a : 

B). In such case we write 
IP a

BA
~

,
~

 and say that P is a secure 

implementation of I with respect to A
~

 and B
~

. 

A desirable property of the emulation relation is the so called 

Composition Theorem. This result was first discussed informally for 

the classical secure computation setting in [12], and states the 

following: if P is a secure implementation of part I of an ideal protocol, 

R and J are two protocols which use the ideal protocol I as a 

component, and finally, R is a secure implementation of J, then 
I

PR  

should be a secure implementation of J. This result is captured as 

follows: 

Theorem 11.3. Let P,I be processes, R[ ] and J [ ] contexts and A
~

,

B
~

  sets of processes over agent a and C
~

, D
~

  sets of processes over 

agent b. If 
   ):(||):(|| ~

,
~ BaIJBaIR b

DC


 for any (a : B) B
~

  and 

IP a

BA
~

,
~

 then for any adversary (a : A) A
~

  there exists (a : B) B
~

  

such that
   ):(||):(|| ~

,
~ BaIJAaQR b

DC


. 

Proof. Let (a : A) A
~

  and (a : B) B
~

  be such that 

):(||):(|| BaIAaP  . Now choose some (b : C) C
~

 , clearly, 

):(||)]:(||[):(||)]:(||[ CcBaIRCcAaQR  since ≈ is a congruence 

relation. Moreover, since DC
BaIR ~

,
~)]:(||[ 

 )]:(||[ BaIJ , there is a 

(b : D) D
~

  such that ):(||)]:(||[||)]:(||[ DbBaIJCBaQR  . 
Finally, by transitivity of ≈, we have that 

):(||)]:(||[):(||)]:(||[ DbBaIJCbAaQR  and hence

)]:(||[)]:(||[ ~
,

~ BaIJAaQR
DC


. 
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Observe that ideal protocols are constituted by a honest part I and 

an ideal adversary (a : B), and therefore are of the form I||(a : B). This 

justifies why  ):(|| BaIR  was considered in the proposition above 

instead of  IR . Moreover, adversaries for the functionality 

implemented by R and J might be different from those of I and Q, 

therefore, two pairs of sets of processes C
~

, D
~

 and A
~

, B
~

 are required 

to model two kinds of adversaries. 

11.7 Quantum Zero-Knowledge Proofs 

An interactive proof is a two party protocol, where one agent is 

called the prover and the other is called the verifier. The main objective 

of the protocol is to let the prover convince the verifier of the validity 

of an assertion, however, this must be done in such a way that the 

prover cannot convince the verifier of the validity of some false 

assertion. 
Any interactive proof system fulfills two properties: completeness 

and soundness. Completeness states that if the assertion the prover 

wants to convince the verifier is true, then the verifier should be 

convinced with probability one. On the other hand, soundness is 

fulfilled if the verifier cannot be convinced, up to a negligible 

probability, of a false assertion. Therefore, completeness and soundness 

allow the verifier to check whether the assertion of the prover is true or 

false. 
Zero-knowledge is a property of the prover (strategy). Consider the 

following informal notion of (quantum) computational zero-knowledge 

strategy, which corresponds to the straightforward lifting to the 

quantum setting of the classical version: 
Definition 11.7. A prover strategy S is said to be quantum 

computational zero-knowledge over a set L if and only if for every 

quantum polynomial-time verifier strategy, V there exists quantum 

polynomial-time algorithm M such that (S , V ) ( l )  is (quantum) 

computationally indistinguishable from M (l )  for all l   L, where (S ,  

V )  denotes the output of the interaction between S and V. 
The main application of zero-knowledge proof protocols in the 

cryptographic setting is in the context of a user U that has a secret and 

is supposed to perform some steps, depending on the secret. The 
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problem is how can other users assure that U has carried out the correct 

steps without U disclosing its secret. Zero-knowledge proof protocols 

(ZKP) can be used to satisfy these conflicting requirements. 

Zero-knowledge essentially embodies that the verifier cannot gain 

more knowledge when interacting with the prover than by running 

alone a quantum polynomial time program (using the same input in 

both cases). That is, running a the verifier in parallel with the prover 

should be indistinguishable of some quantum polynomial time program. 
Actually, the notion of (quantum computational) zero-knowledge 

proofs can be captured through emulation very easily. Assuming that a 

proof strategy S(x) and verifier V(x) are modelled as terms of the 

process algebra, it is actually possible to model the interaction between 

p and v by the process (p : S) || (v : V). Denote by L
v
 (l) the set of all 

process terms for the verifier 
x

lVv ):(
, that is, any process term (v : V) 

where the free variable x was replaced by the binary word l. We have 

the following characterisation: 
Proposition 11.4. A process term (p : S) denoting a proof strategy 

is compulational zero- knowledge for L if and only if 

0):(
)(),(

v

lLlL

x

l vvSp 
, for all Ll . 

Proof. Proof (Sketch): Notice that the ZKP resumes to impose that 

for all 
x

lVv ):(
 there is a process 

x

lVv ):( 
 such that

x

l

x

l

x

l VvVvSp ):(||0):(||):( 
. Since the semantics of a local process 

can be modelled by a QPM, and moreover 
x

lVv ):(||0 
 can model any 

QPM, the characterisation proposed in this proposition is equivalent to 

Definition 11.7. 
So, a process (p : S) models a quantum zero-knowledge strategy if, 

from the point of view of the verifier, it is impossible to distinguish the 

final result of the interaction with (p : S) from the interaction with the 0 

process. A clear corollary of Theorem 11.3 is that, quantum zero-

knowledge is compositional. 
It is simple to adapt the emulation approach to several other 

quantum security properties, like quantum secure computation, 

authentication and so on. 
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Advancement questions 

1. What is the role of security parameters? 

2. 0   Ǵ (global termination) ; 

 P|| (a : Q)    Ǵ where P  Ǵ, aA does not occur in P, 

and QL (global parallel composition). 

What does the following example describe? 

3. What we need to introduce for order in order to define the 

semantics of a local process?  

4. What is the base of the semantcis of a local process? 

5. What can be used to model the scheduler policy  

6. What does global communication rule make? 

2. What is the base of the notion of observational equivalence? 

3. What the most successful ways for defining secure concurrent 

cryptographic tasks? 

4. How we can called the agents of a two party protocol? 

5. What the main application of zero-knowledge proof protocols 

in the cryptographic setting 
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12.1 Application of Artificial Intelligence in Network Intrusion 

Detection  

Introduction 

Intrusion Detection System (IDS) is the process of monitoring the 

events occurring in a computer system or network and analyzing them 

for signs of intrusion [1,2]. It is useful not only in detecting successful 

intrusions, but also in monitoring attempts to break security, which 

provides important information for timely counter-measures. Basically, 

IDS can be classified into two types: Misuse Intrusion Detection and 

Anomaly Intrusion Detection. Traditional protection techniques such as 

user authentication, data encryption, avoiding programming errors, and 

firewalls are used as first lines of defense for computer security. If a 

weak password is compromised, user authentication cannot prevent 

unauthorized use. Also, firewalls are vulnerable to errors in 

configuration and susceptible to ambiguous or undefined security 

policies. 

Recently, the use of Artificial Intelligence (AI) techniques has been 

employed in different data mining and machine learning classification 

and prediction modeling schemes. In addition to these, hybrid data 

mining schemes, hierarchical hybrid intelligent system models, and 

ensemble learning approaches that combine the base models with other 

hybrid machine learning paradigms, to maximize the accuracy and 

minimize both root mean squared errors and computational complexity, 

have also gained popularity in the literature [3]. 

In this chapter, a succinct review has been carried out on the 

individual capabilities of various AI techniques in their application to 

network IDS. Such techniques include Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Genetic Algorithms (GA) 

and Fuzzy Neural Networks (FNN). Attempts were also made to 

propose possible hybrid approaches based on these techniques. 

Background Knowledge 

Overview of Intrusion Detection Systems 
Intrusion Detection Systems are used to monitor computers or 

networks for unauthorized entrance or activities, thereby making it easy 
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to detect if a system is being targeted by an attack. Preventing, 

detecting, and reacting to intrusions without disturbing the operations 

of existing systems remain a big challenge for networks that provide 

round the clock services such as web servers. In such networks, even if 

an intrusion is detected, the system cannot be shut down to check it 

fully since it may be serving users who are making deals or completing 

one transaction or the other [2]. 
An IDS inspects all inbound and outbound network activity and 

identifies suspicious patterns that may indicate a network or system 

attack from someone attempting to break into or compromise a system. 

Generally, an IDS detects unwanted manipulations of computer 

systems, mainly through the Internet. The manipulations may take the 

form of attacks by crackers [4]. 
An IDS is composed of three major components: Sensors which 

generate security events, a Console to monitor events, initiate alerts and 

control the sensors, and a Central Engine that records events logged by 

the sensors in a database and uses a system of rules to generate alerts 

from security events that have been received [5]. 
There are three major categories of IDS viz. Misuse Detection vs. 

Anomaly Detection, Network-Based vs. Host- Based Systems and 

Passive System vs. Reactive System. 
Misuse Detection vs. Anomaly Detection: 
The Misuse Detection part analyses the information it gathers, and 

compares it to large databases of attack signatures by looking for a 

specific attack that has already been documented while the Anomaly 

Detection part monitors network segments to compare their state to the 

normal baseline defined by the systems administrator and look for 

anomalies [6]. 
Network-Based vs. Host-Based Systems: 
In the Network-based system, the network analyses individual 

packets of information flowing through it and detects those that are 

malicious but designed to be overlooked by a firewall’s simplistic 

filtering rules. In a Host- based system, the IDS examines the activity 

on each individual computer or host [6]. 
Passive System vs. Reactive System: 
In a Passive System, the IDS detects a potential security breach, 

logs the information and raises an alert signal while the reactive system 
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responds to the suspicious activity by logging off a user or by 

reprogramming the firewall to block network traffic from the suspected 

malicious source [6]. 
Overview of Artificial Intelligence 
The application of the capabilities of Artificial Intelligence 

techniques has been widely appreciated in Computer and 

Communication Networks in particular, as well as in other fields. This 

inter-disciplinary endeavor has created a collaborative link between 

Computer Scientists and Network Engineers in the design, simulation 

and development of network intrusion models and their characteristics. 

Computational Intelligence (CI), an offshoot of AI, covers all branches 

of science and engineering that are concerned with the understanding 

and solving of problems for which effective computational algorithms 

do not yet exist. Thus, it overlaps with some areas of Artificial 

Intelligence and a good part of Pattern Recognition, Image Analysis 

and Operations Research. It is based on the assumption that thinking is 

nothing but symbol manipulation. Thus, it holds out the hope that 

computers will not merely simulate intelligence, but actually achieve it. 

CI relies on heuristic algorithms such as in Fuzzy Systems, Neural 

Networks, Support Vector Machines and Evolutionary Computation. In 

addition, CI also embraces techniques that use Swarm Intelligence, 

Fractals and Chaos Theory, Artificial Immune Systems, Wavelets, etc. 

[7]. 

AI is itself an advancement of the concept of its predecessor, Data 

Mining (DM). DM is the process of finding previously unknown, 

profitable and useful patterns embedded in data, with no prior 

hypothesis. It is the process of analyzing data from different 

perspectives, summarizing it into useful information and finding 

correlations or patterns among datasets in large data repositories. The 

objective of DM is to use the discovered patterns to help explain 

current behavior or to predict future outcomes. DM borrows some 

concepts and techniques from several long-established disciplines viz. 

Artificial Intelligence, Database Technology, Machine Learning and 

Statistics. The field of DM has, over the past couple of decades, 

produced a rich variety of algorithms that enable computers to learn 

new relationships/knowledge from large datasets [8]. 
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AI naturally transformed into Computational Intelligence (CI) with 

the introduction of the concept of Machine Learning. This is a scientific 

aspect of AI that is concerned with the design and development of 

algorithms that allow computers to learn based on data, such as a 

network intrusion log acquired over a considerable period of time. A 

major focus of machine learning research is to automatically learn to 

recognize complex attributes and to make intelligent decisions based on 

the correlations among the data variables. Hence, machine learning is 

closely related to fields such as statistics, probability theory, data 

mining, pattern recognition, artificial intelligence, adaptive control, and 

theoretical computer science. 

The machine learning concept can be categorized into three 

common algorithms viz. supervised, unsupervised and hybrid learning. 

Supervised learning is the type of machine learning technique in which 

the algorithm generates a function that maps inputs to the desired 

outputs with the least possible error. Unsupervised learning is the 

machine learning technique in which a set of inputs are analyzed 

without the target output. This is also called clustering. The hybrid 

learning combines the supervised and unsupervised techniques to 

generate an appropriate function and to meet a specific need of solving 

a problem. The computational analysis of machine learning algorithms 

and their performance is a branch of theoretical computer science 

known as computational learning theory [8]. 

A general modeling framework for computational intelligence is 

shown Figure 12.1. 
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Figure 12.1. Computational Intelligence Modeling Framework 

Overview of Some Artificial Intelligence Techniques and their 

Application in IDS 

A good number of studies have been carried out on the use of 

various CI/AI techniques to model various IDS strategies. Some of 

these techniques will be discussed in the following sections. 
Artificial Neural Networks (ANN) 
Attempts to artificially simulate the biological processes that lead to 

intelligent behavior culminated in the development of ANN. ANN is a 

mathematical or computational model that is based on biological neural 

networks. It consists of an interconnected group of artificial neurons 

which processes information using a connectionist approach to 

computation. In most cases, ANN is an adaptive system that changes its 

structure based on external or internal information that flows through 

the network during the learning phase. 
In more practical terms, neural networks are non-linear statistical 

data modeling tools. They can be used to model complex relationships 

between inputs and outputs or to find patterns in data. A typical ANN 

framework is shown in figure 12.2 ANN is a close emulation of the 

biological nervous system. In this model, a neuron multiplies the inputs 

by weights, calculates the sum, and applies a threshold. The result of 

this computation would then be transmitted to subsequent neurons. 

Basically, the ANN has been generalized to: 
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where xk are inputs to the neuron i, wlk are weights attached to the 

inputs, pt is a threshold, offset or bias, f (•) is a transfer function and yi 

is the output of the neuron. The transfer function f (•) can be any of: 

linear, non-linear, piece-wise linear, sigmoidal, tangent hyperbolic and 

polynomial functions. 
Some of the versions of ANN, depending on which algorithm is 

used at the summation stage, include: Probabilistic Neural Networks, 

Generalized Regression Neural Networks and Multi-Layer Perceptron 

Neural Networks. The most commonly used learning algorithm of 

ANN is the Feed-Forward Back-propagation algorithm. 

More details of this technique can be found in [9, 10]. 

 
Figure 12.2. A typical Artificial Neural Networks Framework [9] 

 

Fuzzy Inference Systems (FIS) 

Fuzzy Inference System include Type-1 Fuzzy System (fuzzy) and 

Type-2 Fuzzy System (fuzzy fuzzy). Type-2 Fuzzy System (FS) was 

recently introduced as an extension of the concept of Type-1 Fuzzy. 

Type-2 FS have grades of membership that are themselves fuzzy. For 

each value of primary variable (e.g. pressure and temperature), the 

membership is a function (not just a point value). This is the secondary 

Membership Function (MF), whose domain, the primary membership, 

is in the interval (0,1), and whose range, secondary grades, may also be 

in (0,1). Hence, the MF of a Type-2 FS is three-dimensional, and the 

new third dimension provides new design degrees of freedom for 

handling uncertainties. The basic structure of a Type-2 FS is shown in 

Figure 3. More details of this technique can be found in [11, 12]. 
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Sampada et al. [13] proposed two machine learning paradigms: 

Artificial Neural Networks and Fuzzy Inference System, for the design 

of an Intrusion Detection System. They used SNORT to perform real 

time traffic analysis and packet logging on IP network during the 

training phase of the system. They constructed a signature pattern 

database using Protocol Analysis and Neuro-Fuzzy learning method. 

They then tested and validated the models using the 1998 DARPA 

Intrusion Detection Evaluation Data and TCP dump raw data. The data 

set contains 24 attack types. The attacks fall into four main categories 

viz. Denial of Service (DOS), Remote to User (R2L), User to Root 

(U2R), and Probing. From the results, it was shown that the Fuzzy 

Inference System was faster in training, taking few seconds, than the 

Artificial Neural Networks which took few minutes to converge. 

Generally, both techniques proved to be good, but with the Fuzzy 

Inference System having an edge over Artificial Neural Networks with 

its higher classification accuracies. Their experiment also showed the 

importance of variable selection, as the two techniques performed 

worse when all the variables were used without selection of the 

variables. Good results were recorded when a subset (about 40%) of the 

variables were used. 
In a similar study, [14] proposed a conceptual framework 

comprising of the techniques of neural networks and fuzzy logic with 

network profiling, using both network traffic and system audit data as 

inputs to the systems. The proposed system was planned to be a hybrid 

system that combines anomaly, misuse and host based detection. The 

authors planned to use neural networks with self organizing maps for 

host based intrusion detection. They hoped to be able to trace back 

suspicious intrusions to their original source path and so that the traffics 

from that particular source will be redirected back to them thereafter. 
More studies on the application of ANN and Fuzzy Logic can be 

found in literature. 
Support Vector Machines 
Support Vector Machines (SVMs) are a set of related supervised 

learning methods used for classification and regression. They belong to 

a family of Generalized Linear Classifiers. They can also be considered 

as a special case of Tikhonov Regularization. SVMs map input vectors 
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to a higher dimensional space where a maximal separating hyperplane 

is constructed [15]. This is shown in Figure 12.4. 
The generalization ability of SVMs is ensured by special properties 

of the optimal hyperplane that maximizes the distance to training 

examples in a high dimensional feature space. SVMs were initially 

introduced for the purpose of classification until 1995 when Vapnik et 

al., as reported in [16], developed a new e-sensitive loss function 

technique that is based on statistical learning theory, and which adheres 

to the principle of structural risk minimization, seeking to minimize an 

upper bound of the generalization error. This new technique is called 

Support Vector Regression (SVR). It has been shown to exhibit 

excellent performance. Further details on SVM can be found in [17, 18, 

19]. 
In [20], Zang and Shen utilized the capability of SVM to formulate 

an Intrusion Detection System as a binary classification problem by 

characterizing the frequencies of the system calls executed by the 

privileged programs. Using the intersection of pattern recognition and 

text categorization domains, they modified the conventional SVM, 

Robust SVM and one-class SVM; and compared their performances 

with that of the original SVM algorithm. Using the 1998 DARPA BSM 

data set collected at MIT’s Lincoln Labs, they verified that the 

modified SVMs can be trained online and the results outperform the 

original ones with fewer Support Vectors (SVs) and less training time 

without decreasing detection accuracy. 

Genetic Algorithms 

Genetic Algorithm (GA) is a computing technique used as an 

exhaustive search paradigm to find exact or approximate solutions to 

optimization problems. GAs are categorized as global search heuristics. 

Its paradigm is based on a particular class of evolutionary algorithms 

that uses techniques inspired by evolutionary biology such as 

inheritance, mutation, selection, and crossover. GAs are implemented 

in a computer simulation framework in which a population of abstract 

representations (representing chromosomes) of candidate solutions 

(representing biological creatures, or phenotypes) to an optimization 

problem produces better solutions. Traditionally, solutions are 

represented in bits (a set of 0s and 1s), but other encodings are also 

possible. 
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Figure 12.3. Structure of a Type-2 Fuzzy Logic System [12] 

 
Figure 12.4. Mapping Input Vectors to a Higher Dimensional Space in 

SVM [23, 25, 26] 

The evolution process begins with a population of randomly 

generated individuals and continues in generations. In each generation, 

the fitness of every individual in the population is evaluated, multiple 

individuals are stochastically selected from the current population 

(based on their fitness), and modified (recombined and possibly 

randomly mutated) to form a new population. The new population is 

then used in the next iteration of the algorithm. Usually, the algorithm 

terminates when either a maximum number of generations has been 

produced, or a satisfactory fitness level has been reached for the 

population. If the algorithm has terminated due to a maximum number 
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of generations, a satisfactory solution may or may not have been 

reached. 
Genetic Algorithms have been widely applied in almost all fields of 

research. The main property that makes genetic representations in 

computer simulations convenient is that their parts are easily aligned 

due to their fixed size, which facilitates simple crossover operations. 

The fitness function is defined over the genetic representation and 

measures the quality of the represented solution. Once the genetic 

representation of a problem has been obtained, and the fitness function 

defined, GA proceeds to initialize a population of solutions randomly, 

and then improves it through repetitive application of mutation, 

crossover, inversion and selection operators. 
More details on GA can be found in [21, 22]. 
Functional Networks 
Functional Networks (FN) is an extension of Artificial Neural 

Networks which consists of different layers of neurons connected by 

links. Each computing unit or neuron performs a simple calculation: a 

scalar, typically monotone, function f of a weighted sum of inputs. The 

function f, associated with the neurons, is fixed and the weights are 

learned from data using some well-known algorithms such as the least-

squares fitting algorithm. 
The main idea of FN consists of allowing the f functions to be 

learned while suppressing the weights. In addition, the f functions are 

allowed to be multi-dimensional, though they can be equivalently 

replaced by functions of single variables. When there are several links, 

say m, going from the last layer of neurons to a given output unit, we 

can write the value of this output unit in several different forms (one 

per different link). This leads to a system of m-1 functional equations, 

which can be directly written from the topology of the Neural Network. 

Solving this system leads to a great simplification of the initial 

functions f associated with the neurons. 
As shown in Figure 12.5, a FN consists of a layer of input units 

which contains the input data, a layer of output units which contains the 

output data, and one or several layers of neurons or computing units 

which evaluates a set of input values coming from the previous layer 

and gives a set of output values to the next layer of neurons or output 

units. The computing units are connected to each other, in the sense that 
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output from one unit can serve as part of input to another neuron or to 

the units in the output layer. Once the input values are given, the output 

is determined by the neuron type, which can be defined by a function. 

For example, assume that we have a neuron with s inputs: (x1 xs) 

and k outputs: (y1, ..., y), then we assume that there exist k functions F; 

j = 1 k, such that y = Fj(x1 xs); j = 1 k. 

FN also consists of a set of directed links that connect the input 

layer to the first layer of neurons, neurons of one layer to neurons of the 

next layer, and the last layer of neurons to the output units. Connections 

are represented by arrows, indicating the direction of information flow 

[23]. 

The least squares fitting algorithm has the ability to learn itself and 

to use the input data directly, by minimizing the sum of squared errors, 

in order to obtain the parameters, namely the number of neurons and 

the type of kernel functions, needed for training. The FN learning 

process consists of initial network creation, modification of the initial 

network, and selection of the best model. More details can be found in 

[25]. 
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Figure 12.5. Illustration of the Generalized Associativity Functional 

Network. (a) Initial network (b) simplified network [24] 

 

Advances in Artificial Intelligence Hybrid and Ensemble 

Techniques in IDS 

Ensemble and hybrid techniques are becoming increasingly popular 

[25, 26]. Both methodologies have improved the performance of 

machine learning systems and have been successfully applied in many 

real world problems. The increased popularity of hybrid intelligent 

systems in recent times lies in their extensive success in many real- 

world complex problems. A key prerequisite for the merging of 

technologies is the existence of a "common denominator" to build upon 

[25]. The basic idea underlying an ensemble learning method is 

employing multiple learners to learn partial solutions to a given 

problem and then integrating these solutions to construct a final or 
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complete solution to the original problem [26]. However, there are 

several open issues in ensemble learning. For a given task, one of them 

is how to automatically generate an ensemble structure for taking 

advantage of available learners whose capabilities have been well 

studied or known. 

Fuzzy Neural Networks with Genetic Algorithms 
One of the implementations of hybrid techniques is [2] which 

proposed a Fuzzy Neural Network assisted with GA (FNN/GA) which 

used the FNN component to make a restriction of membership function 

to be some specific shape such as triangular, trapezoidal or bell-shaped 

and then tuning the parameters of the membership function with the GA 

component to achieve the mapping accuracy. The FNN consists of 4 

layers. Layer 1 with 4 nodes consists of input and output nodes 

representing input and output linguistic variables respectively. Nodes in 

layer 2 are those that act as membership functions and each is 

responsible for mapping an input linguistic variable into a possibility 

distribution for that variable. Thus, together, all the layer 3 nodes 

formulate a fuzzy rule basis. Links between layer 3 and 4 function as a 

connectionist inference engine. The training algorithm consists of first 

constructing and training the FNN using the back-propagation 

algorithm to obtain membership functions and the consequent weight 

vector. The membership functions with a group of line segments that 

are obtained by partitioning and sampling the line segments are also 

constructed and finally, for every partition point, the GA is used to 

search the optimal value and to obtain the optimal membership 

functions. 
Hybrid of Functional Network, Support Vector Machines and 

Type-2 Fuzzy Logic 
Another recent implementation of hybrids is [27] which combined 

the excellent features of Functional Networks (FN), Support Vector 

Machines (SVM) and Type-2 Fuzzy Logic (T2FL). There were two 

versions of this hybrid: FN-Fuzzy Logic-SVM (FFS) and FN-SVM-

Fuzzy Logic (FSF). In the FFS version, after the FN was used to select 

the most relevant variables from the input data, the best variables were 

passed on to the T2FL block where uncertainties were removed and the 

SVM block performed the training and prediction tasks. In the FSF 

version, the best variables from the FN block were passed through the 
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SVM block where they transformed to a higher dimensional space for 

the T2FL block to use for the training and prediction tasks. An 

improvement to the FFS and FSF hybrid models are presented in [28]. 
Fuzzy Linear Programming with Support Vector Machines 
Another dimension to hybridization of AI techniques was presented 

by [17] who proposed a combination of Fuzzy Linear Programming 

(LP) with SVM to resolve the seemingly unclassifiable regions for 

multiclass problems. The LP-SVM was trained to define the 

membership functions in the directions orthogonal to the decision 

functions. Then by the minimum or average operation for these 

membership functions, a membership function for each class was 

defined and finally, the one-against-all and pair-wise Fuzzy LP-SVMs 

for some benchmark datasets were evaluated to demonstrate the 

superiority of the proposed Fuzzy LP-SVMs over conventional LP-

SVMs. 

12.2 Multi-agent based approach of botnet detection in 

computer systems 

Introduction 

The analysis of the situation of development of the malware shows 

dynamic growth of its quantity. The most numerous classes of malware 

during last 10 years are Trojans and worm-viruses which spread and 

penetrate into computer system (CS) for the purpose of information 

plunder, DDoS attacks, anonymous access to network, spy actions, 

spamming that represents real danger [29, 30] (Fig. 12.6). 

 
Figure 12.6: Malware rate in 2014 

Despite the regular refinement of methods of the search, detecting 

and removal Trojans and worm-viruses of different function, regular 

updates of anti-virus bases, the numerous facts of plunder of the 
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confidential information are observed and the various destructive 

operations are performed which lead to serious negative consequences.  

Common techniques used in modern antivirus software of Trojans’ 

and worm-viruses’ detection are signature-based one, code emulators, 

encryption, statistical analysis, heuristic analysis and behavioural 

blocking [30]. However, the accuracy of detection of new malware is 

low, and in recent years it has constantly decreased [31] (Fig.12.7, 

Fig.12.8). One of the main reasons for the lack of detection accuracy is 

cooperating of Trojans with worm-viruses.  

 
Figure 12.7: Worm-viruses’ detection in 2008 vs 2011 years!!!!!! 
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Figure 12.8: Trojans’ detection in 2008 and 2011 years.  

 

Over the past 3-5 years there is a clear dynamics of conception of a 

new malware class – botnet (Fig. 12.9). 

Botnet today represents a real threat to computer systems users; the 

accuracy of its detection is low because of its complicity. 

 

 
Figure 12.9: Place of Botnet among all malware 

That is why the actual problem of safety of various computer 

systems is a development of new more perfect approach of antivirus 

detection. One of possible way to increase the detection efficiency is a 

construction of virus multi-agent system in computer system for new 

botnet detection. For this purpose it is necessary to develop the 

principles of such system functioning; to describe the communication 
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and functions’ features of agents; to formalize sensors’ and effectors’ 

properties. 

Multi-agent system of botnet detection 

To increase the efficiency of botnet detection we involve multi-

agent systems that will allow us to make antivirus diagnosis via agents’ 

communication within corporate network [32]. 

Usage of multi-agent systems for botnet detection requires a 

generation of agents set with some structure and functionality [33]. 

Each agent should implement some behaviour and should include a 

set of sensors (components that directly is effected by the computer 

system), a set of effectors (components of that effect the computer 

system) and CPU - information processing unit and memory [34]. 

The scheme of antiviral agent multi-agent system operation is 

shown in Fig. 12.10. 

 
Figure 12.10: The scheme of antiviral agent multi-agent system 

operation. 

Let us present agent as a tuple: 

n654321 S,...S,S,S,S,S,S,K,R,PA  ,    (1) 

where P – processor, which provides integration and processing 

data, processing optimal response to the incoming information about 

the computer system state, decision on the steps to be done. 
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R – rules, that change agent behaviour according to incoming 

information. 

K – agent knowledge – part of rules and knowledge, that could be 

changed during its functioning. 

S1 – communication sensor, communicates with other agents via 

network protocols. 

S2 – agent of signature-based analysis; virus detection is performed 

by searching signatures in database [35]; all signatures are detectors 

generated using the modified negative selection algorithm [36,37]; 

antivirus system alarms if computer is infected. 

S3 – checksum sensor. 

S4 – sensor of heuristics analysis; detection is performed in monitor 

mode with the use of fuzzy logic; sensor makes a conclusion about the 

danger degree of computer system infection with a new botnet [38]. 

S5 – sensor of comparative analysis through application 

programming interface API and driver disk subsystem via IOS. If data 

on file received the first way differ from those obtained by the second 

way, file is infected. 

S6 – sensor - "virtual bait"; it is used for modelling of possible 

attacks or unauthorized access and it allows to learn the strategy of 

attacker and to identify a list of tools and actions intruder can do on 

infected computer system. If a remote administration of network is not 

carried out, all incoming ssh-traffic is redirected to this sensor. 

The processor processes the input data and determines the level of 

risk of specified object in the computer system. There is a knowledge 

base of trusted software. 

Conviction unit provides knowledge for agent in unusual situations. 

This will reduce the number of false positives in the new botnet 

diagnosis of computer system. The filters system for each sensor 

proposed to establish the risk factors for the evaluation of objects. 

Exceeding the limit values of the coefficients including the experience 

of all agents indicates the computer system infection with botnet. 

Diagnostic information according to their functional properties each 

sensor is submitted. Work results of the checksums and signature 

analysis sensors may not require full engagement of the agent 

functioning for notification of the infection with botnet, but in 
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conjunction with results of other sensors and communication with other 

agents this sensors may assert this signal detection of the botnet. 

Unit of perception holds summary information to the general form 

for further work. Then the information goes to the input of filters. 

Filters reject data generated by trusted programs or units (Fig.12.11). 

Depending on the level of danger detected attacks the coefficients 

are defined by filters. 

 
Figure 12.11: The structure of filtering data unit. 

The data from the filters are to be processed by agent processor 

which determines whether the computer system is infected. Because of 

lack of data, the agent communicates with other agents for similar 

influence of programs’ actions. The availability or absence of such 

information from other agents affects the final agent decision on a 

particular file or process. 

When comparing the results obtained with the conviction unit data 

changes of coefficients and trusted programs are held. 

Communications unit is responsible for encryption and decryption 

of interagents’ information. 

Agent results are transmitted to the effectors, as a means of 

influence on the computer system. If malware is detected agent through 

effectors blocks the process or processes that are responsible for 

performance of some malware and then notifies the user about the 

infection. 

Agent model ensures the integrity of the agent’s structure. It is 

realized by implementation of system checkpoints to provide the 

serviceability of this agent. Also after each checking all agent critical 

elements are stored for later restoring in case of virus attack on 
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antivirus multi-agent system or possible failures in the computer 

system. 

Each agent can activate the recheck the selected number of sensors 

to refine the results. 

In situation when agent cannot communicate with other agent it is 

as autonomous unit and is able to detect different malware relying on 

knowledge of the latest updates and corrections in the trusted software 

baseIt is advisable to keep all the given values. 

Sensor of botnet detection in monitor mode 

A new technique for sensor diagnosis in monitor mode which uses 

fuzzy logic was developed. It is based on behavioural model of 

malware [38]. This sensor enables to make a conclusion about the 

degree of danger of computer system infection by malware. For this 

purpose we construct the input and output linguistic variables with 

names: "suspicion degree of software object" - for the input linguistic 

variable, and "danger degree of the infection” - for output one. 

The task of determination of membership function for input 

variable we will consider as the task of the ranking for each of 

mechanisms (functions) im  of penetration ports jp  with the set of 

indications of danger Z  and a choice of the most possible jp  with 

activation of some function im . Then we generate a matrix of 

advantage ijadv qM  . Elements of given matrix ijq  are positive 

numbers: jiij q/qq  ,  ijq0 ; ijj i q/1q  , 1qii  , l,1j,i  , l  - amount 

of possible results. Elements ijq  of matrix advM  are defined by 

calculation of values of pair advantages to each indication separately 

taking into account their scales }z{Z k ; r,1k   with usage of such 

formula  





r

1k

k
k
jk

r

1k

k
k
ijij pq/pqq .                                                            (2) 

Eigenvector ),...,( m1   is defied by using a matrix of 

advantage. This eigenvector answers maximum positive radical   of 
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characteristic polynomial 0EMadv  . S , where E is an 

identity matrix.  

Elements of vector П ( 1i  ) are identified with an estimation of 

experts who consider the accepted indications of danger. The same 

procedure is performed for all im . As a result we receive a matrix of 

relationship |p,m|V jip  , in which each pair (relationship) im , jp  

value 10   responds.  

Using matrix |p,m|V jip  , we build matrix |p,m|V ji
*
p   in which 

the relationship ( ji p,m ) is used and the elements of this relationship 

have value  max  ( 10 max  ). Using matrix |p,m|V ji
*
p  , we build 

normalized curve for membership function )R(pX
  of an input 

variable.  

Example of possible 20 pairs )y,x( ji  ranked by the suspicion 

degree is given in Fig.7. Formation of function membership and at the 

stages of activation )R(aX
 and executing of the destructive actions

)R(eX
  are similar. 

As a part of the solution of the problem the FIS using Mamdani 

algorithm was realized (Fig. 12.12-13). 

The results of fuzzy inference system 0.804 are interpreted as the 

degree of computer system infection with malware. If the resulting number 

exceeds some adopted threshold of danger antivirus system will block 

actions of the aqueous object. The sensor also transmits information about 

suspicious software to other agents. 
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Figure 12.12: Membership function of fuzzy set “suspicion degree” 

 

 
Figure 12.13: Results of the fuzzy inference system implementation and 

membership function of fuzzy set “suspicion degree” 
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Sensor of botnet detection in scanner mode 

The scanner mode detection involves the following steps: forming a 

set of files to be scanned: system libraries, executables system services 

and device drivers, which can be taken as the samples; generate 

protected sequences and detectors depending on operating system; 

comparison of the protected sequences with detectors at the stage of 

virus scanning; notification about the substitution when the protected 

sequences match with detector; check the suspicion of software actions. 

Thus protected sequences and detectors have format for GNU / 

Linux operating system: 

6xi15xi14xi13xi12xi11xi1
L
i C...C...C,t...t...t,s...s...s,g...g...g,u...u...u,m...m...mD 

,(3) 

where 1xi1 m...m...m - file mode (type, permissions); 2xi1 u...u...u  - 

identifier of the file owner; 31 ...... xi ggg  - identifier of the group 

owner; 4xi1 s...s...s  - file size; 5xi1 t...t...t  - time of last file modification; 

6xi1 C...C..C  - CRC of the file, n,1i  , n – number of detectors. 

Protected sequences and detectors have format for MS Windows 

operating system: 

41312111 ......,......,......,...... zizizizi

W

i CCCaaatttsssD             (4)  

where 1zi1 s...s...s  - file size; 2zi1 t...t...t  - time of last file 

modification; 3zi1 a...a...a  - file attribute (read-only, hidden, system, 

archived); 4zi1 C...C..C  - CRC of the file, ni ,1 , n - number of 

detectors. 

Generation of detectors is performed using the modified negative 

selection algorithm [35, 37, 38]. 

Agents’ functioning 

Let a communication agent message present as a tuple: 

  tMes,,Com ,Com h, g, yx ,           (5) 

where g indicates whether it is a report, order or fetch of 

communication message; h - type of the agent  message; yCom  - 
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message receiver; xCom  - message sender, Mes  - agent message 

content; t – sending time. 

Thus the communication between the units within its sensors before 

attack or intrusion can be represented: 

 0int  t,Inf P,Se,N,R,   1int  t,Inf M,P,Int, F,   

 2M  t,Inf Se,P,C,O,   2M  t,Inf Se,P,S, O,   

 2int  tSh,,Inf E,P,R, O,   2int  t,Inf Sh, P,I, O, ,                   (6) 

where R - report, O - order, F  - fetch of the communication 

messages; N  - new attack, Int - intrusion, C - continue, S - stop, Red - 

redirect, I  - initialization as a type of the massage; P – agent processor; 

Se – sensors S1..S5; Sh – virtual bait; E – effectors; - are respectively 

the sender and receiver of the message; Inf - the content of the message; 

t - time of the message sending. 

The communication (interactions) between the units within its 

sensors after attack or intrusion can be represented: 

AttackApproved  3int  t,Inf M,P,At, R,   

 3int  t,Inf E,P,At, R,   3int  t,Inf Sh,P,S, O, 

 3int  t,Inf Se,P,At, R,                                                       (7) 

AttackDisapproved   3int  tSe,,Inf Sh,P,S, O,    

 3int  tSe,,Inf E,P,Red,O,   3int  tSh,,Inf Se,P,C,O, ,  (8) 

where At means – attack to computer system. 

Let us formalize the function F which identifies the worth of agent 

Al at time t and associates a real number to each of agents as the worth 

of that agent: 

RT2:F Ag  , 






 

lk

lkd

1k

2
lk

a
l

Nt

1
N

tT

1
)t,A(F , 

kl,)t,A(F)t,A(F)t,AA(F kljl                                   (9) 

where Ag - a set of agent units which are formed by combination of 

units with different types; Ta - the time of performing diagnosis 

actions; d - the number of agent components types; Nlk - the number of 

sensors of type k in agent Al and lk  - the sensors weight of type k 

within the agent no matter of their amount. 

A good incentive for agents at the initial moments of reporting 

intrusion can be provided by sensors Se in the system in the sense that 
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they will form better coalitions and thus collaborate. As we can see in 

(6) no agent in AMAS can get more advantage by changing its actions. 

Also the function F does not increase by changing the agents set. 

Experiments 

Software for realisation of antivirus multi-agent system on proposed 

techniques was developed. 

Interface results window of botnet diagnosing of computer system is 

shown in Fig. 12.14. 

 
Figure 12.14: Software of botnet detection 

For the experimental determination of the efficiency of developed 

software 217 programs with the botnets’ properties were generated and 

launched on different amount of workstations (table 12.1). 

Table 12.1: Accuracy of botnet detection with developed software. 

     Workstations 

        (agents) 

Botnets 

(number) 

16 24 32 40 

SDbot (80) 74% 75% 78% 81% 

Rbot (49) 61% 63% 64% 67% 

Agobot (54) 60% 60% 62% 63% 

Spybot (18) 65% 68% 71% 75% 
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Mytob (16) 54% 57% 60% 63% 

Accuracy, % 62.8% 64.6% 67.8% 69.8% 

 

Accuracy of botnet detection of the developed software in comparison 

with known is shown in Fig. 12.14, it shows growth of accuracy by 3-5% 

in comparison with known antivirus software. 

Also we performed false detection experiments and it is about 3-7%. 

But with the growth of agents amount false detection is reducing to 2-4%. 

Conclusions 

This section showed an approach for the botnet detection based on 

multi-agent system is proposed. A technique for sensor diagnosis in 

monitor mode which uses fuzzy logic is presented. The principles of 

communication between the agent’s units before and after attack on the 

computer system were described. A new technique for sensor diagnosis 

in scanner mode with generation of detectors using the modified 

negative selection algorithm was illustrated. 

12.3 Technique for bots detection which use polymorphic code 

Introduction 

Today the problem of cyber security is very important because the 

data protection problem is extremely relevant. 

Virus detection is a very important task because the information 

pilfering, anonymous access to network, spy actions, spamming are 

observed.  

The most dangerous occurrence in the virus elaboration is botnet - 

network of private computers infected with malicious software and 

controlled as a group without the owners' knowledge, e.g. to send spam 

[39].  

Some examples of the most dangerous botnet are Virut, which have 

infected over 3 million unique users computer systems according to the 

report "Kaspersky Lab" [40]; botnet Zeus, is designed to attack servers 

and intercept personal data (damage for European customers is about € 

36 million); botnet Kelihos, which performs abduction of passwords 

stored in the browser, sends spam, steals users’ credentials. All 

mentioned botnets include the self-defense modules, which have 

contributed to their rapid spread and inefficient detection [41,42]. 
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These facts indicate a lack of effectiveness of the known detection 

methods. That is why an important task is to build new techniques and 

approaches to identify botnet, which will take into account its 

properties and availability of hiding module. 

Related works 

To conceal the presence of botnet, the polymorphism technology is 

used. 

For polymorphic malwares, the decryptor part of the virus is 

mutated at each infection, thanks to common obfuscation techniques: 

“garbage-commands” insertion, register reassignment, and instruction 

replacement. In order to detect such high-mutating viruses, several 

solutions have been developed. 

Byte-level detection solutions. Current antiviral solutions use 

different techniques in order to detect malicious files. The techniques 

are: pattern-matching, emulation, dynamic behavioral detection, and 

various heuristics [43]. Authors focused on pattern-matching 

techniques (heuristics are aimed at new malware detection and are 

subject to a high false positive rates, while emulation may not always 

succeed; dynamic malware detection, while achieving good results, is 

out of the scope of this chapter). Because they have time and 

complexity constraints, the models and detection algorithms used in 

today’s antiviral products are relatively simple. The detection algorithm 

consists of determining whether a given binary program is recognized 

by one of the viral signature. Since regular expressions are used as 

signature descriptions, antivirus products may use finite state 

automatons to perform linear-time detection. 

Another emerging approach consists of using machinelearning 

techniques in order to detect malicious files [44]. Several models have 

been tested: data-mining [45], Markov chains on n-grams [46,47], 

Naive Bayes as well as decision trees [48]. These methods provide an 

automatic way to extract signature from malicious executables. But 

while the experiments have shown good results, the false positive and 

negative rates are still not negligible. 

Structural and semantic models. In [49,50], graphs are used as a 

model for malwares. The control flow graph (CFG) of a malware is 

computed (when possible) and reduced. Then, subsets of this graph are 
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used as a signature. Detection of a malware is done by comparing a 

suspicious file against these sub-CFGs, and seeing if any part of the 

CFG of the file is equivalent (with a semantics-aware equivalence 

relation for [51]) to a sub-CFG in the viral database. The idea is that 

most of mutation engines’ obfuscations do not alter the control flow 

graph of the malware. 

CTPL is a variant of CTL [52], able to handle register-renaming 

obfuscation. Detection is done via model checking of API call 

sequence, while signatures extraction is done manually. 

A promising approach was initiated by Preda et. al [53]. It consists 

in using the semantics of a metamorphic malware as a viral signature. 

None of them provides an automated process to extract this grammar 

for a given malware. 

Background 

In [54] botnet detection technique for determining the degree of 

presence of botnet based on multi-agent systems was proposed. Offered 

method was based on analyzing the bots actions demonstration in 

corporate area network. Technique provides propose the construction of 

a schematic map of connections which is formed by corresponding 

records in each antiviral agent of multi-agent systems for some 

corporate area network. All agents based on this information can 

perform communicative exchange data to each other. Proposed method 

is based on analyzing the bots actions demonstration in situations of 

intentional change of connection type in probably infected computer 

system.  

During computer system (CS) is functioning the antivirus detection 

via sensors available in an each agent is performed. The antivirus 

diagnosis results are analyzed in order to define which of sensors have 

triggered and what suspicion degree it has produced. If triggering 

sensors are signature 1S  or checksum 2S  analyzers, the results 1SR  and 

2SR  are interpreted as a 100% malware detection. In this situation, the 

blocking of software implementation and its subsequent removal are 

performed. 

For situations when the sensors of heuristic 3S  and behavioral 4S  

analyzers have triggered, the suspicion degrees 3SR  and 4SR  are 
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analyzed, and in the case of overcoming of the defined certain threshold 

n, 100),max( 43  SS RRn , the blocking of software implementation and 

its subsequent removal are performed. If the specified threshold hasn’t 

overcome the results 3SR , 4SR  are analyzed whether they belong to 

range nRRm SS  ),max( 43  in order to make the final decision about 

malware presence in CS. If the value is mRR SS ),max( 43  than the new 

antivirus results from sensors are expected. In all cases the antiviral 

agents information of infection or suspicion software behavior in 

computer system is must be sent out to other agents. 

The important point of this approach is to research the situation 

where the results of antivirus diagnosis belong to range 

nRRm SS  ),max( 43 . In this case, the antiviral agent of CS asks other 

agents in the corporate area network about the similarity of suspicion 

behavior of some software that is similar to the botnet. After that the 

analysis of botnet demonstrations on computer systems of the corporate 

area network and the definition of the degree of a new botnet presence 

in the network was determined. The presence of botnet in the corporate 

area network was concluded by the fuzzy expert system that confirmed 

or disproved this fact. 

The developed system has been demonstrating the efficiency of 

botnet detection at about 88-96%.  

As some botnets use the technology of hiding malicious code 

(polymorphic code) today, mentioned multi-agent systems for botnet 

detection, where bots used such technology, have been tested. Test 

results were unexpected. It turned out that the developed system was 

not fully adapted to detect polymorphic code, and efficiency decreased 

by 7-12%. Also after retest some bots were detected, which had been 

previously identified and removed (all bots contained the polymorphic 

code). 

That is why the actual problem is a development of a new botnet 

detection technique that will find out the polymorphic code in bots. 

Technique for bots detection which use polymorphic code 

In order to develop the technique we have to investigate the 

properties of polymorphic viruses. They create varied (though fully 

functional) copies of themselves as a way to avoid detection by anti-
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virus software. Some polymorphic virus use different encryption 

schemes and require different decryption routines. Thus, the same virus 

may look completely different on different systems or even within 

different files. Other polymorphic viruses vary instruction sequences 

and use false commands in the attempt to thwart anti-virus software. 

One of the most advanced polymorphic viruses uses a mutation engine 

and random-number generators to change the virus code and its 

decryption routine [55]. 

Levels of polymorphism 

Today 6 polymorphism levels are known [56]. Let us build models 

for all the levels of polymorphism. 

The first level of polymorphism 

Viruses of the first polymorphism level use the constant set of 

actions for different decryption modules. They can be detected by some 

areas of permanent code decryption. 

Let us present the virus model for the first level of polymorphism as 

a tuple 

)R,P,Q,,U,G,X,V,A(M1  ,  

where naaA ,...,1  - a set of commands of some program which can 

be infected with virus; V – a set of virus commands for selection of one 

of the present decryption modules in virus, mV  ,...,1 ; X - a set of 

decryption modules which are present in virus, y1 x,...,xX  ; G - set of 

virus commands of the xi decryption module, }g,..,g{G
xixi1 

 ; U - a 

set of malicious commands (virus body), wuuU ,...,1 ;   - a function 

for selection of decryption module xi, ,XV:   Xxi  ; Q – a 

function of creation the malicious commands (virus body) by the means 

of commands Gg
ix   of the decryption’s module xi, UG:Q

ix  ; P – 

a function of creation the polymorphic virus behavior R by the means 

of inserting the malicious commands U into program’s commands A, 

RUAP : ; function of creation the polymorphic virus behavior R 

without inserting malicious commands U into program’s commands A 
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only by the means of the decryption virus body U appears as 

RU:Q  .  

Thus, polymorphic virus has its behavior that is formed by some 

sequences of commands. Based on this we can build the virus behavior 

as sequences.  

Virus behavior 
A
1R of the first polymorphism level which is 

created by the means of inserting the malicious commands U into 

program’s commands A and virus behavior 1R  which is created 

without inserting the malicious commands U into program’s commands 

A can be presented as sequences:  

w1n1xx

A
1 u...ua...ag...gR


 , w1xx1 u...ug...gR


  where values 

,  indicate that possible virus commands of decryption module 


 xx

g...g  can vary for different decryption modules x ,   - number 

of the selected decryption module. 

The second level of polymorphism 

The second level of polymorphism includes viruses, which 

decryption module has constant one or more instructions. For example, 

they may use different registers or instructions in some alternative 

decryption module. These viruses can also be identified by a specific 

signature in the decryption module [56]. 

Let us present the virus model for the second level of 

polymorphism as a tuple 

),,,,,(2 RZPUEAM 

 

where A - a set of commands of some program which can be 

infected with virus, }a,...,a{A n1 ; E – a set of virus commands of the 

decryption module, )...1( eeE  ; U - a set of malicious commands 

(virus body), wuuU ,...,1 ; Z – a function of creation the malicious 

commands (virus body) by the means of selection of the present 

decryption module’s commands, UE:Z  ; Р -

 

a function of creation 

the polymorphic virus behavior R by the means of inserting malicious 

commands U into program’s commands A, RUAP : ; function of 
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creation the polymorphic virus behavior R without inserting malicious 

commands U into program’s commands A appears as: RUE:Z  . 

Virus behaviors 
A
2R and 2R  of the second polymorphism level can 

be presented as sequences: 

w1n1
A
2 u...ua...ag...eR  , w12 u...ug...eR  , where values ,  

indicate that possible virus commands  g...e  of decryption module can 

vary for each new start of virus. 

The third/fourth levels of polymorphism 

Viruses that use decryption commands and do not decrypt the virus 

code and have a “garbage-commands” refer to the third level of 

polymorphism. These viruses can be determined using a signature if all 

the “garbage-commands” are discarded. Viruses of the fourth level use 

the interchangeable or "mixed" instructions for the decryption without 

changing the decryption algorithm. 

Let us present the virus model for the third and fourth levels of 

polymorphism as a tuple 
),,,,,,(4,3 RDYBUEAM 

 

where A - a set of commands of some program which can be 

infected with virus, }a,...,a{A n1 ; E – a set of virus commands of the 

decryption module, )...1( eeE  ; U - a set of malicious commands 

(virus body), }u,...,u{U w1 ; B – a set of the “garbage-commands”, 

tbbB ,...,1 ; Y – a function of creation the malicious commands (virus 

body) by the means of decryption module, that integrates the “garbage-

commands” into malicious commands, UBE:Y  ; D - a function of 

creation the polymorphic virus behavior R by the means of virus body 

inserting malicious commands U into program’s commands A, 

RUA:D  ; function of creation the polymorphic virus behavior R 

without inserting malicious commands U into program’s commands A 

appears as: RBE:Y  . 

Virus behaviors 
A
3R , 

A
4R of the third and fourth polymorphism 

levels which are created by the means of decryption module, that 

integrates the “garbage-commands” into malicious commands and 
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inserts malicious commands U into program’s commands A and virus 

behaviors 3R , 4R  without inserting malicious commands U into 

program’s commands A can be presented as sequences: 

 bu...bua...ae...eR w1n11
A
3 ,  bu...bue...eR w113 , 

 bu...bua...ae...eR n11
A
4 ,  bu...bue...eR 14 , where values , ,

,  indicate that possible “garbage-commands” and virus commands 

 bu...bu  can vary for each new start of virus. 

The fifth level of polymorphism 

The fifth level of polymorphism includes all properties of the above 

levels, and the decryption module may use different algorithms for 

decrypting the virus code. 

Let us present the virus model for the fifth level of polymorphism 

as a tuple 

)R,D,H,,U,G,X,B,V,A(M5   

where A - a set of commands of some program which can be 

infected with virus, }a,...,a{A n1 ; V – a set of commands for selection 

of one of the present decryption modules in virus, },...,{V m1  ; X - a 

set of decryption modules which are present in virus, y1 x,...,xX  ; G - 

a set of virus commands of the decryption module xi, }g,..,g{G
xixi1 

 ; 

U - a set of malicious commands (virus body), wuuU ,...,1 ;   - a 

function for selection of decryption module xi, ,XV:   ,Xxi  ; B - 

a set of the “garbage-commands”, hbbB ,...,1 ; Н - a function of 

creation the malicious commands (virus body) by the means of 

selection of the present decryption module’s xi commands Gg
ix   and 

generation the order of its execution, UGB:H
ix  ; D - a function of 

creation the polymorphic virus behavior R by the means of inserting 

malicious commands U program’s commands A, RUAD : ; 

function of creation the polymorphic virus behavior R without inserting 

malicious commands U into program’s commands A by the means of 
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selection of the present decryption module’s xi commands Gg
ix   and 

generation order of its execution appears as RU:D  . 

Virus behaviors 
A
5R and 5R  of the fifth polymorphism level can be 

presented as sequences: 




 bu...bua...ag...gR n1xx

A
5 , 


 bu...bug...gR

xx5 , 

where values ,  indicate that possible virus commands of decryption 

module 


 xx
g...g  can vary for different decryption modules x ,   - 

number of the selected decryption module, values , , ,  indicate that 

possible “garbage-commands” and virus commands  bu...bu  can 

vary for each new start of virus. 

The sixth level of polymorphism 

Viruses of the sixth level of polymorphism consist of software units 

and parts that "move" within the body of the virus. These viruses are 

also called permutating. 

Let us present the virus model for sixth level of polymorphism as a 

tuple 

)R,C,U,E,A(M6   

Where A - a set of commands of some program which can be 

infected with virus, }a,...,a{A n1 ; E - a set of decryption module’s 

commands, 


eeE ...1 ; wuuU ,...,1  - a set of malicious commands 

(virus body); С – a function of creation the polymorphic virus behavior 

R formed by program’s commands, decryption commands and 

malicious commands as blocks in some order, RUEA:C  ; a 

function of creation the polymorphic virus behavior R formed only by 

the decryption commands and malicious command as blocks in some 

sequence appears as: RUE:C  .  

Virus behaviors 
A
6R and 6R  of the sixth polymorphism level can 

be presented as sequences: 
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 ua..uaea..eaR n1ii1
A
6 ,  uea...aueaR n21

A
6 , 

 u..ue..eR6 ,  ue...ueR6 , where values , , ,  indicate 

that possible virus commands of decryption module and malicious 

commands  u..ue..e  can vary for each new start of virus. 

Polymorhic code detection sensor 

To detect botnet that use polymorphic code, the inclusion of a new 

sensor S7 for agent of the multi-agent system is proposed. This sensor 

must be a virtual environment that allows the emulation of execution 

some specific action towards the potentially malicious software. 

Responses to the actions allow to conclude that polymorphic code is 

present in it. Taking into account the properties of polymorphic viruses, 

sensor S7 have to perform: 

- provocative actions against probably infected file; 

- restarts of the suspicious file for probably modified code 

detection; 

- behavior analysis for modified code detection, based on the 

principles of known levels of polymorphism. 

Provocative actions mean the identification of the polymorphic 

viruses’ properties to create their own copies and to change their body 

when they are removed. This property often leads to the fact that the 

original virus can be found and removed, and its new copy will be 

invisible to antivirus. 

Restarts of the suspicious software can show the possible change of 

the program body as a result of decryption. Detection such change is 

possible due to the construction of "fingerprints" of reference K and 

modified K' files and their subsequent comparison. "Fingerprints" K 

and K’ are formed by a defined binary sequence  ,,,,K , 

where   - file name;   - file size;   - last time of modification;   - 

system attribute;   - 128 byte code MD5.  
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Restarts of the suspicious software are performed by the 

algorithm: 

Form the “fingerprint”  K for file_M 

for i=1 to p times do  

  execute file_M 

  Form the “fingerprint” K’ 

  if K< >K’ then sensor S7 notifies processor of the agenti to 

block file_M; 

Algorithm 12.1. Detection the polymorphic mutation in a suspicious 

file by its restarts 

Sensor S7 also provides the behavioral analyzer, which evaluates 

the program’s actions with taking into account the models of 

polymorphic viruses of different levels. Based on knowledge of the 

polymorphic viruses’ behaviors and botnet behaviors it is possible the 

botnet detection by comparing the known behaviors with the new ones. 

Identification of polymorphic code is performed with taking into 

account the rejection of possible “garbage commands”, the 

permutations of commands, commands for decryptor selection, 

decryptor’s commands etc. Behaviors are represented by sequences that 

are compared. 

In order to perform the comparison the reference behaviors with the 

potentially malicious behavior, the approximate string matching algorithm, 

developed by Tarhio and Ukkonen [57], is used. It solves the k differences 

problem. Given two strings, text n ...21  and pattern m ...21  

and integer k, the task is to find the end points of all approximate 

occurrences of   in  . An approximate occurrence means a substring 

’ of   such that atmost k editing operations (insertions, deletions, 

changes) are needed to convert  ’ to  . The algorithm has scanning and 

checking phases. The scanning phase based on a Boyer Moore idea 

repeatedly applies two operations: mark and shift. Checking is done by 

enhanced dynamic programming algorithm. The algorithm needs time 

O(kn)) [58]. 

Based on knowledge of the possible botnet behaviors of bots there 

were generated 200 bots’ behaviors. Taking into account the knowledge 

of the polymorphism levels there were generated 10 000 polymorphic 

behaviors. Each of them is represented by a sequence. The alphabet of 
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sequences is defined by a set of API-functions }...{ 1 f , which are 

the base for malware construction. For the experiment the behavior of 

three well-known bots [59] were constructed and investigated, which 

were "unknown" with respect to present base behaviors. These bots 

used three levels of polymorphism. The experimental results of the 

approximate string matching are presented in Table 12.1. 

Table 12.1. The experimental results of the approximate string 

matching for different values of length R and parameter k 

 Alphabet 

  

Length of 

sequence R 

k-difference 

parameter 

Number of 

found strings 

P1 

300 38 0 0 

300 38 2 0 

300 38 3 0 

300 38 4 1 

300 38 5 2 

P2 

300 93 0 0 

300 93 2 0 

300 93 3 1 

300 93 4 2 

300 93 5 7 

P3 

300 71 0 0 

300 71 2 1 

300 71 3 4 

300 71 4 14 

300 71 5 22 

 

The results showed that an exact match (k=0) had not found a 

solution, however, when k=2, k=3 the number of solutions was 

sufficiently small. With increasing k the number of solutions was 

growing rapidly, but the search time for matches also increased. Thus, 

the experiments proved that for the detection of the similar suspicious 

behavior it was enough to lay down parameter k=4. In practice, the 

sensor s7 stops the search approximate matches when it detects the first 

match. 
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Based on the concept of antivirus multi-agent system functioning, 

each agent is waiting for triggering of heuristic S3 or behavioral S4 

sensors. If one of them have triggered or the fact of file unpacking has 

been detected then the suspicious file is placed in the sensor emulator 

S7. Algorithm of seansor S7 functioning is shown below. 

for i=1 to k agents do  

while agenti is_on do  

if ( trueRS 3  or trueRS 4 ) and ( nRRm SS  ),max( 43 )  

then probably infected file_M is placed into sensor S7 

if file_M makes unpacking  

then file_M is blocked and is placed in sensor S7 

while file_M is in sensor S7 do 

if provocative actions regarding to file_M have detected the new file 

creation or new file creation with mutation 

then sensor S7 notifies processor of the agenti to block file_M; collected 

information about file_M is sent to other agents 

If restarts have detected the file_M body mutation 

then sensor S7 notifies processor of the agenti to block file_M; collected 

information about file_M is sent to other agents 

else behavior analysis is being performed 

if result of behavior analysis RS7=true  

then sensor S7 notifies processor of the agenti to block file_M; collected 

information about file_M is sent to other agents 

else file_M leaves the sensor S7 

Algorithm 12.2. Sensor S7 functioning algorithm 
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Figure 12.15 Sensor S7 functioning in agent of the multi-agent system 

Experiments 

In order to determine the efficiency of the proposed technique for 

botnet detection several experiments were held. Bots used polymorphic 

code. Experiments were carried out on the base of developed multi-

agent system that is functioning in the corporate area network. The 

main aim of the experiment was to determine the effectiveness of the 

botnet detection with the use of sensor S7 and without it. 

For the implementation of an experiment 50 programs with the 

botnet properties (Agobot, SDBot та GT-Bot) without polymorphic 

code were generated. Also 50 programs (its analogs) with polymorphic 

code were generated (programs contained only first four levels of 

polymorphism). During the experiment computer systems in the 

corporate area network were infected only by one botnet and 

experiment was lasting during 24 hours. As a virtual environment for 

sensor S7 functioning the virtual machine Oracle VirtualBox [60] was 

used; as a host operating system MS Windows 7 was used.  

The results of the experiment are shown in table 12.2. 

 

Table 12.2 The results of the experiment for 50 programs 

 Detection Fault positives 

% number number 

Results of detection without 

sensor s7; 

Programs do not use 

polymorphic code 

90 45 5 
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Results of detection without 

sensor s7; 

Programs use polymorphic code 

76 38 5 

Results of detection with sensor 

s7; 

Programs use polymorphic code 

92 46 6 

Experimental results showed the growth of the botnet detection 

efficiency which bots used polymorphic code by means of the multi-

agent system including sensor S7. 

In order to compare developed antiviral multi-agent system 

(AMAS) with other antiviruses some experiments were held. We have 

tested 5 antiviruses with 50 generated bots, which contained 

polymorphic code. Results are presented in Fig. 12.16. 

 
Figure 12.16 Test results (14-24.12.2013) 

Conclusions 

This section demonstrates the technique for botnet detection where 

bots use polymorphic code. Performed detection is based on the multi-

agent system by means of antiviral agents that contain sensors. For 

detection of botnet, which bots use polymorphic code, the levels of 

polymorphism were researched and its models were presented. 

Developed sensor performs provocative actions against probably 

infected file, restarts of the suspicious file for probably modified code 

detection, behavior analysis for modified code detection, based on the 

principles of known levels of polymorphism. 
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Results of the experiments have demonstrated the increase of the 

botnet detection efficiency by 16% with involving the sensor S7 

compared to its absence. Thus the growth of false positives is not 

significant. 

The disadvantage of the proposed technique is sufficiently large 

computational complexity of the behavior analysis that is based on the 

principles of polymorphism levels. 

 

Advancement questions 

11. What kind of process is called Intrusion Detection System 

(IDS) and what is its purpose? 

12. What are the three major components and categories of an IDS? 

13. Name general characteristics of the basic categories of IDS. 

14. What is the difference between AI (Artificial Intelligence) and 

CI (Computer Intelligence)? 

15. What are the three common algorithms of the Machine 

Learning concept? 

16. What is the Artificial Neural Networks technique and how they 

could be applied in IDS? 

17. What are the main dificaties of the polymorphic code detectin? 

18. Name all existing levels of polymorphism and how they can be 

detected? 

19. Explain the idea of polymorphic code detection using sensor 

approach.  

20. What is the virtual the emulation of execution some specific 

action towards the potentially malicious software for? 
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Background: Concepts 

In this chapter, we give an overview of the main phenomena 

concepts and properties appearing in the development of resilient 

distributed systems. We consider the notion of “resilience” as an 

evolution of the dependability concept and discuss how goal-oriented 

development facilitates engineering of resilient systems. In particular, 

we focus on the dynamic system reconfiguration as the main 

mechanism for achieving system resilience. 

Resilience Concept 

Resilience is a fairly new concept that has been intensively 

discussed over the last years. Though various interpretations exist, we 

rely on the dependability-based definition that was proposed by Laprie 

[1,2,3]: 

System resilience is used to designate an ability of the system to 

persistently deliver its services in a dependable way even when facing 

changes. 

Resilience is an evolution of the dependability concept that focuses 

on studying the impact of changes on system trustworthiness. A change 

is a broad term that may be viewed differently in various domains. The 

changes can be systematized according to their nature, prospect and 

timing issues [3]: 

-  nature: functional, environmental or technological; 

-  prospect: foreseen, foreseeable, unforeseen (or drastic) changes; 

-  timing: short term (e.g., seconds to hours), medium term (e.g., 

hours to months) and long term changes (e.g., months to years). 

Resilience extends the dependability concept by emphasizing the 

need to build systems that are flexible and adaptive. It requires 

implementation of the advanced reconfiguration mechanisms and 

flexible strategies for efficient utilization of the system components to 

cope with changes and tolerate faults [4]. 

Since resilience is an evolution of the notion of dependability, 

majority of its concepts are grounded in the classical definitions 

proposed for dependability that are discussed next. 
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Dependability: Basic Definitions 

Dependability is one of the main requirements that we impose on a 

broad range of computer-based systems. It can be defined as the ability 

of a system to deliver services that can be justifiably trusted [5, 6]. 

Dependability is an integrated concept that includes such key attributes 

as: 

-  availability: the ability of the system to provide a service at any 

given instant of time; 

-  reliability: the ability of the system to provide a service over a 

specified interval of time; 

-  safety: the ability of a system to deliver a service under given 

conditions without catastrophic consequences to the user(s) and 

environment; 

-  integrity: the absence of improper system alterations; 

-  maintainability: the ability of a system to be restored to a state 

in which it can deliver correct service; 

-  confidentiality: the absence of unauthorized disclosure of 

information. 

Different threats may introduce undesirable deviations in service 

provisioning and thus jeopardise dependability. Traditionally, threats 

can be classified into the following categories: failures, errors and 

faults [5, 6]. Essentially, these terms designate the chain of propagation 

of a fault to the system boundary as defined below: 

-  a failure: an event that occurs then the delivered service deviates 

from the desirable (correct) service; 

-  a error: an internal system state that may lead to the subsequent 

system failure; 

-  a fault: a defect within the system. By their nature, faults can be 

internal (e.g., a software bug, a memory bit “stuck”) or external 

(e.g., a production defect, a human mistake, an electromagnetic 

perturbation). In general, a fault might be an origin of an error. 

However, not all faults produce errors. 

Traditionally, engineering dependable systems relies on four main 

techniques: fault prevention, fault removal, fault forecasting and fault 

tolerance [5, 6]. 
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Fault prevention is a set of techniques aimed at preventing an 

introduction of faults during the system development process. It 

comprises, among others, a choice of rigorous development 

methodologies as well as adopting a suitable standard of quality. Fault 

removal techniques are used to identify and remove errors in the 

system. The activities of fault removal process include system 

verification as well as corrective and preventive maintenance of the 

system. Fault forecasting methods are based on prediction and evalu-

ation of the impact of faults on the system behavior. The evaluation 

might have both qualitative and quantitative aspects. The qualitative 

assessment helps to identify and classify failures as well as define 

combinations of component faults that may lead to a system failure. 

The quantitative analysis is performed to assess the degree of 

satisfaction for the required attributes of dependability. Finally, fault 

tolerance techniques are used to develop the system in a such way that 

it is able to continue its functioning despite the faults. 

All these techniques provide the designers with different means to 

cope with faults. The techniques complement each other and allow the 

designers to ensure a high degree of system dependability. The fault 

prevention is implemented via formal modelling, fault removal employs 

theorem proving to verify various system properties, while probabilistic 

model checking and discrete event simulation are used for fault 

forecasting. Moreover, we extensively rely on a variety of fault 

tolerance mechanisms in the development of resilient systems. Since 

faults constitute the most common class of changes with which a 

resilient system should cope, next we give an overview of the fault 

tolerance concepts in more detail. 

Fault Tolerance. Fault tolerance techniques aim at ensuring that the 

system continues to deliver the required service even in the presence of 

faults. Fault tolerance is usually implemented in two main steps - error 

detection and system recovery. Error detection is used to identify the 

presence of errors. In its turn, system recovery aims at eliminating the 

detected errors (via error recovery) and preventing faults from re-

activation (via fault handling) [7]. 

Error recovery takes one of the following three forms: 
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-  backward recovery: bringing the system back to a previous 

(correct) state; 

-  forward recovery: moving the system into a new state, from 

which it can operate (sometimes, in a degraded operational 

mode); 

- • compensation: putting the system into an error-free state (which 

relies on the condition that the system has enough redundancy to 

mask the detected error without service degrading). 

In its turn, fault handling is a process aimed at preventing faults 

from being activated again. It can be conducted in three steps. The first 

step - fault diagnosis - determines the causes of errors. The next step is 

isolation. It comprises the actions required to prevent the faulty 

component(s) from being invoked in the further executions. The last 

step is system reconfiguration. It consists of modifying the (part of the) 

system structure in such a way that the system continues to provide an 

acceptable, but possibly degraded, service. 

Fault tolerance is achieved by the reliance on redundancy. Different 

forms of redundancy allow the system either to mask a failure, i.e., nul-

lify its effect at the system level, or to detect a fault and provide 

(usually temporary) degraded services in the presence of failures. While 

redundancy enables fault tolerance, it also increases complexity of the 

system. 

Traditionally, the fault tolerance techniques are applied to cope 

with a number of anticipated situations including failures of software 

components as well as other abnormal system states. It is desirable to 

ensure that a system under construction reacts predictably in the 

presence of such abnormal situations. We can demonstrate that this task 

can be greatly facilitated by formal modelling. 

Faults can be considered as a simple form of changes, and hence, 

fault tolerance constitutes an essential mechanism of achieving 

resilience. Fault tolerance ensures that faults do not prevent the system 

from delivering its services, i.e., allows it to achieve its goals. Since 

goals provide us with a suitable mechanism for representing the 

behavior of a complex resilient system, next we give a detailed 

overview of this concept. 
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Goal-Based Development 

Goals are the functional and non-functional objectives of a system 

[8, 9]. In software engineering, goals have been recognized as useful 

primitives for capturing system requirements. The reasoning in terms of 

goals promotes structuring the top-down system design. Goals allow 

the designers to explore different architectural alternatives. They 

constitute suitable basics for reasoning about the system behavior. In 

particular, resilience can be seen as a property that allows the system to 

progress towards achieving its goals. 

Usually, the system has different types of goals. They are often 

interdependent. Goals can be structured, e.g., to form a hierarchy. 

Generally, they can be formulated at different levels of abstraction: 

high-level goals represent the overall system objectives, while lower-

level goals might define the objectives to be achieved by subsystems or 

components [8, 9]. Links between goals represent various 

interdependencies, i.e., the situations where goals affect each other. 

Traditionally, AND/OR decomposition-abstraction links are introduced 

to represent the intended goal structure. The process of goal 

detailisation (i.e., decomposition into subgoals) is performed until a 

certain level of granularity is reached, i.e., when a subgoal can be 

assigned to and consecutively realized by the system components - 

agents [8, 9]. Agent is an active component that performs a task and 

contributes to goal achievement [9, 8, 10]. 

The agent concept provides us with a powerful and expressive 

abstraction for handling complexity of distributed system development. 

Definition of the term agent varies across the software engineering field 

[11]. In this case, an agent designates a software component that is 

associated with a certain functionality and is capable to act 

autonomously in order to meet the design objectives [12, 13]. 

Correspondingly, multi-agent systems are typically decentralized 

distributed systems composed of agents asynchronously 

communicating with each other [14]. We can consider a decentralized 

agent system to be a system that operates without a control of central 

authority. 
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Typically, agents interact with each other in order to achieve their 

individual or common goals. Interactions might be simple, e.g., 

information exchange, or complex, e.g., involving requests for service 

provisioning from one agent to another [13]. 

Interactions enable agent cooperation. The level and type of 

cooperation between particular agents is defined by a system 

organization. Traditionally, we distinguish between three types of 

organizations: hierarchical organization (i.e., one agent may be the 

manager of the other agents), flat organization (i.e., agent may work 

together in a team and communicate with each other directly) and 

hybrid organization [13]. 

Agent interactions are achieved by communication. 

Communication allows the individual agents to share their local 

information with others agents to facilitate goal achievement. 

Traditionally, the employed communication mechanism is defined by a 

certain protocol describing the rules of agent interactions. 

The aim of this case study we study resilience of multi-agent 

systems. Therefore, we should explicitly represent off-nominal 

situations such as agent failures or agent disconnections and assess their 

impact on the system behavior. As a result of these off-nominal 

conditions, agents usually lose an ability to perform their predefined 

tasks. These might prevent the system from achieving its goals and 

jeopardize such essential property as safety. The system should 

recognize such situations and autonomously reconfigure itself to 

prevent possible harm. Next we give an overview of the aspect of 

autonomous reconfiguration in detail. 

System Autonomy and Reconfiguration 

The concept of system autonomy has been introduced to designate 

systems that are able to manage themselves [15] without human 

intervention. Removing humans from the control has been motivated by 

such reasons as unfeasibility or danger of direct human involvement 

(due to remote or dangerous environment), a possibility to increase 

system performance (software usually reacts much quicker than 

humans) or decrease of system costs [16, 17]. The original concept of 

system autonomy included such “self” mechanisms as self-
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configuration, self-repairing, self-healing, self-protection [15, 18]. 

However, nowadays the autonomic computing paradigm has been 

broadened and generalized. 

System autonomy can be considered from different perspectives, 

including autonomy of the individual elements forming the system and 

autonomy of the whole system in general. The autonomic computing 

paradigm has been widely adopted in various applications and with 

different degree of autonomy ranging from semi-controlled by humans 

systems to fully autonomous [16]. Autonomous systems are currently 

being deployed in many critical applications such as robotics, 

intelligent monitoring (e.g., healthcare monitoring, traffic jam 

monitoring), autonomous road vehicles (“driverless cars”), etc. 

Typically, the autonomic aspect assumes that a system is capable to 

monitor its behavior and dynamically adjust it, if needed. From the re-

silience perspective, system autonomy can be achieved via dynamic 

adaptation to various changes and volatile operating conditions. Often 

adaptation is performed by taking actions that transfer a system from 

one configuration to another. In general, the adaptation can take a form 

of parameter adaptation or structural adaptation. The parameter 

adaptation means changing the measurable system characteristics. The 

structural adaptation is typically performed via dynamic 

reconfiguration. Essentially, a system configuration can be viewed as a 

specific arrangement of the elements (components) that constitute the 

system. A configuration is defined by relationships and dependencies 

between system elements that are established to support achieving 

system goals. Dynamic reconfiguration in its turn assumes that the 

system is capable to evolve from it current configuration to another 

one. Dynamic system reconfiguration may imply removal or re-

placement of configurable elements, which consequently leads to 

changing of interdependencies between the components. Moreover, 

reconfiguration may also affect component interactions. The aim of 

reconfiguration is to ensure that the system remains operational, i.e., 

capable of achieving its goals and maintaining safe and correct delivery 

of its services. 

We study the reconfiguration aspects in the goal-oriented and 

service-oriented development paradigms. In particular, the purpose of 
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reconfiguration is to ensure that the system goals remain achievable. 

The reconfiguration is based on reallocation of responsibilities between 

agents either to ensure that the healthy agents can substitute the failed 

ones (thereby, we ensure handling of negative changes) or to enable 

more efficient utilization of agents (hence, we address positive 

changes). Within service-oriented framework the reconfiguration aims 

at ensuring that a service can be delivered despite failures of some 

service-providing components. Reconfiguration here aims at utilizing 

the available service components to re-execute a failed service. 

To effectively adapt to changes in the system and its environment, 

we need also to assess various reconfigurable strategies and 

architectural alternatives. Indeed, they can guarantee different resilience 

characteristics, e.g., expressed in the form of performance/reliability 

ratio. Hence, while developing a resilient distributed system, it is 

important to consider not only qualitative aspects of system resilience 

but also its quantitative characteristics. In general, the desirable 

properties and characteristics to be assessed are identified according to 

the system goals. In this section, we focus on the design-time 
assessment of resilience properties. 

Obviously, the design and verification of system resilience is a 

complex multifacet problem. It requires integrated approaches 

combining different methods and tools for modelling, verification and 

quantitative analysis.  

Methods and Techniques for Formal Development and 

Quantitative Assessment 

In this chapter, the approaches and tools that relied on the modelling, 

verification and assessment of resilient distributed systems is described. 

Development Methodologies 

Development of a resilient system is a challenging engineering task 

that can be significantly facilitated by the use of formal model-based 

techniques. It allows the developers to build a system in a rigorous way 

and verify that the system specification meets the requirements. 

Moreover, formal modelling facilitates systematic derivation of fault 

tolerance mechanisms and complex reconfiguration solutions. 
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Traditionally, the methods that have rigorous mathematical basis 

are called formal methods. Formal techniques provide the developers 

with a strong mathematically-grounded argument about correctness of 

the system design. The main idea behind the formal modelling and 

verification is to rely on mathematics and formal logic to avoid 

imprecision, ambiguity, incompleteness or misunderstanding of system 

requirements described in natural language [19], and enable formal 

verification guaranteeing the system under consideration system model 

adheres to the given specification. Unlike testing, formal techniques 

allow us to ensure full coverage of possible system behaviours for 

achieving system resilience. 

Traditionally, we distinguish between proof-based and model 

checking approaches. The general idea behind the automated proof-

based verification is following: for given a mathematical or logical 

statement a computer program (prover) attempts to construct a proof 

that the statement is true. Typically, theorem proving approaches are 

used to ensure that a model satisfies the desired system properties. 

Verification is performed without actual model execution or simulation; 

therefore it allows us to explore the full model state space with respect 

to the specified properties. Some well-known examples of theorem 

proving software systems are Isabelle [20, 21], Coq [22], PVS [23, 24], 

Z3 [25], CVC3 [26, 27, 28], Vampire [29, 30], etc. 

In contrast to the proof-based approach, model checking is a 

verification technique that explores all possible system states in a brute-

force manner [31, 32]. Specifically, a model checker examines system 

scenarios in a systematic manner and, thereby, shows whether a given 

system model satisfies a certain property. Model checking helps us to 

find violation of the property in specifications by providing 

counterexamples. There is a big variety of model checkers tools that 

can be used in verification, e.g., SPIN [33, 34], UPPAAL [35], ProB 

[36], PRISM [37]. 

Formal methods are successfully applied in development and 

verification of complex dependable systems [38]. They are used in such 

domains as transportation systems [39, 40, 41], space and avionic 

system [42, 43, 44], traffic management and signaling systems [45, 46], 

medical devices [47, 48], etc. 
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Significant advances in integrating formal methods to industrial 

practice have been achieved in the Deploy project [49]. The project has 

advanced development of the industrial-strength platform Rodin for 

state-based modelling and verification of complex resilient systems in 

the Event-B formalism [50]. This has motivated the choice of Event-B 

as the formal development framework to be employed. 

Event-B Method 

In this section, formal development framework - Event-B is 

presented. The Event-B formalism - a variation of the B Method [51] - 

is a state-based formal approach that promotes the correct-by-

construction development approach and verification by theorem 

proving [50]. The Event-B framework was influenced by the Action 

Systems [52, 53, 54] - a formal approach to model distributed, parallel, 

and reactive systems. 

Modelling in Event-B. In Event-B, a system model is specified 

using the notion of an abstract state machine [50]. An abstract state 

machine encapsulates the model state represented as a collection of 

model variables, and defines operations on the state. Therefore, 

machine describes the behavior of the modelled system. A machine 

may also have the accompanying 

 
Figure 13.1: Event-B machine and context 

component, called context. A context may include user-defined carrier 

sets, constants and their properties formulated as model axioms. A 

general form of the Event-B models is given in Figure 13.1. 

An Event-B machine has a name Mname. The model state 

variables, v, are declared in the Variables clause and initialized in the 
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Initialization event. In Event-B, the model variables are strongly typed 

by the constraining predicates I called invariants given in the Invariants 

clause. The invariants also specify the properties that should be 

preserved during the system execution. The dynamic system behavior is 

defined by the set of atomic events specified in the Events clause. An 

event is essentially a guarded command that, in the most general form, 

can be defined as follows: 
𝑒𝑣𝑒𝑛𝑡 =̂  𝑎𝑛𝑦 vl 𝑤ℎ𝑒𝑟𝑒 𝐺 𝑡ℎ𝑒𝑛 𝑅 𝑒𝑛𝑑 

where vl is a list of new local variables, G is the event guard, and R 

is the event action. 

The guard is a state predicate that defines the conditions under 

which the action can be executed, i.e., when the event is enabled. If 

several events are enabled at the same time, any of them can be chosen 

for execution non- deterministically. If none of the events is enabled 

then the system deadlocks. The occurrence of events represents the 

observable behavior of the system. 

In general, the action of an event is a parallel composition of 

deterministic or non-deterministic assignments. A deterministic 

assignment, x := E(x,y), has the standard syntax and meaning. A non-

deterministic assignment is denoted either as x :e S, where S is a set of 

values, or x :| P(x, y, x'), where P is a predicate relating initial values of 

x,y to some final value of x'. As a result of such a non-deterministic 

assignment, x can get any value belonging to S or according to P. 

The semantics of Event-B actions is defined using so called before-

after (BA) predicates [50]. A before-after predicate describes a 

relationship between the system states before and after execution of an 

event, as shown in 

Table 13.1. Here x and y are disjoint lists (partitions) of the state 

variables, and x', y' are their values in the after-state. 

Table 13.1: Before-after predicates 

Action (R) BA(R) 

𝑥 ∶=  𝐸(𝑥, 𝑦) 𝑥′ =  E(𝑥, 𝑦)  ∪  𝑦′ =  𝑦 

𝑥 ∶∈  𝑆 ∃𝑧 •  (z ∈  𝑆 ∩  𝑥′ =  z)  ∩  𝑦′ =  𝑦 

x ∶ | P(x, y, x′) ∃𝑧 •  (𝑃(𝑥, 𝑧, 𝑦)  ∩  𝑥′ =  𝑧)  ∩  𝑦′ =  𝑦 
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Event-B Refinement. Event-B employs a top-down refinement-

based approach to the system development. Development in Event-B 

starts from an abstract system specification that models the most 

essential functional requirements. In a sequence of refinement steps, we 

gradually reduce nondeterminism and introduce detailed design 

decisions. Refinement usually affects both the context and the machine. 

Context refinement is a simple extension of the current context 

achieved by adding new constants, sets and axioms. A machine can be 

refined in two possible ways either using data refinement or 

superposition refinement. In particular, we can replace abstract 

variables by their concrete counterparts, i.e., perform data refinement. 

In this case, the invariant of the refined machine formally defines the 

relationship between the abstract and concrete variables. Via such a 

gluing invariant - “refinement relation” - we mathematically establish a 

correspondence between the state spaces of the refined and the abstract 

machines. 

During superposition refinement, new implementation details are 

introduced into the system specification by means of new events and 

new variables. These new events can not affect the variables of the 

abstract specification and only define computations on newly 

introduced variables. 

The new events correspond to the stuttering steps that are not 

visible at the abstract level, i.e., they refine implicit skip. To guarantee 

that the refined specification preserves the global behavior of the 

abstract machine, we should demonstrate that the newly introduced 

events converge. To prove it, we have to define a variant - an 

expression over a finite subset of natural numbers - and show that the 

execution of new events decreases it. Sometimes, convergence of an 

event cannot be proved due to a high level of non-determinism. In that 

case, the event obtains the status anticipated. This obliges the designer 

to prove, at some later refinement step, that the event indeed converges. 

The correctness and consistency of Event-B models, i.e., 

verification of the model well-formedness, invariant preservation, 

deadlock-freeness, correctness of the refinement steps, is demonstrated 

by proving the relevant verification theorems - proof obligations. Proof 
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obligations are expressed as logical sequences, ensuring that the 

transformation is performed in a correctness-preserving way [50]. 

Modelling, refinement and verification of Event-B models is 

supported by an automated tool - Rodin platform [55]. The platform 

provides the designers with an integrated modelling environment, 

supports automatic generation and proving of the necessary proof 

obligations by means of wide range of automated provers. Moreover, 

various plug-ins created for Rodin platform allow a modeler to 

transform models from one representation to another, e.g. from UML to 

Event-B language [56, 57], or from Event-B specification to 

programming languages C/C++ [58, 59], ADA [60, 61], etc. 

The Event-B refinement process allows us to gradually introduce 

implementation details, while proving preservation of functional 

correctness. Such an approach seamlessly weaves verification into the 

model development and allows us to construct detailed models of 

complex systems is highly automated incremental manner. By 

providing an immediate feedback on the correctness of model 

transformations, it helps us to cope with complexity of the system 

development. Another important mechanism for handling complexity 

of formal development is decomposition. Model decomposition helps 

the designers to separate component development from the overall 

system model but ensure that the components can be recomposed into 

overall system in a correctness-preserving way [62]. Event-B is 

equipped with three forms of decomposition: shared-variable [63, 64, 

65], shared-event [65] and modularization [66], all of which are 

supported by the corresponding Rodin plug-ins [67, 68]. In this section 

we rely on a modularization extension of Event B [66]. 

Modularization. Modularization extension allows the designers to 

decompose a system into modules. Modules are components containing 

groups of callable atomic operations [66, 68]. Modules may have their 

own (external and internal) state and invariant properties. In general, 

they can be developed separately and then composed with the main 

system, when needed. Since decomposition is a special kind of 

refinement, such a model transformation is also a correctness-

preserving step that has to be proven by discharging the relevant proof 

obligations. 
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A module description consists of two parts - module interface and 

module body. Let M be a module. A module interface is a separate 

Event-B component that has the unique name MIjname. A module 

interface consists of the external module variables w, the module 

invariants MI_Inv(c, s, w), and a collection of module operations, 

characterized by their pre- and postconditions defined in the Operations 

clause. In addition, a module interface may contain a group of standard 

Event-B events under the Processes clause. 

 

Interface MI_name 

Sees IC name 

Variables w 

Invariants MI_Inv(c, s, w) 

Initialisation …  

Processes 

P1 = any vl where g(c, s, vl, w) then S(c, s, vl, w, w’) end 

… 

Operations 

O1 = any p pre Pre(c, s, vl, w) post Post(c, s, vl, w, w’) end 

… 

Figure 13.2: Module interface 

These events model autonomous module thread of control, 

expressed in terms of their effect on the external module variables. In 

other words, they describe how the module external variables may 

change between operation calls. The overall structure of a module 

interface is shown on Fig.13.2. 

A formal development of a module starts with the deciding on its 

interface. Once an interface is defined, it cannot be changed in any 

manner during the development. This ensures that a module body may 

be constructed independently from a system model that relies on the 

module interface. A module body is an Event-B machine. It implements 

the interface by providing a concrete behavior for each of the interface 

operations. To guarantee that each interface operation has a suitable 

implementation, a set of additional proof obligations are generated. 

When the module M is imported into another Event-B machine 
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(specified by a special clause Uses), the importing machine may invoke 

the operations of M and read the external variables of M. 

We can create several instances of the given module and import 

them into the same machine. Different instances of a module operate on 

disjoint state spaces. Identifier prefixes can be supplied in the Uses 

clause of the importing machine to distinguish the variables and the 

operations of different module instances or those of the importing 

machine and the imported module. Alternatively, the pre-defined 

constant set can be supplied as a additional parameter. In the latter case, 

module instances are created for each element of the given set, thus 

producing an indexed collection (array) of module instances. A detailed 

description of indexed modules is given in [69]. 

The modularization extension of Event-B facilitates formal 

development of complex systems by allowing the designers to 

decompose large specifications into separate components and verify 

system-level properties at the architectural level. As a result, proof-

based verification as well as reliance on abstraction and decomposition 

adopted in Event-B offers the designers a scalable support for the 

development of complex distributed systems. 

Quantitative Assessment 

Formal modelling in Event-B allows the designers to derive 

complex system architecture, formulate and prove logical system 

properties and formally verify correctness of the system behavior. 

While functional correctness constitutes an important aspect of 

resilience, we also need to provide the developers with techniques for 

quantitative resilience assessment. Quantitative assessment plays an 

important role in the process of resilient system development because it 

allows the developers to predict the impact of changes on such vital 

aspects as, e.g., reliability and performance. Moreover, quantitative 

analysis helps to find suitable trade-offs between these properties as 

well as evaluate the impact of different architectural alternatives on 

system resilience. Therefore, we investigate possibility of integration of 

formal development in Event-B with quantitative resilience assessment. 

In particular, we study integration with the probabilistic symbolic 
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model checker PRISM [70], and discrete event simulation in 

SimPy[71]. 

PRISM model checker 

PRISM model checker [70] is one of the leading software tool for 

formal modelling and verification of systems that exhibit probabilistic 

behavior. It provides support for analysis of three types of Markov 

process - discrete time Markov chains (DTMC), continuous-time 

Markov chains (CTMC) and Markov decision processes (MDP). 

Additionally, it supports modelling of (priced) probabilistic timed 

automata and st7]ochastic games (as a generalization of MDP) [72]. 

The state-based modelling language of PRISM relies on the reactive 

modules formalism [. 

A PRISM model consists of a number of modules which can 

interact with each other. The behavior of each module is described by a 

set of guarded commands that are quite similar to Event-B events. The 

latter fact significantly simplifies transformation of Event-B machines 

to the corresponding PRISM specifications. 

While analyzing a PRISM model, one can define a number of 

temporal logic properties to be evaluated by the tool. To assess 

resilience, we can rely on verifying the time-bounded reachability and 

reward properties. In the property specification language of PRISM, 

they can be formulated using the supported temporal logics - PCTL 

(Probabilistic Computation Tree Logic) [73] for discrete-time models 

and CSL (Continuous Stochastic Logic) [74, 75] for continuous-time 

models. 

Similarly to Event-B, the PRISM language is a high-level state-

based modelling language. Essentially, PRISM supports the use of 

constants and variables. The variables in PRISM are finite-ranged and 

strongly typed. They also can be global or local, i.e., associated with a 

particular module. 

A PRISM specification is constructed as a parallel composition of 

modules that can be synchronized using the standard CSP parallel 

composition. In addition to local variables, each module has a number 

of guarded commands that determine its dynamic behavior. Each 

command consists of a guard and one or more updates over local and 
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global system variables. Each update is annotated with a probabilistic 

weight (in discrete-time models) or rate (in continuous-time models). 

Similarly to events in Event-B, a guarded command can be executed 

(i.e., is enabled) only if its guards evaluate to TRUE. If several guarded 

commands are enabled at the same time, then the choice between them 

is defined by the model type - it is non-deterministic for MDP models, 

probabilistic for DTMC models or modelled as an (exponential) race 

condition for CTMC models. 

PRISM tool has been successfully employed in many domains 

including distributed coordination algorithms, wireless communication 

protocols, security as well as dependability and biological models. 

To enable probabilistic analysis of Event-B models in PRISM, we 

rely on the continuous-time probabilistic extension of the Event-B 

framework [76, 77]. This extension allows us to annotate actions of all 

model events with real-valued rates and then transform a 

probabilistically augmented Event-B specification into a continuous-

time Markov chain. It also implicitly introduces the notion of time into 

Event-B models: for any state, the sum of action rates of all enabled in 

these state events defines a parameter of the exponentially distributed 

time delay that takes place before some enabled action is triggered. 

Discrete-event simulation 

Due to similarity between PRISM and Event-B languages, the 

translation from a Event-B model to a PRISM specification is rather 

straightforward. It makes the use of PRISM model checker attractive 

for the performing quantitative assessment. However, the model 

checking technique does not always scale to large applications. In such 

case, simulation offers a viable alternative for quantitative analysis of 

resilience. 

Traditionally, simulation is called the process of imitating how an 

actual system behaves over time [78]. A simulation generates an 

artificial system history, thereby enabling analysis of system general 

behavior. Simulation is built around the notion of event - an occurrence 

that changes the state of the system. The system state variables are 

viewed as a collection of all information that is required to define what 

is happening within the system at a given moment of time. 
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A widely-used type of simulation is known as discrete-event 

simulation (DES). In a DES, system state remains constant over an 

interval of time between two consecutive events. Thus events signify 

occurrences that change the system state. Events can be classified as 

either internal or external. Internal events occur within the modelled 

system, while external events occur outside the system, but still might 

affect it. A simulation is run by a mechanism that repeatedly moves 

simulated time forward to the starting time of the next scheduled event, 

until there are no more events [79]. 

From the architectural perspective, a DES system consists of a 

number of entities (e.g., components, processes, agents, etc.), which are 

either producers or recipients of discrete events. Static entities (e.g., 

queues, buffers, etc.) can often be represented as resources. Resources 

have limited availability, leading to competition among entities. 

Waiting for a particular event to occur can lead to a delay, lasting for an 

indefinite amount of time. In other cases, the time estimate may be 

known in advance. Events can be also interrupted and pre-empted, e.g., 

in reaction to component failures or pre-defined high-priority events. 

There are four primary simulation paradigms [78]: process-

interaction, event-scheduling, activity scanning, and the three-phase 

method. We use SimPy [71] - a simulation framework based on 

process- interaction in Python. Essentially, SimPy is a discrete-event 

simulation library written in Python. The behaviour of active entities 

(e.g., customers, requests) is modelled by means of processes. All 

processes settle in an environment and interact with the environment 

and with each other via events. 

Processes are described by simple Python generators. During their 

lifetime, they create events and yield them in order to wait for them to 

be triggered. When a process yields an event, the process gets 

suspended. SimPy resumes the process, when the event occurs. Timeout 

is an important event type. Events of this type are triggered after a 

certain amount of (simulated) time has passed. SimPy also provides 

various types of shared resources to model limited capacity congestion 

points (like servers, queues, buffers, etc.). 

Discrete-event simulation represents an attractive technique for 

quantitative evaluation of different system characteristics. It allows the 
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designers to perform various “what-if” type of analysis that 

demonstrates sensitivity of the service architecture to changes of its 

parameters. For instance, it gives an understanding on how the system 

reacts on peak-loads, how adding new resources affects its 

performance, what are the relationships between the degree of 

redundancy and fault tolerance, etc. Moreover, while simulating the 

behavior, the designers can also obtain the information on which 

parameters should be monitored at run-time to optimize a resource allo-

cation strategy. However, to obtain all the above-mentioned benefits, 

the designers have to ensure that the simulation models are correct and 

indeed representative of the actual system. In particular, this can be 

achievable via integration of simulation technique with formal 

modelling. 

 

Advancement questions 

 

1. What is the concept of the System Resilience?  

2. Explain the concept of Dependability and name its key attributes.  

3. What are the four main techniques on which engineering 

dependable systems are able to rely? 

4. Why Goal-Based Development is crucial for software 

engineering? p. 133 

5. What does agent concept provide us? 

6. What is the concept of the System Autonomy and 

Reconfiguration and what were the reasons (motives) to remove 

humans from the control? 

7. What is the main idea behind the formal modelling and what are 

its main approaches? 

 

8. Explain the process of modelling in Event-B method 

9.What are the two possible ways of Event-B Refinement ? 
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10. What is the role of Quantitative Assessment and what are the 

tools to integrate Event-B method with quantitative resilience 

assessment? 
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14.1 Overview of the Proposed Approach 

This chapter presents an integrated approach to development and 

assessment of resilient distributed systems. Approach relies on formal 

development by refinement in Event-B, which is augmented with 

quantitative resilience assessment in the probabilistic model checker 

PRISM and discrete event simulation in SimPy. 

Unreliability of system components and communication channels, 

complex component interactions as well as highly dynamic operating 

conditions make the problem of developing resilient distributed systems 

challenging. To address this problem, we need advanced methods that 

are able to cope with the complexity inherent to such systems. 

The Event-B framework relies on three main mechanisms for 

coping with complexity: abstraction, decomposition and proofs. 

Development of a distributed system in Event-B starts from creating an 

abstract system specification (model). Often such a specification gives 

a “black-box” model of the system behavior, i.e., it focuses on defining 

the externally observable behavior while abstracting away from the 

system component architecture and the internal functional behavior. 

The initial Event-B model represents a centralized system that exhibits 

the desired externally observable behavior and properties. The 

following refinement steps aim at transforming the abstract model into 

a detailed system specification by gradually unfolding the system 

architecture, precisely defining the functional behavior as well as 

deriving a detailed representation of component interactions. 

In this chapter, we show how the described above generic approach 

to development of distributed systems by refinement can be tailored to 

support resilience-explicit development of different types of systems. 

The resulting approach shares the common idea of using refinement as 

the main vehicle for unfolding the system architecture and dynamics. 

Refinement facilitates systematic introduction of the mechanisms for 

ensuring system resilience while defining various inter-relationships 

between the system elements. Moreover, since quantitative assessment 

of different resilience characteristics is an essential part of the system 

design for resilience, we show how Event-B models can be augmented 
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with quantitative data and, as a result, serve as a basis for quantitative 

resilience assessment. 

Resilience-explicit development based on functional decomposi-

tion. To present approach, let us start first by considering the systems 

that perform a predefined scenario that can be implemented by a 

deterministic sequential execution flow. Such kind of the system 

behavior is typical for a certain class of systems, which includes, 

among others, service-oriented and control systems. In service-oriented 

systems, a service can be often modelled as a sequential composition of 

subservices. Such a composite service can be provided only if each 

subservice is successfully executed. A similar type of reasoning can be 

used for modelling control systems. Since control systems are cyclic, 

each execution cycle can be represented as a sequential execution of 

certain functional blocks. 

In approach, let us explicitly define the resilience-explicit 

refinement process for such systems. Specifically, we demonstrate that 

modelling of not only the nominal system behavior but also a 

possibility of system failures already at the abstract level can facilitate a 

rigorous systematic derivation of the required fault tolerance 

mechanisms. Then we discuss generic functional decomposition as a 

refinement step that results in defining a high-level execution flow. We 

explain how to establish a connection between a global system failure 

and the corresponding failures in the execution flow. Further, we 

demonstrate how refinement can be used for deriving the component-

based system architecture and linking component failures with those in 

the system execution flow. Moreover, establishing the connection 

between the functionality of the system and that of its components 

allows us to systematically derive the system reconfiguration 

mechanisms that are based on reallocation of execution of certain 

functional tasks from the failed components to the healthy ones. 

Finally, to evaluate the impact of reconfiguration on the system 

performance and reliability, we augment the resulting Event-B models 

defining various reconfiguration scenarios with the necessary proba-

bilistic information and demonstrate how to quantitatively assess 

different reconfiguration strategies. 
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Modelling component interactions. After presenting the generic 

resilience-explicit development process for systems with a deterministic 

sequential execution flow, we focus on detailed analysis of component 

interactions while providing a certain function (service) or participating 

in a specific collaboration. To perform the required functions while 

ensuring fault tolerance, the system components should interact and 

cooperate with each other. To facilitate reasoning about such 

cooperative behavior, we treat components as agents and a resilient 

distributed system as a multi-agent system. The multi-agent modelling 

perspective helps us to define the essential properties of cooperative 

agent activities. As a result, we derive the constraints that should be 

imposed on agent interactions to ensure correct and safe functioning 

despite component and communication failures. 

Resilient-explicit goal-oriented refinement process. Another large 

class of distributed systems includes the systems whose execution flow 

is highly non-deterministic, with a loose connection between functional 

blocks. Typical examples of such systems are standard multi-agent 

systems whose components (agents) have some degree of autonomy. 

For such kind of systems, it is convenient to adopt the goal-oriented 

reasoning style. In the this section a development method for such 

systems that formalizes the resilient-explicit goal-oriented refinement 

process is proposed. 

Resilience can be defined as the ability of a system to achieve its 

objectives - goals - despite failures and other changes. We define a set 

of specification and refinement patterns that reflect the main concepts 

of the goal-oriented development. The refinement approach is 

employed to support the goal decomposition process, thus allowing us 

to define the system goals at different levels of abstraction. Let us 

follow the same generic strategy for development of distributed goal-

oriented systems by refinement. Namely, we start by abstractly defining 

system goals, then perform goal decomposition by refinement, and 

finally introduce a representation of system agents, whose collaborative 

activities ensure goal reachability. Therefore, resilience-explicit goal-

oriented refinement approach aims at ensuring goal reachability “by 

construction”. It allows the developers to systematically introduce the 

required reconfiguration mechanisms to ensure that the system 
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progresses towards achieving its goals despite agent failures (thereby, 

address “negative” changes) or becomes more performant by using its 

agents more efficiently (thereby, address “positive” changes). 

We consider a dynamic reconfiguration as a powerful technique for 

achieving system resilience because it allows the system to adapt to 

changes by modifying its structure, inter-agent relationships and 

dependencies. However, ensuring correctness of the incorporated 

reconfiguration mechanisms is a complex task. To address this issue, 

we formalize the possible interdependencies between goals and agents 

as well as formulate the conditions for ensuring goal reachability in a 

reconfigurable multi-agent system. The proposed formalization gives a 

formal systematization of the introduced concepts and can be seen as 

generic guidelines for designing reconfigurable systems. 

In the resilience-explicit goal-oriented development approach let us 

assume that the agents are sufficiently reliable, i.e., some agents will 

stay operational during the whole process of goal achieving. To validate 

such an assumption and derive the constraints on agents reliability, we 

need to employ quantitative analysis.  

Quantitative assessment is also required to evaluate the impact of 

various architectural solutions on the system performance and 

reliability. Integration with probabilistic model checking in PRISM 

allows us to achieve these objectives. We augment Event-B models 

with quantitative data and transform them into input models for the 

PRISM model checker. As a result, quantitative assessment allows the 

designers to make informed design choices and develop systems with 

predictable resilience characteristics. 

Modelling and assessment of resilient architectures Finally, in the 

last part of this chapter, we investigate how a resilient-explicit 

refinement approach can be adopted to derive distributed architectures 

with the incorporated fault tolerance mechanisms. Let us consider a 

particular approach to ensure fault tolerance - write-ahead logging 

(WAL) - and experiment with deriving several alternative architectures 

implementing it. Each architectural solution exhibit different reliability 

and performance characteristics. Let us demonstrate how to derive 

different architectures by refinement and formally define data integrity 
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and consistency properties that logically formulate reliability 

characteristics. 

Moreover, we propose a graphical notation which facilitates 

resilience assessment of architectural alternatives by discrete event 

simulation in SimPy - a library and development framework in Python. 

The quantitative analysis in SimPy allows us to evaluate the impact of a 

particular architectural solution on the system reliability/performance 

ratio. 

14.2 Resilience-Explicit Development Based on Functional 

Decomposition. 

In this section, the resilience-explicit refinement process for the 

systems that perform a certain predefined scenario is presented. The 

aim is to facilitate rigorous modelling of both nominal and off-nominal 

system behavior and to support structured derivation of a functional 

system specification that integrates the required fault tolerance 

mechanisms. This is achieved by an explicit representation of the 

failure behavior at all levels of abstraction. 

Let us assume that the system under construction should provide a 

service that can be represented as a composition of certain functional 

blocks as shown in Fig.14.1. 

Figure 14.1: Generic execution control ow 

In the context of service-oriented systems, the functional blocks 

correspond to subservices, while in the context of control systems they 

represent the steps of a single iteration of a control loop. The resulting 

sequence of functional blocks defines the system execution flow. 

In the initial specification, presented in Fig.14.1, let us abstractly 

model the changing status of service execution. Initially the system is 

idle and can be activated to provide a service, as modelled by the event 

Activation. This results in changing the value of the boolean variable 



14 FORMAL DEVELOPMENT AND QUANTITATIVE ASSESSMENT OF RESILIENT 

DISTRIBUTED SYSTEMS 

 

162 

 

idle from TRUE to FALSE. Upon service activation, the event Execution 

becomes enabled. It models the progress of service execution by non-

deterministically changing the value of the variable process. The set 

PSTATES = {FINISHED, UNFINISHED, ABORT} represents the possible 

status of the service execution process. The value of process remains 

UNFINISHED until all the functional blocks of the service are 

successfully executed. Upon completion of the service execution, the 

variable process obtains value FINISHED, which in turn enables the 

event Finish. This event changes the status of the system to inactive, 

i.e., the variable idle obtains the value TRUE. 

The value ABORT of the variable process designates the occurrence 

of an unrecoverable failure. The corresponding event Abort deadlocks 

the specification, i.e., models the fact that the software halts its 

execution. 

Machine abs behavior 

Variables idle; process 

Invariants 

idle ∈ BOOL 

process ∈ PSTATES 

idle = TRUE => process = 

UNFINISHED 

Events 

Activation =̂ 

where idle = TRUE 

then idle := FALSE 

end 

Execution =̂ 

where idle = FALSE ^ process = 

UNFINISHED 

then process : ∈  PSTATES 

end 

Finish =̂ 

where idle = FALSE ^ process = 

FINISHED 

then idle; process = TRUE; 

UNFINISHED 

end 

Abort =̂ 

when process = ABORT 

then skip 

end 

Figure 14.2: Abstract System Behavior Model 

Functional Decomposition by Refinement. Next we refine the ab-

stract specification by introducing an explicit representation of the 

execution flow, i.e., by modelling an execution sequence of the 

predefined functional blocks. For illustrative purposes, we consider 

only a simple case of sequential execution. However, in general, we can 
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define any complex scenario (including branching, rollbacking, etc.) by 

formulating the corresponding axioms in the model context. 

For simplicity, we assume that the “id” of each block is defined by 

its execution order, i.e. blockl is executed first and so on. To explicitly 

model the impact of failures of individual block executions on the 

overall service provisioning, we define the following function 

block_state: 
Block_state ∈  1. . n −>  BSTATES, 

where BSTATES = [NI, OK, POK, NOK} is an enumerated set of 

the possible status values for block execution. Initially, none of the 

block is executed, i.e., the status of each block is NI. The block 

execution can lead to successful completion (block-state gets the value 

OK), an unrecoverable failure (NOK), or a failure that can be recovered 

by resigning the block to a different available component (POK). 

To model functional decomposition, we replace the abstract 

variable process by the variable block_state, i.e., perform data 

refinement. The gluing invariants for such data refinement are given 

below. An excerpt from the refined specification is shown in Fig. 14.3. 

The introduced events Start and Progress model execution of the 

corresponding functional blocks. They specify the process of sequential 

selection of one block after another until all blocks are executed, i.e., 

the service is completed, or execution of some blocks fails, i.e., service 

provisioning fails. The sequential order between the events is enforced 

by the corresponding guards. In particular, the guards ensure that the 

execution of all previous blocks has been successful completed. 

Machine ref1 

Variables idle; block state 

Invariants … 

Events 

// First block execution 

Start =̂ refines Execution 

any res 

when res ∈ {OK; 

POK;NOK} ^ 

block state(1) 6≠ OK ^  

block state(1) 6≠ NOK 

// block execution 

Progress =̂ refines Execution 

any j; res 

where j > 0 ^ j < n ^ 

res ∈ {OK; POK;NOK} ^ 

block state(j) = OK ^ 

block state(j + 1) 6≠ OK ^ 

block state(j + 1) 6≠ NOK 

then block state(j + 1) := res 

end 

… 
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then block state(1) := res 

end 

Figure 14.3: Flow Modelling 

We formulate and prove the following invariants defining some 

essential properties of the defined execution flow. The properties 

postulate that a next block can be chosen for execution only if 

execution of all the previously chosen blocks was successfully 

completed and, moreover, the subsequent block was not executed yet: 

∀𝑙 •  I 𝐺 2 . . n ∧  block etate(l) ≠  NI => (∀𝑖 •  𝑖 ∈  1 . . 𝑙  —  1 =
>  block_state(i)  =  OK), 

∀𝑙 •  𝑙 𝐺 1 . . 𝑛 —  1 ∧  block state(l) ≠  𝑂𝐾 => (∀𝑖 •  𝑖 
∈  𝑙 + 1 . . 𝑛 =>  block_state(i)  =  𝑁𝐼). 

The refined model should guarantee that the execution process pro-

gresses towards completion of service provisioning. This is ensured by 

the gluing invariants that establish the relationship between the abstract 

specification and the functional decomposition introduced by 

refinement: 

𝑏𝑙𝑜𝑐𝑘𝑠𝑡𝑎𝑡𝑒[1 ..𝑛] = {𝑂𝐾} ⇒ process =  FINISHED, 

(𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑡𝑒[1 . . 𝑛]  =  {OK, POK, NI }  ∨  block_state[1 . . 𝑛]  
=  {NI }) ⇒ 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =  𝑈𝑁𝐹𝐼𝑁𝐼𝑆𝐻𝐸𝐷, (∃i •  i ∈  1 . . n ∧  𝑏𝑙𝑜𝑐𝑘_state(i)  
=  𝑁𝑂𝐾 ⇒  𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =  𝐴𝐵𝑂𝑅𝑇. 

Component Modelling. The purpose of the Component Modelling 

refinement step is to link the functional blocks with the corresponding 

system components that are responsible for executing them. 

We define a variable representing the current state for each system 

component: 

comp_state ∈  COMPONENTS →  CSTATES, 
where COMPONENTS represents the set of all system components, 

while CSTATES stands for an enumerated set {NA, OPERATIONAL, 

FAILED}. A component has a status NA if it is not currently involved 

into the execution process. A healthy active component has the status 

OPERATIONAL, while a failed component obtains the status FAILED. 



14 FORMAL DEVELOPMENT AND QUANTITATIVE ASSESSMENT OF RESILIENT 

DISTRIBUTED SYSTEMS 

 

165 

 

To define the relationship between the functional blocks and the 

components that are responsible for executing them, we introduce the 

variable exec: 

exec ∈  COMPONENTS ↔  1. . n. 
Here we do not impose any additional restrictions on the 

“component- block” interdependency. However, one can specify a 

certain condition that should hold during the execution, e.g., postulate 

that a component should be responsible for executing at least one block. 

We refine the events modelling three cases of the block execution. 

Below, Fig. 14.4 presents the events modelling the successful and 

unrecoverable failed execution of blocks. 

 

// successful block 

execution 

SuccessProgress =̂  refines 

Progress 

any j, c 

when j > 0 ^ j < n ^ 

block state(j) = OK ^ 

block state(j + 1) 6≠ OK ^ 

block state(j + 1) 6≠ NOK 

comp state(c) = 

OPERATIONAL 

then block state(j + 1) := 

OK 

exec := exec ∪ {𝑐 ⟼ 𝑗 +
1} 
end 

// unrecoverable failure 

FailProgress =̂ refines Progress 

any j, c 

when j > 0 ^ j < n ^ 

block state(j) = OK ^ 

block state(j + 1) 6≠ OK ^ 

block state(j + 1) 6≠ NOK 

comp state(c) = FAILED 

then block state(j + 1) := NOK 

exec := exec ∪ {𝑐 ⟼ 𝑗 + 1} 
end 

Figure 14.4: Component Modelling 

To link the status of block execution with the status of the 

component responsible for executing it, we formulate and prove the 

invariant, establishing relationship between them: 

∀𝑖 •  𝑖 ∈  1 . . 𝑛 ∧  block_state(i)  =  OK ⟹ (∃𝑐 •  𝑐 
∈  𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆 ∧ (𝑐 ⟼ 𝑖)
∈  exec ∧  comp_state(c)  =  OPERATIONAL). 
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Abstract Reconfiguration Modelling. At this refinement step we 

introduce an abstract model of reconfiguration that is performed by 

reassigning responsibility to execute a certain functional block from a 

failed component to a healthy one. In particular, we define a new 

function variable assign to represent a block assigned to be executed to 

a component: 

assign ∈  COMPONENTS ↔  1. . n. 
We add new events AssignFirstBlock and AssignBlock modelling 

block assignment (see Fig. 4.5 ). In the guard of the events 

SuccessStart, FailStart, SuccessProgress and FailProgress, we add the 

additional conditions where we check that the corresponding block has 

been assigned before to the component. In our modelling, we assume 

that a component may fail only during its block execution. 

 

// block assignment 

AssignBlock =̂ 

any j, c 

when … 

comp_state(c) = 

OPERATIONAL 

j ∉ ran(assign) ^ 

c ∉ dom(exec) ^ c ∉
 dom(assign) 

then assign := assign ∪{c ↦ 

j} 

end 

// successful block execution 

SuccessProgress =̂ refines 

SuccessProgress 

any j, c 

when … 

(c ↦ j+1) ∉ assign ^ 

comp_state(c) = 

OPERATIONAL 

then block_state(j + 1) := OK 

exec := exec ∪{c ↦ j} 

assign := assign \ {c ↦ j+1} 

end 

Figure 14.5: Block Reallocation Modelling 

 

Let us note that in our specification we model error detection in a 

highly abstract way. However, we can further refine the model to 

elaborate on the involved error detection mechanism, for instance, by 

defining component pinging. 

The proposed resilience-explicit refinement process is generic. It 

abstracts away from the concrete functionality that the system under 

construction should implement and defines only what kind of the 
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refinement steps should be performed and which types of properties 

that should be defined and verified. The final refinement step can be 

seen as a starting point for introducing different reconfiguration 

strategies and, consequently, employing quantitative assessment 

technique. 

Each reconfiguration alternative (i.e., a different reconfiguration 

strategy or mechanism) results in creating the corresponding Event-B 

model. To evaluate the impact of different reconfiguration alternatives, 

we transform the models into inputs to the PRISM model checker. To 

achieve this, we augment the corresponding Event-B models with the 

following probabilistic data: 

-  the lengths of time delays required by components to execute 

specific functional blocks; 

-  the occurrence rates of possible failures of these components. 

Moreover, we replace all the local nondeterminism with the 

(exponential) race conditions. Such a transformation allows us to 

represent the behavior of Event-B machines by continuous time 

Markov chains and use the probabilistic symbolic model checker 

PRISM to evaluate reliability and performance of the proposed models. 

14.3 Modelling Component Interactions with Multi-Agent 

Framework 

In the resilience-explicit refinement process presented above, we 

abstracted away from modelling component interactions while 

performing the predefined functions. Usually, execution of a certain 

functional block and especially achieving fault tolerance relies on the 

assumption that the components behave in a cooperative way. For 

instance, when execution of a functional block is being reallocated from 

a failed component to a healthy one, the healthy component needs to 

accept the new responsibility, i.e. behave cooperatively. 

The multi-agent modelling paradigm facilitates reasoning about the 

cooperative component behavior. We adopt this paradigm to 

demonstrate how to reason about resilience of complex component 

interactions. It allows us to treat the components of a resilient 

distributed system as agents and execution of system functions or 
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services as cooperative agent activities. Next let us present the formal 

approach to resilience-explicit modelling of agent interactions. 

Let us formally reason about agents, their attributes and behavior as 

well as agent cooperative activities. The formalization allow us to 

establish logical connections between agents and define the conditions 

under which agents interactions result in correct execution of a 

cooperative activity. Moreover, the established dynamic connections 

(called relationships) between agents allow us to explicitly reason 

about resilience of complex agent interactions. 

A multi-agent system MAS is a tuple (𝐴, 𝜇, 𝑅, 𝛴, 𝐸, 𝐴𝑐𝑡𝑖𝑣𝑒, 𝑅𝑒𝑙), 
where A is a set of all the system agents, 𝜇 is the system middleware, R 

is a set of all possible relationships between agents in a MAS, 𝛴 is the 

system state space, and E is a collection of system events (reactions). 

Moreover, the dynamic system attributes Active and Rel map a given 

system state to a set of the active (healthy) system agents and a set of 

dynamic relationships between the active agents respectively. 

The system dynamics is modelled as a set of system events E, 

where each event e e E can be formally represented as a relation on 

input and output system states, i.e., e : Σ ↔ Σ. The dynamic system 

attributes Active and Rel are then simply functions from Σ, i.e., Active : 

Σ → P(A) and Rel : Σ → P(R), returning respectively the current sets of 

active system agents and dynamic relationships between them. 

Intuitively, two or more system agents being in a dynamic relationship 

means that these agents are currently involved in a specific 

collaboration needed to provide a predefined system function or 

service. 

Each system agent belongs to a particular agent class. Essentially 

these classes represent a partitioning of the system agents into different 

groups according to their capabilities. In general, there can be many 

agent classes Ai, i ∈ 1..n, such that Ai C A. We assume that all of them 

are disjoint. 

The system middleware μ can be considered as a special kind of the 

system agent that is always present in the system. The main responsibil-

ity of the middleware is to ensure communication between different 

agents, detect appearance of new agents or disappearance (both normal 



14 FORMAL DEVELOPMENT AND QUANTITATIVE ASSESSMENT OF RESILIENT 

DISTRIBUTED SYSTEMS 

 

169 

 

and abnormal) of the existing agents, recover from the situations when 

the required connections between the agents are lost, etc. 

The system state space Σ consists of all possible states of agents and 

the middleware. The system events E then include all internal and 

external system reactions (state transitions). We assume that each agent 

may have a number of dynamic attributes that can be changed during 

these transitions. The values of these attributes in a particular state also 

determine whether a particular agent is currently “eligible”, i.e., can be 

involved in execution of specific system events. 

Each interaction activity between different agents (or an agent and 

the middleware) may be composed of a set of events. Moreover, system 

events may model appearance or disappearance of agents, sending 

request from one agent to another, recovery of lost connections, etc. 

A set R defines all possible dynamic relationships or connections 

between agents of the same or different classes. We assume the 

existence of a number of available data constructor functions to create 

elements of R. More precisely, for each relationship r ∈ R, r is 

modelled as a result of an application of some data constructor function 

r =  RConstri(𝑎1, a2, … , am), 

where R_Constri : 𝐴𝑖1
∗ 𝑥𝐴𝑖2

∗ …𝑥𝐴𝑖𝑚
∗ ⟼  𝑅 for some m ∈ Nl and each 

𝐴𝑖𝑗
∗  =  Ak  ∪  {? } for some agent type Ak. Here ⟼ designates an 

injection function and “?” stands for an unknown agent of the 

corresponding class.  

A relationship can be pending, i.e., incomplete. This is indicated by 

putting the question marks instead of a concrete agent, e.g., 

R_Constri(a1 , a2, ?, a4, ?). Pending relationships are often caused by 

disappearance or a failure of the agents previously involved in a 

relationship. Moreover, an existing active agent may initiate a new 

pending relationship. Once a pending relationships is resolved 

(completed), the question mark is replaced by a concrete agent. 

While R represents all possible agent relationships, Rel stores the 

currently active (both complete and pending) relationships. For a 

relationship to be active, all the involved in it agents should be active as 

well. In other words, for any σ ∈  Σ and r ∈  Rel(σ), if a concrete 

agent ai  is involved in r, it should be an active one, i.e., ai ∈ Active(σ). 
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Let us now consider some expected properties that should be hold 

for interactions between agents as well as between agents and the 

middleware. 

Property 14.1.  

Let EAA and EAµ, be all interaction activities (sets of events) 

defined between agents or between agents and middleware respectively. 

Moreover, for each agent a ∈ A, let Ea be a set of events in which the 

agent a might be involved. Then 

∀𝜎, 𝑎 ∗  𝑎 ∈  𝐴𝑐𝑡𝑖𝑣𝑒 (σ)  ⇒  Ea(σ)  ∈  𝐸𝐴𝐴 U 𝐸𝐴𝜇, 
𝑎𝑛𝑑 

∀σ, a ∗  𝑎 ∉  Active (𝜎)  ⇒  𝐸𝑎(𝜎)  ∈  EAμ 
The property restricts agent interactions with respect to the agent 

activity status. For instance, this property implies that, when an agent is 

recovering from a failure, it cannot be involved into any cooperative 

activities with other agents. Therefore, while modelling agent 

interactions, we have to take into account the agent status. 

To represent such a behavior in Event-B, we define the following 

events modelling agent activities with the middleware. In particular, the 

events Appearance and Disappearance model joining and leaving the 

system by agents (of any classes). 

 

Appearance =̂ 

any a 

when a ∈ AGENTS 

∧  𝑎 ∉  𝐴𝑐𝑡𝑖𝑣𝑒 
then Active := Active 

∪{a} 
end 

Disappearance =̂ 

any a 

when a ∈ Active 

then Active := Active \ {a} 
end 

 

Here AGENTS defines a set of all system agents (i.e., A), while 

Active represents the subset of active agents. 

In a similar way, only active agents can interact with each other as 

shown by the event Interaction. 

Interaction =̂ 

any a1,a2 

when a1  ∈  𝐴𝑐𝑡𝑖𝑣𝑒 ∧  𝑎2  ∈  𝐴𝑐𝑡𝑖𝑣𝑒 ∧ 
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Elig1(a1) = TRUE ∧ Elig2(a2) = TRUE ∧ ...  

then ...  

end 

Here Eligl(a1) and Elig2(a2) abstractly model specific eligibility 

conditions on the agents that should be checked before their interaction. 

The next expected property concerns collaborative activities 

between the agents and how these activities are linked with the inter-

agent relationships. 

Property 14.2. 

Let EAA be all the interactions in which active agents may be 

involved. Moreover, for each active agent a, let Ra be all the 

relationships it may be involved in. Finally, for each collaborative 

activity CA ∈ EAA, let ACA be a set of all agents involved in it. Then, for 

each CA ∈ EAA and a1,a2 ∈ ACA, 
𝑅𝑎1  ∩  𝑅𝑎2  ≠ ∅   

This property restricts the interactions between the agents: only the 

agents that are linked by dynamic relationships (some of which may be 

pending) can be involved into cooperative activities. 

To specify abstractly a collaborative activity between agents in 

Event-B, we define an event CollabActivity. In the event guard, we 

check that both agents, participating in collaboration, are active, 

eligible to be involved, and there is a pre-existing relationships that 

permits their interactions: 

CollabActivity =̂ 

any a1, a2 

when 

a1 ∈ Active ∧ a2 ∈ Active ∧ 

Elig1(a1) = TRUE ∧ Elig2(a2) = TRUE ∧ 

RConsti(a1 ↦a2) ∈ Rel 

then … 

end 

Here RConsti is a data constructor for a specific kind of agent 

relationships, which is formally specified in the model context. In a 

similar way, we can model collaborating activities involving any 

number of agents. 
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We can specify initiation of a new relationship between agents in 

two ways. In the case, when all the required agents are active, eligible 

and ready to enter the relationship, it can be defined by the following 

event InitiateRelationship. 

InitiateRelationship =̂ 

any a1, a2 

when a1 ∈ Active ∧ a2 ∈ Active ∧ 

Ellig(a1) = TRUE ∧ Ellig(a2) = TRUE 

then Rel := Rel ∪ RConsti(a1 ↦ a2) 

end 

The opposite situation, when some agent of the initiated 

relationship is still unknown, can be defined by the following event 

InitiatePendingRelationship. Here the pre-defined element None, None 

e AGENTS, is used to designate a missing agent in the pending 

relationship (i.e., the special agent “?” in the above formalization). In 

the event shown below, an agent a1 initiates a new pending relationship, 

where the place for a second agent of the particular type is currently 

vacant (i.e., is marked by None). The resulting pending relationships 

are added to Rel. 

 

InitiatePendingRelationship =̂ 

any a1  

when a1 ∈ Active ∧ Ellig(a1) = TRUE 

then Rel := Rel ∪ RConsti(a1 ↦None) 

end 

 

Essentially, all the relationships containing None in the place of any 

their elements denote pending relationships. 

To resolve the pending relationship RConsti(a1 ^ None), the corre-

sponding agent has to join this collaborative activity. This situation is 

abstractly modelled by the event AcceptRelationship. 

 

AcceptRelationship =̂ 

status anticipated 

any a1; a2 
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when a1 ∈ Active ∧ a2 ∈ Active ∧ Ellig(a2) = TRUE ∧ 

RConsti(a1 ↦ None) ∈ Rel 

then Rel := (Rel \ RConsti(a1 ↦ None)) ∪ RConst_i(a1 ↦ 

a2) 

end 

The system middleware p keeps track of the pending relationships 

and tries to resolve them by enquiring suitable agents to confirm their 

willingness to enter into a particular relationship. We can also 

distinguish a special subset of the pending relationships that have a 

priority over the others. These relationships are linked with executing 

critical functions, and hence called critical. A responsibility of the 

middleware is to detect situations when some of the established or to be 

established relationships become pending and guarantee eventual 

resolution of them. Essentially, this means that no pending request is 

ignored forever and the middleware tries to enforce the given 

preferences, if possible. 

While developing a resilient MAS, we should ensure that all high 

priority relationships will be established. Therefore, we have to verify 

that corresponding cooperative activities, establishing these critical 

relationships, once initiated, are successfully completed. More 

precisely, we have to verify the following property: 

Property 14.3.  

Let EAAcrit, where EAAcrit ⊆ EAA, be a subset containing critical 

collaborative activities. Moreover, let Rpen and Rres, where Rpen ⊆ R and 

Rres ⊆ R, be the subsets of pending and resolved relationships defined 

for these activities. Finally, let RCA, where CA ∈ EAA and RCA ⊆ R, be 

all the relationships the activity CA can affect. Then, for each activity 

CA ∈ EAAcrit and relationship R ∈ RCA, 

(R ∈ Rpen) ⇝(R ∈ Rres), 

where ⇝ denotes “leads to” operator. 

This property postulates that eventually all the pending relationships 

should be resolved for each cooperative activity. 

To verify this property in Event-B, we have to prove that the event 

AcceptRelationship converges, i.e., eventually gets enabled. We 

achieve this by requiring that, at the abstract level, the event 

AcceptRelationship has the anticipated status. This means that 
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“resolving” of a pending relationship is postulated rather than proved. 

However, at some refinement step, this event status also obliges us to 

prove that the event or its refinements converge, i.e., to prove that the 

process of resolving a relationship will eventually terminate. 

. 

14.4 Goal-Oriented Modelling of Resilient Systems 

In this section, we propose the resilience-explicit refinement 

process that aims at facilitating development of complex distributed 

systems whose execution flow is highly non-deterministic, with a loose 

connection between functional blocks. Typical examples of such 

systems are multi-agent systems. For such kind of systems, it is 

convenient to adopt the goal-oriented reasoning style. Goals provide us 

with a suitable basis for reasoning about system resilience. Indeed, 

resilience can be considered as an ability of a system to achieve its 

objectives - goals - despite failures and changes. 

14.5 Pattern-Based Formal Development of Resilient MAS 

To support the goal-oriented development of multi-agent resilient 

systems in Event-B, we define a set of Event-B specification and 

refinement patterns that reflect the main concepts of the goal-oriented 

engineering. Patterns define generic reusable solutions that facilitate 

development of complex systems [1, 2, 3, 4]. 

In the context of formal development in Event-B, patterns represent 

generic modelling solutions that can be reused in similar developments 

via instantiation. Usually, an Event-B pattern contains abstract types, 

constants and variables. The context component of such a model 

defines the properties that should be satisfied by concrete instantiations 

of abstract data structures. Moreover, the invariant properties of a 

pattern, once proven, remain valid for all instantiations. 

Let us assume that we have defined a collection of Event-B 

patterns: P1, P2,…, Pn that refine each other in the following way: P1 is 

refined by P2, …, Pn-1 is refined by Pn. 

Such a refinement chain expresses a generic development by 

refinement. Abstract data structures of all the involved patterns become 

generic parameters of the development. Each pattern abstractly defines 
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a solution for specifying a certain modelling aspect. The initial pattern 

Pl presents a generic model (specification pattern), serving as a starting 

point of such a development. Each refinement step focuses on 

formulating specific modelling aspects that should be introduced as a 

result of the corresponding refinement transformation. The result of 

such a refinement transformation is called a refinement pattern. 

The proposed specification and refinement patterns interpret some 

essential activities of the goal-oriented engineering within the Event-B 

refinement process: 

-  Goal Modelling Pattern: explicitly defines high-level system 

goal(s) in Event-B and postulates goal reachability; 

-  Goal Decomposition Pattern: demonstrates how to define the 

system goals at different levels of abstraction in Event-B (i.e., 

how to decompose high-level system goal(s) into subgoals). An 

application of the pattern results in introducing a goal hierarchy; 

-  Agent Modelling Pattern: allows the designers to introduce 

agents into a specification and associate them with the system 

goals; 

-  Agent Refinement Pattern: explicitly defines the static and 

dynamic agent characteristics (attributes). 

Goal Modelling Pattern. We use the concept of a state transition 

system to reason about the system behavior. To formulate the Goal 

Modelling Pattern, we start by introducing an abstract type GSTATE 

defining the system state space. Moreover, Goal is a non-empty subset 

of GSTATE that abstractly defines the given system goal(s). We say 

that the system has achieved the desired goals if its current state 

belongs to Goal. 

While modelling a system in Event-B, we should ensure that the 

system under development achieves the desired goal. We can formally 

express this by requiring that the system terminates in a state belonging 

to Goal. The process of accomplishing such a goal is modelled by the 

event Reaching_Goal. The event is enabled while the goal is not 

reached. The variable gstate might eventually change its value from not 

reached to reached (i.e., gstate becomes G Goal), thus designating 

achievement of the goal: 

Reaching_Goal =̂ 
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status anticipated when 

gstate ∈ GSTATE \ Goal then 

gstate: ∈GSTATE  

end end 
 

The system terminates when Reaching_Goal event becomes 

disabled, i.e., when a state satisfying Goal is reached. Note that the 

event Reaching_Goal has the status anticipated. Hence, at this stage 

reachability is postulated rather than proved, postponing the proof of 

convergence to some later refinement step. However, later when we 

introduce more system details, we will be able to prove that the event 

(or one of its refinements) converges. 

Goal Decomposition Pattern. The main idea of goal-oriented 

development is to decompose the high-level system goals into a set of 

corresponding subgoals. Essentially, the resulting subgoals define 

intermediate stages of the process of achieving the main goal(s). The 

objective of the Goal Decomposition Pattern is to explicitly introduce 

such subgoals into the system specification. 

While defining the lower-level goals, we should ensure that the 

high- level goals remain achievable. Hence our refinement pattern 

should reflect the relation between the high-level goals and their 

subgoals. Moreover, it should ensure that high-level goal reachability is 

ensured and can be defined via reachability of the corresponding lower-

level subgoals. We assume that the subgoals are independent of each 

other. This means that reachability of any subgoal does not affect 

reachability of another one. 

To model this pattern in Event-B, we assume (for simplicity, and 

without losing generality) that the system goal Goal is achieved by 

reaching three subgoals. The subgoals are defined as corresponding 

variables: Subgoal1, Subgoal2, and Subgoal3. The goal independence 

assumption allows us to partition the high-level goal state space GST 

AT E into three non-empty subsets: SG-STATE1, SG-STATE2 and 

SGSTATE3. 

The following mapping function State.map establishes the gluing 

relationship between the new state spaces SG-STATEi, i ∈ 1..3, and the 

abstract state space: 
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Statemap G SG-STATE1 x SG-STATE2 x SG-STATE3 

↠GSTATE. 

Here ↠ designates a bijection function. Essentially it partitions the 

original goal state space into three independent parts. 

To postulate interdependence between reachability of the main goal 

and that of its subgoals, we rigorous express the following property: the 

main goal is reached if and only if all three subgoals are reached: 

∀𝑠𝑔1, sg2, 𝑠𝑔3 ∙  𝑠𝑔1 ∈  Subgoal1 ∧  sg2 ∈  Subgoal2 ∧  𝑠𝑔3 
∈ Subgoal3 

⟺  State_map(sg1 ↦  sg2 ↦  sg3)  ∈  Goal. 
In general, we can logically relate the main goal with any 

expression on its subgoals. 

A refinement step performed according to the Goal Decomposition 

Pattern is an example of Event-B data refinement. We replace the 

abstract variable gstate with the new variables gstatei ∈ SGSTATEi, i ∈ 

1..3. The new variables model the state of the corresponding subgoals. 

The following gluing invariant allows us to prove data refinement: 

gstate =  State_map(gstate1 ↦  gstate2 ↦  gstate3). 
Now the event Reaching_Goal of the abstract machine is 

decomposed into three similar events Reaching_SubGoalij i ∈ 1..3, 

modelling the process of achieving of the corresponding subgoals, as 

shown below: 

 

Machine M_GD 

Reaching_SubGoal1 =̂ refines Reaching_Goal status 

anticipated when 

gstate1 ∈ SG_STATE1 \ Subgoal1  

then 

gstate1 : ∈ SG_STATE1  

end  

 

The proposed Goal Decomposition Pattern can be repeatedly used to 

refine subgoals into the subgoals of a finer granularity until the desired 

level of detail is reached. 

Agent Modelling Pattern. The proposed Abstract Goal Modelling 

and Goal Decomposition patterns allow us to specify the system goal(s) 
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at different levels of abstraction. In multi-agent systems, (sub)goals are 

usually achieved by system components - agents, which are 

independent entities that are capable of performing certain tasks. In 

general, the system might have several types of agents that are 

distinguished by the type of tasks that they are capable of performing. 

Our next refinement pattern - Agent Modelling Pattern - allows us to 

model system agents and associate them with goals. 

We introduce the set AGENTS that abstractly defines the set of sys-

tem agents. Additionally, we distinguish three non-empty sets EL-AG1, 

EL_AG2, and EL_AG3 of the agents that are capable of achieve the 

corresponding subgoals. 

Agent might fail while trying to achieve a certain subgoal. To 

reflect this in the specification, we introduce dynamic sets of the 

eligible agents represented by the variables eligi, eligi ⊆ EL_AGi, where 

i ∈ 1..3. We say that an agent is eligible to perform a certain goal if it is 

active and capable to accomplish it. 

Agent failures have direct impact on the process of subgoals 

achievement, i.e., the goal assigned to the failed agent cannot be 

reached. To reflect this assumption in our model, we refine the abstract 

event Reaching_SubGoali by two events SuccessfuLReaching-

SubGoali and Failed_Reaching_SubGoali, i ∈1..3, which respectively 

model the successful and unsuccessful reaching of the subgoal by some 

eligible agent, as shown below:  

Machine M_AM 

Successful_Reaching_SubGoal1 =̂ refines 

Reaching_SubGoal1 

status convergent 

any ag 

when 

gstate1 ∈ SG_STATE1 \ Subgoal1 ∧ ag ∈ elig1 

then 

gstate1 : ∈ Subgoal1 

end 

Failed Reaching SubGoal1 =̂ refines Reaching SubGoal1 

status convergent 

any ag 
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when 

gstate1 ∈ SG_STATE1 \ Subgoal1 ∧ ag ∈ elig1 ∧ card(elig1) > 

1 

then 

gstate1 : ∈ SG_STATE1 \ Subgoal1 

elig1 := elig1 \ {ag} 

end 

In the guard of the event Failed_Reaching_SubGoal;L, we restrict 

possible agent failures by postulating that at least one agent associated 

with the subgoal remains operational: card(elig1) > 1. This assumption 

allows us to change the event status from anticipated to convergent. In 

other words, we are now able to prove that, for each subgoal, the 

process of reaching it eventually terminates. In practice, the constraint 

to have at least one operational agent associated with our model can be 

validated by probabilistic modelling of goal reachability, which we 

discuss later in this chapter. 

Agent Refinement Pattern. In the Agent Modelling Pattern, we 

have defined the notion of agent eligibility quite abstractly by 

formulating the relationship between subgoals and the corresponding 

agents that are capable of achieving them. Our Agent Refinement 

Pattern aims at elaborating on the notion of agent eligibility. We 

introduce agent attributes - agent types and agent statuses, and redefine 

an eligible agent as an operational agent that belongs to a particular 

agent type. 

We define an enumerated set of agent types AG_TYPE={ TYPE1, 

TYPE2, TYPE3} and establish the correspondence between abstract sets 

of agents and the corresponding agent types by the following axioms: 

∀ag ∙  𝑎𝑔 ∈  𝐸𝐿_𝐴𝐺𝑖 ⟺  𝑎𝑡𝑦𝑝𝑒(𝑎𝑔)  =  𝑇𝑌𝑃𝐸𝑖, 𝑖 ∈  1. .3. 
We consider an agent as capable to perform a certain subgoal if it 

has the type associated with this subgoal. 

To model explicitly the dynamic operational status of each agent, 

we add a new variable astatus: 

astatus ∈ AGENTS → AG_STATUS. 

Here set AG_STATUS = {OK, KO}, where OK and KO designate 

operational and failed agents correspondingly. 
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Now we can data refine the abstract variables eligi, i ∈ 1..3. The 

following gluing invariants associate them with the concrete sets: 

eligi = {a | a ∈ AGENTS ∧ atype(a) = TYPEi ∧ astatus(a) = OK}, 

for i ∈ 1..3. 

In our case, the dynamic set of agents eligible to perform a certain 

subgoal becomes a set of active agents of the particular type. The event 

Failed_Reaching_SubGoali is now refined to take into account the 

concrete definition of agent eligibility. The event also updates the status 

of the failed agent. 

Successful_Reaching_SubGoal1 = refines 

Successful_Reaching_SubGoal1 any ag when 

gstatel ∈ SG_STATE1 \ Subgoall ∧ astatus(ag) = OK ∧ atype(ag) = 

TYPE1 then 

gstate1 : G Subgoal1 end 

Failed_Reaching_SubGoal1 = refines Failed_Reaching_SubGoal1 

any ag when 

gstate1 ∈ SG_STATE1 \ Subgoal1 ∧ astatus(ag) = OK A atype(ag) = 

TYPE1 ∧ 

card({a\a ∈ AGENTS ∧ atype(a) = TYPE1 ∧ astatus(a) = OK}) > 1 

then 

gstate1 : ∈ SG_STATE1 \ Subgoali || astatus(ag) := KO end 

As mentioned above, to prove the defined goal reachability 

property, we had to make the assumptions related to agent reliability, 

i.e., assume that some agents remain operational to successfully 

complete the goal achieving process. To validate this assumption, we 

can employ quantitative assessment - probabilistic model checking 

techniques. To enable probabilistic analysis of Event-B models in the 

probabilistic model checker PRISM, we rely on the continuous-time 

probabilistic extension of the Event-B framework [5]. The idea of this 

approach is as follows. We annotate actions of all model events with 

real-valued rates (e.g., failure rate, service rate) and then transform such 

a probabilistically augmented Event-B specification into a continuous-

time Markov chain, which we represent in PRISM. Then we can assess 

the probability of achieving the goal as well as to compare several 

alternative system configurations. 
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The resilience-explicit goal-oriented refinement approach presented 

above allowed us to identify the key concepts required for formal 

development of resilient MAS. It has inspired as to propose a 

conceptual framework for goal-oriented reasoning about resilient MAS 

that puts a specific emphasis of rigorous definition of system 

reconfigurability. Next we overview the proposed formalization. 

14.6 Formal Goal-Oriented Reasoning About Resilient Re- 

configurable MAS 

In this section let us overview proposed formalization of the 

reconfigurability concept within a multi-agent goal-oriented 

framework. The aim is to gradually define the notions of system goals 

and agents together with their different interrelationships. Let us 

systematically introduce the necessary constraints on the system 

dynamics to facilitate derivation of a necessary reconfiguration 

mechanism. Here we consider reconfigurability as an ability of agents 

to redistribute their responsibilities and associations to ensure goal 

reachability. 

Goal-oriented State Transition System. We start by extending the 

standard definition of a state transition system (including the set of all 

system states V, the next-state relation Trans, and the set of initial 

system states Init) with the notion of goals that a system is trying to 

accomplish. More specifically, we introduce the set of all possible 

system goals G and the function GMap mapping a given system goal to 

a subset of system states: 

GMap ∶  ℊ →  P(Σ). 
Essentially, the function GMap assigns semantics to any goal from 

G by associating it with a non-empty set of states (a predicate) of Σ. 

Further let us extend the goal-oriented state transition system with 

the notion of subgoals. To introduce inter-relationships between the 

system goals, e.g., distinguishing particular goals and their subgoals, 

we define two structures - the relation on goals G_graph and the 

function SGMap: 

G_graph : ℊ ↔ ℊ and SGMap : ℊ → P(𝛴). 

Essentially, G_graph describes relationships between different 

goals, e.g., how a particular goal can be decomposed into its subgoals 
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and so on. SGMap(g) stands for mapping an arbitrary expression on 

subgoals of g into a set of states, corresponding to achieving the parent 

goal g. Intuitively, SGMap(g) stands for the necessary precondition for 

achieving goal g. 

Essentially, achieving any of subgoals must contribute to reaching 

the parent goal: 

∀𝑔, 𝑔′: ℊ. 𝑔′ ∈  𝑆𝑢𝑏𝑔𝑜𝑎𝑙𝑠(𝑔) ⇒  𝑆𝐺𝑀𝑎𝑝(𝑔) ∩  𝐺𝑀𝑎𝑝(𝑔′) ≠  ∅,  
where 𝑆𝑢𝑏𝑔𝑜𝑎𝑙𝑠(𝑔)  =  {𝑔′ ∶  ℊ | (𝑔 ↦  𝑔′) ∈  𝐺_𝑔𝑟𝑎𝑝ℎ}. 

Introducing Agents. Next, we extend a goal-oriented state 

transition system by introducing agents that can carry out tasks required 

for achieving the system goals. We introduce the type (set) A for all 

possible system agents and define the function Active to distinguish a 

subset of active agents in the current system state: 

Active : Σ → P(A). 

By “active” agents we mean the agents that can carry out the tasks 

in order to achieve the system goals. In its turn, the inactive agents are 

either the agents which are not currently present in the system or those 

which failed and thus incapable to carry out any tasks. 

To reflect the heterogeneous nature of multi-agent systems, next we 

introduce possible agent attributes. Namely, we associate certain 

classes of agents with specific types of system goals they are able to 

accomplish. To formalize it, we first introduce classifications of system 

agents and goals and then define relationships between the introduced 

classes. 

The following functions 

𝑎𝑡𝑦𝑝𝑒 ∶  A →  𝐴𝑇𝑦𝑝𝑒 𝑎𝑛𝑑 𝑔𝑡𝑦𝑝𝑒 ∶  ℊ →  𝐺𝑇𝑦𝑝𝑒, 
associate each agent and goal with their respective type, where 

AType and GType are abstract types containing all possible agent and 

goal types respectively. 

The separate goals of the same goal type can be achieved 

independently, i.e., can be assigned to different agents that work in 

parallel to accomplish them: 

 

∀g1, g2 ∶  ℊ, 𝑔𝑡: 𝐺𝑇𝑦𝑝𝑒. 𝑔𝑡𝑦𝑝𝑒(𝑔1)  =  𝑔𝑡 ∧  𝑔𝑡𝑦𝑝𝑒(𝑔2)  =  𝑔𝑡 ∧ g1 
≠  g2 ∧ 

𝐺𝑀𝑎𝑝(𝑔1)  ∩  𝐺𝑀𝑎𝑝(𝑔2)  =  ∅, 
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To represent interrelationships between different agent and goal 

types, we introduce the relation AG_Rel: 

𝐴𝐺_𝑅𝑒𝑙: 𝐴𝑇𝑦𝑝𝑒 ↔  𝐺𝑇𝑦𝑝𝑒. 
This formalizes a connection between the corresponding agent and 

goal types clarifies which agents can be given the tasks related to 

specific system goals. 

Agent Subordination and Supervision. Defining agent types and 

hierarchy of goal types allows us to introduce a subordination structure 

between agent types. Essentially, subordination means that one agent 

may be the “master” (manager) of the other agent(s). Naturally, agent 

subordination supposes that some agents “supervise” activities of other 

agents. Moreover, a supervising agent can give concrete goal 

assignments to subordinate agents, which, in turn, should “report” to its 

supervisors once the assigned goal has been accomplished. The 

unreached system goals can be also dynamically partitioned among the 

supervisor agents, essentially modelling accepted responsibilities of 

those agents for supervision over some goals. 

To introduce such subordination, we define a relation on agent 

types, called ASub: 

𝐴_𝑆𝑢𝑏 ∶  𝐴𝑇𝑦𝑝𝑒 ↔  𝐴𝑇𝑦𝑝𝑒. 
Moreover, for each pair of subordinated agent types, there should 

exist (at least one) pair of the related goal types such that goals of the 

parent goal type can be handled by agents of the “master” agent type, 

while goals of the subgoal type can be handled by agents of the 

subordinate agent type. 

Let us note that the introduced notions of agent types, 

subordination, ability to accomplish or supervise a particular goal, 

constitute static properties of a multi-agent goal-oriented system. On 

the other hand, since agents can change their active/inactive status 

during system execution, the function Active expresses a dynamic 

system characteristic. To formally define a system configuration and 

the corresponding reconfiguration mechanism for tolerating system 

changes, we need to define additional dynamic system characteristics. 

First, in a specific dynamic system state, a particular agent can be 
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attached to another agent, which serves as its supervisor. A specific 

goal that has not been yet reached can be put under responsibility of a 

particular supervisor agent. Moreover, a specific goal can be assigned 

by a supervisor to one of its subordinate agents. Later, the assigned goal 

can be executed by the corresponding agent. If the agent fails to achieve 

the assigned task, its goal can be reassigned to another agent capable to 

achieve it. 

We formulate these dynamic notions formally. For instance, agent 

attachment is defined as the function Attached, such that 

-  Attached : Σ →  𝑃(𝐴 𝑥 𝐴), 
-  ∀σ ∶  Σ, 𝑎1, 𝑎2 ∶  𝐴. (𝑎1 ↦  𝑎2)  ∈  Attached(σ)  ∧ 
- 𝑎1 ∈  Active(σ) ∧  𝑎2 ∈  Active(σ) ∧  atype(a1) ↦  atype(a2) ∈
 ASub ∧ ¬(∃𝑎3 ∶  𝐴. 𝑎3 ≠  𝑎1 ∧  (𝑎3 ↦  𝑎2)  ∈  Attached(σ)). 

Therefore, for any agents a1, a2 and system state σ, the expression 

(a1 ↦ a2) e Attached(σ) implies that (i) both agents are active in σ, (ii) 

the agent type of a2 is subordinate to that of a1, and (iii) the agent a2 is 

not currently attached to any other supervisor agent.  

Moreover, a goal-oriented multi-agents system supports agent 

attachment if, at any point where the conditions for agent attachment 

are satisfied, the system has an opportunity (but not an obligation) to do 

such an action. 

Similarly to agent attachment, we define goal responsibility (the 

corresponding function called Responsible) and goal assignment (the 

corresponding function called Assigned) as system dynamic attributes 

(i.e., they depend on the current system state). Goal responsibility 

specifies the relationships between certain goals and the agents 

currently supervising them. In its turn, goal assignment defines the 

relationships between the goals and pair of agents that supervise and 

perform these goals respectively. Moreover, a goal-oriented multi-

agents system supports goal responsibility and goal assignment if, at 

any point where the conditions for these properties are satisfied, the 

system is able to do these actions. 

Now, the introduced above notions and characteristics allow us to 

define notion of a reconfigurable system and reason about system 

reconfigurability. 
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Reasoning about System Reconfiguration Towards Goal 

Achievement. Based on the definitions, we can explicitly define multi-

agent systems that support system dynamic reconfiguration. 

Specifically, these are the systems that allow redistributing 

(unassigned) goals to different responsible agents or reattaching 

(unassigned) agents to different supervisor agents. Moreover, the 

following properties must hold: 

∀σ ∶  Σ, g ∶  ℊ, ∶  𝑎1, 𝑎2 ∶  𝐴. (g ↦ 𝑎1) ∈  Responsible(σ) ∧  gtype(g)

∈  AS_goals(atype(a2)) ∧  

¬(∃𝑎3 ∶  𝐴. (g ↦  𝑎1 ↦  𝑎3))  ∈  Assigned(σ))  ⇒ 
∃σ′ ∶  Σ. (σ ↦  σ′)  ∈  Trans ∧  (g ↦  𝑎2)  ∈  Responsible(σ′) 
and 

∀σ ∶  𝛴, 𝑎𝑙, 𝑎2, 𝑎3 ∶  𝐴. (al ↦ 𝑎2)

∈  𝐴𝑡𝑡𝑎𝑐ℎ𝑒𝑑(σ) ∧ (𝑎𝑡𝑦𝑝𝑒(𝑎3)  𝑎𝑡𝑦𝑝𝑒(𝑎2))

∈  𝐴_𝑆𝑢𝑏 ∧  
¬(∃𝑔 ∶  ℊ. (g ↦  al ↦  a2))  ∈  𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(σ))  ⇒  

∃σ′ ∶  𝛴. (σ ↦  σ′)  ∈ Trans ∧  (a3 ↦  𝑎2)  ∈  Attached(σ). 
Essentially, these two properties require the existence of state 

transitions allowing to redistribute goal responsibility and agent 

attachment. Here the condition gtype(g) ∈ AS_goals(atype(a2)) checks 

that the type of the agent a2 allows the agent to supervise the goal g, 

while the condition (atype(a3) ↦ atype(a2)) ∈ A_Sub requires that the 

agent type of a2 is subordinate to that of a3. 

Theorem: Goal reachability in a reconfigurable agent system. 

For a reconfigurable goal-oriented multi-agent system (G, Σ, Init, 

Trans, GMap, A, Active), the following property is true: 

∀σ ∶  𝛴, 𝑔 ∶  ℊ. σ ∈  dom( 𝑇𝑟𝑎𝑛𝑠)  ∧  σ ∉  𝐺𝑀𝑎𝑝(𝑔)  ⇒ 
∃σ′ ∶  𝛴. (σ ↦  σ′)  ∈  𝑇𝑟𝑎𝑛𝑠 + ∧  σ′ ∈ 𝐺𝑀𝑎𝑝(𝑔). 

Essentially, theorem states, that for a reconfigurable goal-oriented 

multiagent system, any goal that is not yet reached at any (non-final) 

system state is reachable. Let us note that the theorem is proved to 

formally demonstrate that all the introduced notions and mechanisms 

are sufficient to ensure goal reachability in such a system. 

The goal-oriented framework provides us with a suitable basis for 

reasoning about reconfigurability. It allows us to define reconfiguration 
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as ability of agents to redistribute their responsibilities to ensure goal 

reachability. The proposed formal systematization of the involved 

concepts can be seen as generic guidelines for formal development of 

reconfigurable systems. 

14.7 Modelling and Assessment of Resilient Architectures 

In this section, we focus on the problem of formal modelling and 

quantitative assessment of resilient architectures. In particular, we 

experiment with different architectural alternatives implementing a 

well-known fault tolerant mechanism for distributed systems (WAL). 

Each alternative provide the developers with different reliability 

guarantees expressed in the terms of data consistency and data integrity 

properties. However, since higher reliability usually results in lower 

performance, it is desirable to quantitatively assess this ratio under 

different configurations parameters and loads. 

Let us start this section by briefly describing the WAL mechanism. 

Then we demonstrate how to use the employed refinement approach to 

derive resilient architectures. Finally, let us propose a graphical 

notation facilitating construction and validation of models for resilience 

assessment in SimPy - a library and development framework in Python. 

WAL mechanism and data base replication. The WAL 

mechanism is a standard data base technique for ensuring data integrity. 

The main principle of WAL is to apply the requested changes to data 

files only after they have been logged, i.e., recorded into a log file and 

the file has been stored in a persistent storage. If the system crashes, it 

can be recovered using the log file. Therefore, the WAL method 

ensures fault tolerance. Moreover, the WAL mechanism helps to 

optimize the system performance, since only the log file (rather than all 

the data changes) should be written to the persistent storage to 

guarantee that a transaction is (eventually) committed. 

However, an implementation of a persistent storage, i.e., the 

guaranteeing that the node containing the log file never crashes, is hard 

to achieve. To ensure resilience, the proposed mechanism can be 

combined with the required replication techniques as follows. In a 

distributed data store consisting of a number of nodes distributed across 

different physical locations, one of the nodes, called master, is 
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appointed to serve incoming data requests from distributed data store 

clients and transmit back the outcome of the request, i.e., acknowledge 

success or failure of a transaction. The remaining nodes, called standby 

or worker nodes, contain replicas of the stored data. 

Each request is first recorded in the master log and then applied to 

the stored data. After this, an acknowledgement is sent to the client. 

The standby nodes are constantly monitoring and streaming the master 

log records into their own logs, before applying them to their persistent 

data in the same way. Essentially, the standby nodes are continually 

trying to “catch up” with the master. If the master crashes, one of the 

standby nodes is appointed to be the master in its stead. At this point, 

the appointed standby effectively becomes the new master and starts 

serving all data requests. A graphical representation of the system 

architecture is shown in Fig 14.6. 

Figure 14.6: Distributed Data Base System Architecture  

A distributed data store can implement different models of logging. 

In the asynchronous model, the client request is acknowledged after the 

master node has performed the required modifications in its persistent 

storage. The second option - the cascade master-standby - is a semi-

synchronous architecture. The client receives a response after both the 

master and its warm standby (called upper standby) has performed the 

necessary operations. Finally, in the synchronous model, only after all 

replica nodes have written into their persistent storage, i.e., fully 
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synchronized with the master node, the transaction can be committed. 

Obviously, such logging models deliver different resilience guarantees 

in the cases of component crashes. 

Modelling Distributed Data Store in Event-B. Let us propose a 

refinement based approach to deriving various system architectures. For 

each architecture we formulate and prove system-level logical 

properties - data consistency and data integrity. Within the described 

system, the data consistency properties express the relationships 

between the requests handled by the master and those handled by the 

standby nodes. Since any standby node is continuously copying the 

master log, we can say that any standby node is logically “behind” the 

master node. The degree of consistency depends on the chosen 

architecture. 

Within the described system, the data integrity property ensures 

that the corresponding log elements of any two storages (master or 

standby replicas) are always the same. In other words, all logs are 

consistent with respect to the log records of the master node. 

Essentially it means, that different replicas all do the same operations 

according to the log records. 

We rely on the Event-B refinement technique to gradually unfold 

the system architecture and functionality. This allows us to represent 

the system components, model their change (both normal and 

abnormal) as well as introduce a generic mechanism for changing the 

master node. We also mathematically formulate the data consistency 

and data integrity properties for different architectural models. 

Additionally, formal modelling allows us to identify situations, where 

the desired properties can be violated. 

Below, the refinement process is illustrated for the asynchronous 

system architecture. It consists of the abstract model and two 

refinements as depicted in Fig. 14.7. A brief outline of each step is 

given as follows: 
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Figure 14.7: Overview of the Development Strategy: Asynchronous 

model 

Initial model. It abstractly represents the overall system 

architecture. In particular, its describes the behavior of the master node, 

which is responsible for receiving and processing of incoming requests. 

Moreover, here we model a possible change in the set of active nodes 

and introduce an abstract representation of the procedure of a new 

master selection. 

First refinement. This is a refinement of the abstract specification. 

Here we introduce the behavior of the standby nodes and their interac-

tions with the master. We model how the received data requests are 

transferred through the different processing stages on the master and 

standby sides. Moreover, we explicitly model possible node failures, 

and therefore elaborate on the procedure of selection of new master. At 

this step we are able to formulate the data consistency properties 

expressing the relationships between the requests handled by the master 

and those by the standby nodes, respectively. A short transitional period 

may be needed for the new master to “catch up” with some of the 

standby nodes that got ahead by handling the requests still not 
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committed by the new master. To address this problem, we introduce an 

explicit representation of the transition period and redefine the 

consistency property. 

Second refinement. This model explicitly introduces the sequential 

logging mechanism and the resulting interdependencies between the 

master and standby logs. The model is obtained as a result of a data 

refinement. An introduction of the sequential representation of the 

component log allows us to refine some proven invariants as well as 

prove some new ones. In particular, we formulate and prove the log 

data integrity properties as the following model invariants: 

∀𝑐1, 𝑐2, 𝑖 ∙ 𝑐1 ∈  comp ∧  𝑐2 ∈  comp ∧  i 
∈  1 . . index_written(cV) ∧ 

i ∈  1 . . index_written(c2)  ⇒  𝑙𝑜𝑔(𝑐1)(𝑖)  =  𝑙𝑜𝑔(𝑐2)(𝑖). 
The property states that the corresponding log elements of any two 

storages are always the same. 

The formal development of the semi-synchronous and synchronous 

architectures is essentially repeats the refinement steps presented for the 

asynchronous model. However, in the semi-synchronous case, in the 

abstract model we also introduce the upper standby component and its 

interoperations with the master node. In both cases, we implement 

specific architectural solutions for the corresponding architecture and 

respective restrictions on the component behaviors. Therefore, the data 

consistency properties for each architecture are reformulated and 

proved. In its turn, the data integrity property is architectural-

independent and remains the same. The resulting Event-B formal 

models can be served as a starting point for future development of a 

specific distributed application. 

The outlined refinement process supports qualitative reasoning 

about resilience. However, it is also desirable to quantitatively assess 

sensitivity of the architecture to changes of its configuration 

parameters. To enable such quantitative assessment of resilience 

characteristics, in particular, to analyze the performance/fault tolerance 

ratio of the architectural alternatives, we integrate formal modelling in 

Event-B with discrete-event simulation in SimPy. Next we overview 

the proposed integrated approach. 
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Quantitative Assessment of Resilient Characteristics. To 

facilitate integration of the described formal modelling with discrete-

event simulation, we introduce an intermediate graphical notation 

called a process-oriented model. The proposed notation contains only 

the main concepts of the domain together with the key artefacts 

required for both formal modelling and simulation. It relies on the 

following assumptions: 

-  A system consists of a number of parallel processes, interacting 

asynchronously by means of discrete events; 

-  System processes can be grouped together into a number of 

components; 

-  Within a process, execution follows the pre-defined scenario 

expressed in terms of functional blocks (activities) and 

transitions between them. Each such functional block is typically 

associated with particular incoming events the process reacts to 

and/or outgoing events it produces; 

-  A system component can fail and (in some cases) recover. The 

component failures and recovery mechanisms are described as 

special component processes simulating different types of 

failures and recovery procedures of the component; 

-  Some events (e.g., component failures) should be reacted on 

immediately upon their occurrence, thus interrupting the process 

current activities. Such special events (interrupts) are explicitly 

described in the component description. 

An example of such a component is graphically presented on 

Fig.14.8. The component interface consists of one incoming event 

(arrivaLevn) and two outgoing events (rejection_evn and 

completion_evn). The component itself contains two processes 

describing its “nominal” behaviour: the first one stores requests to 

perform a certain service, and the second one performs a requested 

service and returns the produced results. The internal event 

perform^evn triggers the request execution by the second process. In 

addition, the component includes the processes Failure and Recovery to 

simulate possible component failures and its recovery. 

Integration Formal Modelling with Simulation in SimPy. A 

process- oriented model serves as a basis for both Event-B development 
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and system simulation in SimPy. Translating a process-oriented model 

into Event-B gives us the starting point for formal development with 

the already fixed system architecture and the control flow between 

main system components. The corresponding system properties are 

explicitly formulated and proved as system invariants. 

While translating a process-oriented model to SimPy, we augment the 

resulting code with concrete values for its basic quantitative 

characteristics, such as data arrival, service, and failure rates.  

Figure 14.8: Example of a system component 

 
Figure 14.9: Synchronous model 

This allows us to compare the system performance and reliability 

for different system parameter configurations. If satisfactory 

configuration values can be found and thus re-design of the base 

process-oriented model is not needed, the simulation results does not 

affect the Event-B formal development and can be considered 

completely complementary to it. 

We apply the proposed approach to evaluate architectural 

alternatives combining WAL and replication. We consider two different 

system architectures: asynchronous and synchronous models. The 
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resulting process- oriented models for the node components of 

synchronous architecture is presented in Fig. 14.9. 

The graphical notation facilitates development of SimPy code. 

Discrete event simulation in SimPy allows us to evaluate how different 

parameters affect the results within the considered architecture. 

Fig.14.10 and Fig.14.11 show the results of a simulation involving 

two models - asynchronous and synchronous. With identical operating 

conditions and parameters, the asynchronous model has higher 

throughput, completing 99.3 % of requests in 1 hour. This is expected, 

because the asynchronous model has shorter delay in comming 

transactions than the synchronous one, which completes 97.2 % of 

requests in 1 hour (see Table 14.1). 

Table 14.1: Results from model comparison 

 Completed 

(%) 

Rejected (%) Failed 

(%) 

asynchronous 

synchronous 

99.3 

97.2 

0  

1.6 

0.2 

0.7 

 

Moreover, for each architecture, we can perform sensitivity 

analysis. Specifically, we can evaluate the impact of the buffer capacity 

and the mean failure rate on the throughput of the system. Further 

experiments can reveal more information about the system. For 

example, we can evaluate how changing the number of standby node 

affects the performance of the models and the mean failure rates. In 

general, the desirable properties and characteristics to be assessed are 

identified according to the system goals. 
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Figure 14.10: Asynchronous model. Mean arrival rate is 7:5=min, 

service time is 5s, bu_er capacity is 5 and mean failure rate is 1:8=h. 

 

 
Figure 14.11: Synchronous model. Mean arrival rate is 7:5=min, 

service time is 5s, bu_er capacity is 5 and mean failure rate is 1:8=h. 

 

To summarize the results of this section, we can conclude that our 

pragmatic approach to integrating formal modelling in Event-B and 

discrete-event simulation in SimPy offers a scalable solution to 

integrated engineering of resilient architectures. Modelling in the 

Event-B framework allows us to reason about correctness and data 

integrity properties of the corresponding architectures, while discrete-

event simulation in SimPy enables quantitative assessment of 

performance and reliability.  
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Advancement questions 

 

1. What are principles the proposed approach relies on? 

2. What is the main idea of  resilience-explicit refinement process 

for the systems that perform a certain predefined scenario? 

3. What we should implement to model functional decomposition? 

4. State the purpose of the Component Modelling and Abstract 

Reconfiguration Modelling. 

5. What for the multi-agent modelling paradigm is used? 

6. Explain the idea of Pattern-Based Formal Development of 

Resilient MAS. 

7. How we can formulate the Goal Modelling Pattern? 

8. What is the purpose of using Agent Modelling Pattern and Agent 

Refinement Pattern 

9. What is the WAL mechanism and what is the purpose of its 

implementation? 

10. what are main the stages of the refinement process for the 

asynchronous system architecture? 
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